Chapter 4

Compound Types

4.1 Structs

In this section, you will learn three concepts for deriving new types from existing types. We show how structs are used to group data and to obtain new types with application-specific functionality. You will also see how operator overloading can help in making new types easy and intuitive to use.

Suppose we want to use rational numbers in a program, i.e., numbers of the form \(n/d \), where both the numerator \(n \) and the denominator \(d \) are integers. C++ does not have a fundamental type for rational numbers, so we have to implement it ourselves.

We could of course represent a rational number simply by two values of type int, but this would not be in line with our perception of the rational numbers as a distinct mathematical concept. The two numbers \(n \) and \(d \) “belong together”, and this is also reflected in mathematical notation: the symbol \(\mathbb{Q} \) for the set of rational numbers indicates that we are dealing with a mathematical type, defined by its value range and its functionality (see Section 2.1.6). Ideally, we would like to get a C++ type that can be used like existing arithmetic types; the following piece of code (for adding two rational numbers) shows how this could look like.

```cpp
// input
std::cout << "Rational number r:\n";
    rational r;
    std::cin >> r;

std::cout << "Rational number s:\n";
    rational s;
    std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << "\n";
```

C++ offers several concepts for defining new types based on existing types. In this section, we introduce the concept of structs. A struct is used to aggregate several values of different types into one value of a new type. With this, we can easily model the mathematical type \(\mathbb{Q} \) as a new type in C++. Here is a working program that makes a first step toward the desired piece of code above.

1 // Program: userational.C
2 // Add two rational numbers.
3 #include <iostream>
4
5 // the new type rational
6 struct rational {

4.1. STRUCTS

```cpp
7 int n;
8 int d; // INV: d ≠ 0
9 ;
10 // POST: return value is the sum of a and b
11 rational add (rational a, rational b)
12 {
13   rational result;
14   result.\n = a.\n + b.\n + a.\n + b.\n;
15   result.d = a.d + b.d;
16   return result;
17 }
18
19 int main()
20 {
21   // input
22   std::cout << "Rational number r:\n";
23   std::cout << " numerator =? \n input n; std::cin >> r.n;
24   std::cout << " denominator =? \n input d; std::cin >> r.d;
25   // computation
26   rational t = add (r, s);
27   // output
28   std::cout << "Sum is " + t.\n + t.d >> ".\n\n";
29   return 0;
30 }
```

Program 30: \texttt{rational.C}

In C++, a struct defines a new type whose value range is the Cartesian product of a fixed number of types.\footnote{Here and in the following, we identify a type with its value range to avoid clumsy formulations.} In our case, we define a new type named \texttt{rational} whose value range is the Cartesian product \texttt{int\times int}, where we interpret a value \((n, d)\) as the quotient \(n/d\).

Since there is no type for the denominator with the appropriate value range \texttt{int\{0\}}, we specify the requirement \(d \neq 0\) by an informal invariant, a condition that has to hold for all legal combinations of values. Such an invariant is indicated by a comment starting

\footnotesize

with

// INV:

Like pre- and postconditions of functions (see Section 3.1.1), invariants are an informal way of documenting the program; they are not standardised, and our way of writing them is one possible convention.

The type \texttt{rational} is referred to as a struct, and it can be used like any other type; for example, it may appear as parameter type and return type in functions like \texttt{add}.

A struct defines a type, not variables. Let's get rid of one possible confusion right from the beginning. The definition

```cpp
struct rational {
   int n;
   int d; // INV: d \neq 0
};
```

does not define variables \(n\) and \(d\) of type \texttt{int}, although the two middle lines look like variable declarations as we know them. Rather, all four lines together define a type of the same rational, but at that point, neither a variable of that new type, nor variables of type \texttt{int} have been defined. The two middle lines

```cpp
int n;
int d; // INV: d \neq 0
```

specify that any actual object of the new type (i.e. any concrete rational number) “has” (is represented by) two objects of type \texttt{int} that can be accessed through the names \(n\) and \(d\); see the member access below. This specification is important if we want to implement operations on our new type like in the function \texttt{add}.

Here is an analogy for the situation, if the university administration wants to specify how a student is represented in their files, they might come up with three pieces of data that are necessary: a name, an identification number, and a program of study. This defines the “type” of a student and allows functionality (registration, change of program of study, etc.) to be realised, long before any students actually show up.

4.1.1 Struct definitions.

In general, a struct definition looks as follows.

```cpp
struct T {
   T1 name1;
   T2 name2;
   ...;
   TN nameN;
};
```
Here, \(T \) is the name of the newly introduced struct (this same must be an identifier, Section 2.1.9), and \(T_1, \ldots, T_N \) are names of existing types. These are called the underly-
ing types of \(T \). The identifiers \(\text{name}_1, \text{name}_2, \ldots, \text{name}_N \) are the data members of
the new type \(T \).

The value range of \(T \) is \(T_1 \times T_2 \times \ldots \times T_N \). This means, a value of type \(T \) is an
\(N \)-tuple \((t_1, t_2, \ldots, t_N)\) where \(t_i \in T_i \).

"Existing types" might be fundamental types, but also user-defined types. For ex-
ample, consider the vector space \(Q^3 \) over the field \(Q \). Given the type \text{rational} as above,
we could model \(Q^3 \) as follows.

\[
\text{struct rational_vector_3} \{
 \text{rational} x;
 \text{rational} y;
 \text{rational} z;
\};
\]

Although it follows from the definition, let us make it explicit; the types \(T_1, \ldots, T_N \)
need not be the same. Here is an example: If \(0,1, \ldots, U \) is the value range of the type
unsigned int, we can get a variant of the type int with value range

\[
[-U, -U+1, \ldots, -1, 0, 1, \ldots, U-1, U]
\]
as follows.

\[
\text{struct extended_int} \{
 \text{unsigned int} u; // absolute value
 \text{bool} n; // sign bit
\};
\]

The value range of this type is \((0,1,\ldots,U) \times \{\text{true}, \text{false}\}\), but like in the rational case,
we interpret values differently: a value \((u,n)\) “mean” \(u \) if \(n = \text{false} \) and \(-u \) if \(n = \text{true} \).

Even if two struct definitions have the same member specification (the part of the
definition enclosed in curly braces), they define different types, and it is not possible to
replace one for the other. Consider this trivial but instructive example with two
apparently equal structs defined over an empty set of existing types.

\[
\text{struct S} \{
\};
\]

\[
\text{struct T} \{
\};
\]

\[
\text{void foo}(S s) \{
\}
\]

\[
\text{int main}() \{
 S s;
 T t;
\}
\]

4.1.2 Structures and scope

The scope of a struct is the part of the program in which it can be used (in a variable
declaration, or as a formal function parameter type, for example). Structs behave similar
to functions: their scope begins at the declaration of the struct and extends to the
closing brace. Within the scope of a struct, the variables \(\text{name}_1, \ldots, \text{name}_N \) can be used.

\[
\text{struct T}
\]

4.1.3 Member access

A struct is more than the Cartesian product of its underlying types—it offers some basic
functionality on its own that we explain next. The most important (and also most
visible) functionality of a struct is the access to the data members (the values \(t_i \) in the
\(N \)-tuple \(t = (t_1, \ldots, t_N) \)). Here is where the identifiers \(\text{name}_1, \ldots, \text{name}_N \) come in.

If \(\text{expr} \) is an expression of type \(T \) with value \((t_1, \ldots, t_N)\), then \(t_k \)—the \(k \)-th component
of its value—can be accessed as

\[
\text{expr.name}_K
\]

Here, '.' is the member access operator (see Table ?? in the Appendix for its specifica-
tion). The complete expression \(\text{expr.name}_K \) is an value if \(\text{expr} \) itself is an value, and we say
that the data member \text{name}_K is accessed for \text{expr}.

Lines 25 and 26 of Program 30 assign values to the rational numbers \(r \) through
the member access operator, while line 27 employs the member access operator to output the
value of the rational number \(\frac{t}{d} \). The additional output of '/' indicates that we interpret the 2-tuple \((n, d) \) as the quotient \(n/d \).

4.1.4 Initialization and assignment

We can initialise objects of struct type and assign values to them, just like we do it for fundamental types.

In line 34 of Program 30, for example, the variable \(t \) of type rational is initialized with the value of the expression \(\text{add} \((r, s) \) \) and \(t.d \) (with the second component). Interestingly, this also works with array members. Structs therefore provide a way of "faking" array initialization and assignment by wrapping the array into a struct. Here is an example to show what we mean.

```cpp
#include <iostream>

struct point {
    double coord[2];
};

int main()
{
    point p;
    p.coord[0] = 1;
    p.coord[1] = 2;

    point q = p;
    std::cout << q.coord[0] << " \n " << q.coord[1] << \n " ;

    return 0;
}
```

This works since the data members of a struct object occupy a contiguous part of the main memory, and since (in contrast to array types) struct types "know" their memory requirements. From this, the compiler can figure out how many memory cells are to be copied for the initialization of \(q \) in point \(q = p \).

In the same way (member-wise initialization), the formal parameters \(a \) and \(b \) of the function \text{add} are initialized from the values of \(r \) and \(s \); the value of \text{add} \((r, s) \) itself also results from an initialization of a (temporary) object when the return statement of the function \text{add} is executed.

Instead of the above declaration statement that initializes \(t \), we could also have written

```cpp
rational t = add \( (r, s) \);
```

Here, \(t \) is \text{default-initialized} first, and this default-initializes the data members. In our case, they are of type int; for fundamental types, default-initialization does nothing, so the values of the data members are undefined after default-initialization (see also Section 2.1.8). In the next line, the value of \text{add} \((r, s) \) is assigned to \(t \), and this assignment again happens member-wise.

What about other operations? For every fundamental type \(T \), two expressions of type \(T \) can be tested for equality, using the operators '==' and '='. It would therefore seem natural to have these two operators also for structs, implemented in such a way that they compare member-wise.

Formally, this would be correct: if \(t = (t_1, \ldots, t_n) \) and \(t' = (t'_1, \ldots, t'_n) \), then we have \(t = t' \) if and only if \(t_k = t'_k \) for \(k = 1, \ldots, N \).

But our type rational already shows that this won't work: under member-wise equality, we would erroneously conclude that \(2/3 /\not= 4/6 \). The problem is that the \textbf{syntactical value range} int\texttt{x}nt of the type rational does not coincide with the \textbf{semantical value range} in which we identify points \((n, d) \) that define the same rational number \(n/d \).

The same happens with our type \texttt{extended_int} from above: since both pairs \((0, false) \) and \((0, true) \) are interpreted as 0, member-wise equality would give us "0 \not= 0" in this case.

Only the implementor of a struct knows the semantical value range, and for this reason, C++ neither provides equality operators for structs, nor any other operations beyond the member access, initialization, and assignment discussed above. Operations that respect the semantical value range can be provided by the implementor, though, see next section.

You might argue that even member-wise initialization and assignment could be inconsistent with the semantics of the type. Later, we will indeed encounter such a situation, and we will show how it can be dealt with elegantly.

4.1.5 User-defined operators

New types require new operations, but when it comes to the naming of such operations, one less nice aspect of Program 30 shows in line 34. By defining the function \text{add}, we were able to perform the operation \(t := r + s \) through the statement

```cpp
rational t = add \( (r, s) \);
```

Ideally, however, we would like to add rational numbers like we add integers or floating-point numbers, by simply writing (in our case)
4.1 STRUCTS

rational t = r + s;

The benefit of this might not be immediately obvious, in particular since the naming of
the function add seems to be quite reasonable, but consider the expression
rational t = subtract (multiply (p, q), multiply (r, s));
and its "natural" counterpart
rational t = p * q - r * s;

To get an idea what we mean.

The natural notation can indeed be achieved: a key feature of the C++ language is
that most of its operators (see Table ?? in the Appendix for the full list) can be overloaded
for other types as well. This means that we can use the same operator token to
implement various operators: we "overload" the token.

In principle, this is nothing new: we already know that the binary operator + is
available for several types, for example int and double. What is new is that we can add
even more overloads on our own, and simply let the compiler figure out from the call
parameter types which one is needed in a certain context.

In overloading an operator, we cannot change the operator's arity, precedence or
associativity, but we can create versions of it with arbitrary formal parameters and return
types.

Operator overloading is simply a special case of function overloading. For example,
having the structs rational and extended_int available, we could declair the following
two functions in the same program, without creating a same clash: for any call to the
function square in the program, the compiler can find out from the call parameter types
which of the two functions we mean.

// POST: returns a * a
rational square (rational a);

// POST: returns a * a
extended_int square (extended_int a);

Function overloading is general is useful, but not nearly as useful as operator over-
loading. To define an overloaded operator, we have to use the functional operator
notation. In this notation, the name of the operator is obtained by appending its token
to the prefix operator. In case of the binary addition operator for the type rational,
this looks as follows and replaces the function add.

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b) {
 rational result;
 result.n = a.n + b.d + a.d * b.n;
 result.d = a.d * b.d;
 return result;
}

In Program 30, we can now replace line 34 by
rational t = r + s; // equivalent to rational t = operator+ (r, s);

Here, the comment refers to the fact that an operator can also be called in functional
notation in C++ code, it appears in infix notation in r + s. The call in functional
notation can be useful for didactic purposes, since it emphasizes the fact that an operator
is simply a special function: in an application, however, the point is to avoid functional
notation and use the infix notation.

The other three basic arithmetic operators are similar, and here we only give their
declarations.

// POST: return value is the difference of a and b
rational operator- (rational a, rational b);

// POST: return value is the product of a and b
rational operator* (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b != 0
rational operator/ (rational a, rational b);

We can also overload the unary - operator; in functional operator notation, it has
the same name as the binary version, but it has only one instead of two parameters. In
the following implementation, we use the (modified) "local copy" of the call parameter
type as the return value.

// POST: return value is -a
rational operator- (rational a) {
 a.n = -a.n;
 return a;
}

In order to compare rational numbers, we need the relational operators as well. Here
is the equality operator as an example.

// POST: return value is true if and only if a == b
bool operator== (rational a, rational b) {
 return a.n * b.d == a.d * b.n;
}

4.1.6 Details

Overloading resolution. If there are several functions or operators of the same name in a
program, the compiler has to figure out which one is meant in a certain function call.
This process is called overloading resolution and only depends on the types of the call
parameters.
4.1, STRUCTS

Overloading resolution is therefore done at compile time. There are two cases that we need to consider: we can either have an unqualified function call (like add(r, s) in Program 30), or a qualified function call (like std::sqrt(2.0)). To process an unqualified function call of the form

\[
\text{frame (expression }_1, \ldots, \text{ expression}_N \text{)}
\]

the compiler has to find a matching function declaration. Candidates are all functions \(f \) of name \(\text{frame} \) such that the function call is in the scope of some declaration of \(f \). In addition, the number of formal parameters must match the number of call parameters, and each call parameter must be of a type whose values can be converted to the corresponding formal parameter types.

In a qualified function call of the form

\[
X::\text{frame (expression }_1, \ldots, \text{ expression}_N \text{)}
\]

where \(X \) is a namespace, only this namespace is searched for candidates.

Argument-dependent name lookup (Koenig lookup). There is one special rule that sometimes makes the list of candidates larger. If some call parameter type of an unqualified function call is defined in a namespace \(X \) (for example the namespace \text{std}.), then the compiler also searches for candidates in \(X \). This is useful mainly for operators and allows them to be called unqualified in infix notation. The point of using operators in infix notation would be spoiled if we had to mention a namespace somewhere in the operator call.

Resolution: Finding the best match. For each candidate function and each call parameter, it is checked how well the call parameter type matches the corresponding formal parameter type. There are four quality levels, going from better to worse, given in the following list.

1. Exact match. The types of the call parameter and the formal parameter are the same.
2. Promotion match. There is a promotion from the call parameter type to the formal parameter type. We have seen some examples for promotions, like from bool to int and from float to double.
3. Standard conversion match. There is a standard conversion from the call parameter type to the formal parameter type. We have seen that all fundamental arithmetic types can be converted into each other by standard conversions.
4. User-defined conversion match. There is a user-defined conversion from the call parameter type to the formal parameter type. We will get to user-defined conversions only later in this book.

A function \(f \) is called better than \(g \) with respect to a parameter, if the match that \(f \) induces on that parameter is at least as good as the match induced by \(g \). If the match is really better, \(f \) is called strictly better for the parameter.

A function \(f \) is called a best match if it is better than any other candidate \(g \) in all parameters, and strictly better than \(g \) in at least one parameter.

Under this definition, there is at most one best match, but it may happen that there is no best match, in which case the function call is ambiguous, and the compiler issues an error message.

Here is an example. Consider the two overloaded function declarations

\[
\text{void foo(double d);} \quad \text{void foo(unsigned int u);} \text{;}
\]

In the code fragment

\[
\text{float f = 1.0f;} \quad \text{foo(f);} \text{;}
\]

the first overload is chosen, since float can be promoted to double, but only standard-converted to unsigned int. In

\[
\text{int i = 1;} \quad \text{foo(1);} \text{;}
\]

the call is ambiguous, since int can be standard-converted to both double and unsigned int.

4.1.7 Goals

Dispositional. At this point, you should ...

1) know how structs can be used to aggregate several different types into one new type;
2) understand the difference between the syntactical and semantical value range of a struct;
3) know that C++ functions and operators can be overloaded.

Operational. In particular, you should be able to ...

(C1) define structs whose semantical value range correspond to that of given mathematical sets;
(C2) provide definitions of functions and overloaded operators on structs, according to given functionality;
(C3) write programs that define and use structs according to given functionality.
4.1.8 Exercises

Exercise 93 Define a type Tribool for three-valued logic; in three-valued logic, we have the truth values true, false, and unknown.

For the type Tribool, implement the logical operators

\[
\text{\textsc{tribool operator}} \& (\text{tribool } x, \text{tribool } y);
\]

where \(\land \) (\&) and \(\lor \) (\|) are defined according to the following tables.

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
& \text{true} & \text{false} & \text{unknown} & \text{true} & \text{false} & \text{false} & \text{unknown} & \text{false} \\
\hline \text{true} & \text{true} & \text{false} & \text{true} & \text{false} & \text{false} & \text{false} & \text{false} & \text{false} \\
\text{false} & \text{false} & \text{false} & \text{false} & \text{true} & \text{false} & \text{false} & \text{true} & \text{false} \\
\text{unknown} & \text{false} & \text{false} & \text{false} & \text{false} & \text{true} & \text{false} & \text{false} & \text{true} \\
\hline
\end{array}
\]

Test your type by writing a program that outputs these truth tables in some format of your choice.

Exercise 94 Define a type \(\mathbb{Z}_7 \) for computing with integers modulo 7. Mathematically, this corresponds to the finite ring \(\mathbb{Z}_7 = \mathbb{Z}/7\mathbb{Z} \) of residue classes modulo 7.

For the type \(\mathbb{Z}_7 \), implement addition and subtraction operators

\[
\text{\textsc{z7 operator}} + (\mathbb{Z}_7 a, \mathbb{Z}_7 b);
\]

\[
\text{\textsc{z7 operator}} - (\mathbb{Z}_7 a, \mathbb{Z}_7 b);
\]

according to the following table (this table also defines subtraction: \(x - y \) is the unique number \(z \in \{0, \ldots, 6\} \) such that \(x = y + z \)).

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\hline
& 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 0 \\
2 & 2 & 3 & 4 & 5 & 6 & 0 & 1 \\
3 & 3 & 4 & 5 & 6 & 0 & 1 & 2 \\
4 & 4 & 5 & 6 & 0 & 1 & 2 & 3 \\
5 & 5 & 6 & 0 & 1 & 2 & 3 & 4 \\
6 & 6 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}
\]

Exercise 95 Provide definitions for the following binary arithmetic operators on the type rational.

\[
\text{\textsc{rational operator}} \& (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{rational operator}} - (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{rational operator}} * (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{rational operator}} / (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{bool operator}} \| (\text{tribool } x, \text{tribool } y);
\]

\[
\text{\textsc{bool operator}} \& (\text{tribool } x, \text{tribool } y);
\]

Exercise 96 Provide definitions for the following binary relational operators on the type rational. In doing this, try to reuse operators that are already defined.

\[
\text{\textsc{bool operator}} < (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{bool operator}} <= (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{bool operator}} > (\text{rational } a, \text{rational } b);
\]

\[
\text{\textsc{bool operator}} >= (\text{rational } a, \text{rational } b);
\]

Exercise 97 Provide definitions for the following binary arithmetic operators on the type extended-int (Page 288), and test them in a program (for that it could be helpful to provide an output operator for the type extended-int, and a function that assigns to an extended_int value a value of type int). As in the previous exercise, try to reuse code.

\[
\text{\textsc{extended_int operator}} + (\text{extended_int } a, \text{extended_int } b);
\]

\[
\text{\textsc{extended_int operator}} - (\text{extended_int } a, \text{extended_int } b);
\]

\[
\text{\textsc{extended_int operator}} * (\text{extended_int } a, \text{extended_int } b);
\]

\[
\text{\textsc{extended_int operator}} / (\text{extended_int } a, \text{extended_int } b);
\]

\[
\text{\textsc{extended_int operator}} \& (\text{extended_int } x, \text{extended_int } y);
\]

\[
\text{\textsc{extended_int operator}} \| (\text{extended_int } x, \text{extended_int } y);
\]

\[
\text{\textsc{extended_int operator}} \& (\text{extended_int } x, \text{extended_int } y);
\]
4.2 Type Variants

This section explains two ways of obtaining variants of a given type that have the same value range but differ in certain functionality aspects. Reference types enable functions to accept and return values and in particular change the values of their formal parameters. Const-type allow us to define values as being non-modifiable, in such a way that the compiler can detect illegal modifications. Reference types and const-types can be combined and naturally come up in implementing functionality for structs.

4.2.1 Reference types

Let us now try to implement the addition assignment operator += for the struct rational from Program 33. Here is an attempt:

\[
\text{rational } a, b, r = \text{rational}(a, b) = \text{rational}\{a, b\};
\]

With this, we can write

```cpp
r += s;
```

You may already see that the output of this will not be the desired 5/6. Recall from Section 3.3 what happens when \(r += s \) (equivalently, \(\text{operator} \)\(+= \text{operator} \)) is evaluated: \(r \) and \(s \) are evaluated, and the resulting values are used to initialise the formal parameters \(a \) and \(b \) of the function \(\text{operator} \). The values of \(r \) and \(s \) are not changed by the function call.

Hence, with the above implementation of \(\text{operator} \), the value of the expression \(r += s \) is indeed 5/6, but the desired effect, the increment of \(r \), does not happen. That's why we get 1/2 as output in the above piece of code.

In order to implement \(\text{operator} \) properly, we must enable functions to change the values of their call parameters. Surprisingly, we do not need a new concept for that on the function side: we simply need a new category of types.
4.2. TYPE VARIANTS

Definition. If T is any type, then

\[T & \]

is the corresponding reference type (read $T&$ as "T reference" or "reference to T"), in value range and functionality, $T&$ is identical to T. The difference is in the initialization and assignment semantics.

A variable of reference type $T&$ (also called a reference) can be initialized only from an value of type T, or any type whose values can be converted to T. The initialization makes it an alias of the value: another name for the object behind the value. We also say that the reference refers to that object. The following example shows this,

```c++
int i = 5;
int &j = i; // j becomes an alias of i
j = 6; // changes the value of i
std::cout << i << "\n"; // outputs 6
```

A reference cannot be changed to refer to another object after initialization. If we later assign something to the reference, we in fact assign to the object referred to by it. In writing $j = 6$ in the above piece of code, we therefore change the value of i to 6, since j is an alias of i.

Internally, a value of type $T&$ is represented by the address of the object it refers to. This explains why we need an value to initialize a reference type variable, and why things like

```c++
int k; // error: j must be an alias of something
int i = 5; // error: the literal 5 has no address
don't work. Any expression of reference type is an value itself. We can therefore use a reference to to initialise another reference $k$, but then we don't get a reference to $r$, but another reference to the object referred to by $r$:

```c++
int i = 5;
int &j = i; // j becomes an alias of i
int &k = j; // k becomes another alias of i
```

4.2.2 Call by value and call by reference

When a function has a formal parameter of reference type, the corresponding call parameter must be an value, when the function call is evaluated, the initialization of the formal parameter makes it an alias of the call parameter. In this way, we can implement functions that change the values of their call parameters. Here is an example.

```c++
void increment (int &i)
{
 ++i;
}
```

If a formal parameter of a function has reference type, we have call-by-reference semantics with respect to that parameter. Equivalently, we say that we pass the parameter by reference.

If the formal parameter is not of reference type, we have call-by-value semantics: we pass the parameter by value. Under call by reference, the address of (or a reference to) the call parameter is used to initialise the formal parameter; under call-by-value semantics, it is the value of the call parameter that is used for initialization.

The basic rule is to pass a parameter by reference only if the function in question actually needs to change the call parameter value. If that is not the case, call by value is more flexible, since it allows a larger class of call parameters (values and values instead of values only).

4.2.3 Return by value and return by reference

The return type of a function can be a reference type as well, in which case we have return-by-reference semantics (otherwise, we return by value). If the function returns a reference, the function call expression is an value itself, and we can use it wherever values are expected.

This means that the function itself chooses (by using reference types or not) whether its call parameter and return value are values or values. Section 2.1.13 and Section 2.2.4 document these choices for some of the operators on fundamental types, but only now we understand the mechanism that makes such choices possible.

As a concrete example, let us consider the following version of the function increment that exactly models the behavior of the pre-increment operator ++: it increments its value parameter and returns it as an value.

```c++
int &increment (int &i)
{
 return ++i;
}
```

In general, we must make sure that an expression of reference type that we return refers to a non-<code>temporary</code> object. To understand what a temporary object is, let us consider the following function.


```cpp
int i = 3;
int & j = foo(i); // j refers to expired object
std::cout << j << "\n"; // undefined behavior
the reference j refers to an expired object, and the resulting behavior of the program is undefined.

Reference Guideline: Whenever you create an alias for an object, ensure that the object does not expire before the alias.

The compiler usually notices violations of the Reference Guideline and issues a warning.

4.2.4 More user-defined operators

Rational numbers: addition assignment. Let's get back to the addition assignment operator for our new struct rational. In order to fix our failed attempt from the beginning of this section, we need to add two characters only.

As in the previous function increment, the formal parameter a must be passed as a reference, and to be compliant with the usual semantics of `+=`, we also return the result as a reference:

```
// POST: b has been added to a; return value is the new value of a.
struct rational & operator+=(struct rational & a, rational b)
{
    a.n = a.n * b.d + a.d * b.n;
    a.d += b.d;
    return a;
}
```

The other arithmetic assignment operators are similar, and we don't list them here explicitly. Together with the arithmetic and relational operators discussed in Section 4.1.5, we now have a useful set of operations on rational numbers.

Rational numbers: input and output. Let us look at Program 33 once more, with the function name add replaced by operator+ and the function call add (r, s) replaced by r + s. Still, we can spot potential improvements: instead of writing

```cpp
std::cout << "sum is " << t.n << "/" << t.d << "\n";
```

in line 37, we'd rather write

```cpp
std::cout << "sum is " << t << "\n";
```

just like we are doing it for fundamental types. After all, we want to think of a rational number as a single value from the set Q and not as two values from the set Z.

From what we have done above, you can guess that all we have to do is to overload the output operator `<<`. In discussing the output operator in Section 2.1.3 we have argued that the output stream passed to and returned by the output operator must be an lvalue, since the output operator modifies the stream. Having reference types at our disposal, this can easily be done: we simply pass and return the output stream (where type is std::ostream) as a reference:

```
// POST: a has been written to o
std::ostream & operator<<(std::ostream & o, rational r)
{
    return o << r.n << "/" << r.d;
}
```

There is no reason to stop here: for the input, we would in the same fashion like to replace the two input statements

```cpp
std::cin >> r.n; and std::cin >> r.d;
```

by the single statement

```cpp
std::cin >> r;
```

(and the same for the input of s). Again, we need to pass and return the input stream (of type std::istream) as a reference. In addition, we must pass the rational number that we want to read as a parameter, since the input operator has to modify its value.

The operator first reads the numerator from the stream, followed by a separating character, and finally the denominator. Thus, we can read a rational number in one go by entering for example 1/2.

```
// POST: r has been read from i
// PRE: i starts with a rational number of the form "n/d"
std::istream & operator>>(std::istream & i, rational & r)
{
    char c; // separating character, e.g. '/'
    return i >> r.n >> c >> r.d;
}
```

In contrast to operator<<, things can go wrong, e.g., if the user enters the character sequence "4/0" when prompted for a rational number. Also, we probably don't want to accept 3.4 as a rational number as our input operator does. These are mechanisms to deal with such issues, but we won't discuss them here.

Let us conclude this section with a beautified version of Program 33. What makes this version even nicer is the fact that in the main function, the new type is used exactly like an "atomic" fundamental type such as int.
4.2. TYPE VARIANTS

In the spirit of Section 3.1.8 on modularisation, we actually split the program into three files: a file rational.h that contains the definition of the struct rational, along with declarations of the overloaded operators; a file rational.C that contains the definitions of these operators; finally, a file userational2.C that contains the main program. At the same time, we put our new type rational and the operations on it into namespace ifm in order to avoid possible name clashes. Exercise 95 asks you to actually integrate the new rational number type into the math library that you have built in Exercise 79, so that Program 31 below can be compiled using this library.

```c
// Program: userational2.C
#include <iostream>
#include <IFM/rational.h>

int main() {
    // input
    std::cout << "Rational numbers:
";
    ifm::rational r;
    std::cin >> r;
    std::cout << "Rational number s:\n";
    ifm::rational s;
    std::cin >> s;
    // computation and output
    std::cout << "Sum is " << r + s << ".\n";
    return 0;
}
```

Program 31: progs/userational2.C

This might make you wonder why we can write the expression r + s in Program 31, without mentioning the namespace in which the operator+ in question is defined. The details of Section 4.1 explain this in the paragraph on namespace-dependent name lookup.
4.2 Type Variants

27 return i >> a.n >> c >> a.d;
28 }
29 }
30
Program 33: \texttt{prog/rationd/C}

Here is an example run of the program:

\begin{verbatim}
Rational number r:
1/2
Rational number s:
1/3
Sum is 5/6.
\end{verbatim}

4.2.5 Const-types

Let us come back to the addition operator for rational numbers from Program 33. Although this operator does not intend to change the values of its call parameters, the efficiency fanatic in you might suggest to speed up this operator by using reference types anyway:

\begin{verbatim}
// POST: return value is the sum of a and b
rational operator+ (rational& a, rational& b)
{
 rational result;
 result.n = a.n * b.d + a.d * b.n;
 result.d = a.d * b.d;
 return result;
}
\end{verbatim}

Indeed, this version is correct and potentially faster than the previous one, since the initialization of a formal parameter is done by copying just one address, rather than two int values as in the member-wise copy that takes place under the call-by-value semantics.

Even if the savings is small in this example, you can imagine that member-wise copy can be pretty expensive in structs that are more elaborate than rational; in contrast, call by reference is fast for all types, even the most complicated ones.

Unfortunately, the call parameters must be values under call by reference, so we can't write the expression \(a + b + c \), for example, even if \(a, b, c \) are variables of type rational (why?). Still, the faster version might work in our applications if we do so in Program 31, for example, since in this program, we call operator+ with value operands only.

One less obvious (and much more dangerous) problem remains: though in passing the parameters as references, we allow the operator to change the values of its call parameters in the first place, even if that happens unintentionally, in functions that are larger than the above operator+, it can easily happen that we modify some of the call parameters simply by mistake.

Not making such mistakes is the prime responsibility of the programmer, of course, but the clever programmer will call the programming language for help whenever possible. In this spirit, the above "efficiency fix" for operator+ is a bad move, since it introduces a new possible source of error.

If this sounds too abstract for you, here is an example where it is simply wrong to move to call-by-reference semantics; the compiler has no chance to detect this error since it is purely semantical. Consider the unary subtraction operator for the type rational from Section 4.1.5.

\begin{verbatim}
// POST: return value is -a
rational operator- (rational a)
{
 a.n = -a.n;
 return a;
}
\end{verbatim}

Changing this to

\begin{verbatim}
// POST: return value is -a
rational operator- (rational& a)
{
 a.n = -a.n;
 return a;
}
\end{verbatim}

has a drastic (and undesired) consequence: the expression \(-a\) will still have the same value as before, but it will have the additional effect of changing the value of \(a \). We have "accidentally" created a completely different operator.

As many other high-level programming languages, \texttt{C++} offers a mechanism that—if properly used—allows the compiler to detect undesired changes of values as in the previous example. The idea is to promise that a certain value will not be changed, and then let the compiler check whether we keep our promise. In the call-by-reference version of the unary subtraction operator, the (false) promise can be given as follows, using the \texttt{const} keyword:

\begin{verbatim}
rational operator- (const rational& a)
{
 a.n = -a.n; // error: a was promised to be const
 return a;
}
\end{verbatim}

In compiling this variant of the operator, the compiler will issue an error message, pointing out the mistake. We can then fix it by either going back to call-by-value semantics, or by introducing a result variable like in operator+ above.

From the strictly functional point of view, this promise mechanism is superfluous, and there are programming languages in use that don't have it (\texttt{C} used to be such a
4.2 Type Variants

language, until the const keyword was added in 1999, motivated by its success in C++. Also, nobody forces us to make use of the promise mechanism.* But the whole point of high-level programming languages is to make the programmer’s life easier; the compiler is our friend and can help us to avoid many time-consuming errors. The const mechanism is like a check digit: by providing additional redundant data (the const keyword), we make sure that inconsistencies in the whole data set (the program) are automatically detected.

Definition. If \(T \) is any type, then

\[
\text{const } T
\]

is the const-qualified type (const-type for short) of \(T \), and \(T \) itself is the underlying type. The const-qualified version of \(T \) has exactly the same value range and functionality as \(T \). The only difference is that an expression of const-type is not allowed to change its value (in other words, it is const); this is our promise, and the compiler checks whether we keep that promise.

If we write for example

\[
\text{const int } n = 5;
\]

the compiler will issue an error message concerning the assignment \(n = 6 \), since \(n \) has the const-type const int.

Values of const-type must always be initialized. Writing

\[
\text{const int } n; // error: uninitialized constant
\]

is illegal (and makes no sense, since we can never assign a value to \(n \) later).

4.2.6 What exactly is constant?

Let us consider some value of type const \(T \). If the underlying type \(T \) is not an reference type, then the value is associated with a const object.* For example, the declaration

\[
\text{const int } n = 5
\]

promises that the value of the object behind the variable \(n \) will not be modified. We may (accidentally) try to cheat around this promise by using another name for the object, but the compiler will catch us:

\[
\text{const int } n = 5;
\]

\[
\text{int } k = n; // error: const-qualification is discarded
\]

\(i = 6; \)

*Indeed, “Real programmers” (as described in the荤文 article Real programmers don’t use PASCAL) would leave it to the “Quark engine” to use such a mechanism.

*BAn value of the type (or of any type, for that matter), has constant value anyway,
4.3 Type Variants

A parameter of type const T& is therefore the all-in-one device suitable for every purpose: if the call parameter is an value, the initialization is very efficient (only its address needs to be copied), and otherwise, we essentially fall back to call-by-value semantics.

Despite these, there are still situations where T is preferrable over const T& as a parameter type. If T is a fundamental type or a struct with small memory requirements, it does not pay off to move to const T& since the saving in handling value parameters is so small or (even nonexistent) that it won’t compensate for the (slightly) more costly access to the formal function parameter in the function body. Indeed, call by reference adds one indirection to look up the value of a formal function parameter under call-by-reference semantics, we just to look up its address and then look up the actual value at that address. Under call-by-value semantics, the address of the value is “hardwired” (and refers to some object on the call stack, see Section 3.2.2).

Also, it is often convenient to use the formal parameter as a local variable and modify its value (see operator- above); for that, its type must not be a const-type.

4.2.8 Const-types as return types.

Const-types may also appear as return types of functions, just like any other types. In that case, the const promise that the function call expression itself is constant.

If the return type is not a reference type, the function call expression is an value and hence not modifiable anyway. In this case, the const keyword in legal but has no effect. Const-type therefore only make a difference if the function returns a reference.

Note that it is not generally valid to replace return type T by const T&; while this safely works for the formal parameter types, it can for the return type result in syntactically correct but semantically wrong code.

As an example, let’s replace rational by const rational& as the return type of operator+:

```c
const rational& operator+ (const rational& a, const rational& b) {  
    rational result;  
    result.a = a.a + b.d + a.d * b.a;  
    result.d = a.d + b.d;  
    return result;  
}
```

In executing the return statement, the return value (in case a const-reference) to be passed to the caller of the function is initialized with the expression result. Now recall that the initialization of a (const)-reference from an value simply makes it an alias of the value. But the value in question (namely result) is a local variable whose memory is fixed and whose address becomes invalid when the function call terminates (see Section 4.3.4 and Section 4.2.1). The consequence is that the returned reference will be the alias of an expired object, and using this reference results in undefined behavior of the program.

Errors like this are very hard to find (and we cannot reliably count on compiler warnings here), since the program may work as intended, for example if the memory that was associated to the expired object is not immediately reused. But on another platform, the program may behave differently or even crash.

4.2.9 When to use const?

Whenever you think about the appropriate type of a variable, a formal function parameter, or a function’s return value, it is good practice to think about const qualiification at the same time. After all, you should know what you want to do with the variable, parameter, or return value (if you don’t, this paragraph is even more important), so you also know whether the program needs to change its value at some point.

The basic rule to follow is this:

Const Guideline: Use const-types whenever this is possible and makes a difference, it always makes a difference in connection with reference types.

Indeed, it is more than the promise of constant value that distinguishes the type const T& from T&: while we need values to initialise and assign objects of type T&, values suffice for const T&. We have also argued that const T& is preferable to T in many situations, simply for efficiency reasons. You cannot ignore these facts, even if you don’t care about the efficiency mechanism otherwise.

If T is not a reference type, then the question whether const T makes a difference from T has usually not such a clear answer, with one exception: in return types of functions that do not return references, the const keyword really makes no difference and should therefore be omitted.

In the same spirit, the const keyword is typically omitted for formal function parameters that are not references. In this situation, const is not redundant, though: if a formal parameter is of const-type, we promise not to use the formal parameter as a modifiable local variable. But this promise is neither necessary to prevent accidental modification of the call parameter (call by value already takes care of this), nor does it influence the outside behavior of the function in any way. In fact, if you write functions for a library (see Section 3.1.6), you better refrain from such const-type usage, as it unnecessarily restricts you: if you later decide to change the function definition, you are committed to the const-type parameter (even if this turns out to be impractical), unless you also change the header file that contains the function declaration.

Also, not all variables that could be declared const in a program are typically done so, simply because it makes (or appears to make) no difference in the context of the declaration. As an example, consider line 34 in Program 30: it is possible to declare the variable t as being of const-type const rational, but it doesn’t make a difference, since this variable occurs once only afterwards, and this occurrence is just three lines below.

For concreteness, let us stipulate that a variable that is meant to have constant value should definitely get const-type if its scope spans more than 10 lines of code.
4.2 Type Variants

4.2.10 Goals

Dispositional. At this point, you should...

1) understand the alias concept behind reference types and the Reference Guideline;
2) understand the difference between call by value and call by reference semantics for function parameters;
3) understand const-types and the Const Guideline.

Operational. In particular, you should be able to...

(G1) state exact pre-and postconditions for functions involving formal parameter types or return types of reference and/or const-type;
(G2) write functions that modify (some of) their call parameters;
(G3) find syntactical and semantical errors in programs that are due to improper handling of reference types;
(G4) find syntactical and semantical errors in programs that are due to improper handling of const-types;
(G5) find the declarations in a given program whose types should be const/according to the Const Guideline.

4.2.11 Exercises

Exercise 100 Consider the following family of functions:

T foo (2 1)
{
 return ++i;
}

with T being one of the types int, int& and const int, and S being one of the types int, int&, const int, and const int. (This defines 12 different functions).

a) Find the combinations of T and S for which the resulting function definition is syntactically valid, and explain your answer.

b) Among the combinations found in a), find the combinations of T and S for which the resulting function definition is also semantically valid, meaning that function calls always have well-defined value and effect; explain your answer.

c) For all combinations found in b), give precise postconditions for the corresponding function foo.

\[a \times x + b = 0 \]
\[x = \frac{-b}{a} \]

Exercise 101 Write a function that swaps the values of two int-variables.

For example,

```c
int a = 5;
int b = 6;
// here comes your function call
std::cout << a << "\n"; // outputs 5
std::cout << b << "\n"; // outputs 6
```

Exercise 102 We want to have a function that normalizes a rational number, i.e., transforms it into the unique representation in which numerator and denominator are relatively prime, and the denominator is positive. For example,

\[-\frac{21}{-14}\]

is normalized to

\[-\frac{3}{2}\]

There are two natural versions of this function:

// POST: r is normalized
void normalize (rational& r);

// POST: return value is the normalization of r
rational normalize (const rational& r);

Implement one of them, and argue why you have chosen it over the other one. Hint: you may want to use the function \(\text{gcd} \) from Section 3.3, modified for parameters of type int (how does this modification look like?).

Exercise 103 Provide a definition of the following function.

// POST: return value indicates whether the linear equation \(a \times x + b = 0 \) has a real solution \(x \); if true is returned, the value \(x \) satisfies \(a \times x + b = 0 \)
bool solve (double a, double b, double& x);

Test your function in a program for at least the pairs \((a, b)\) from the set \[[(2, 1), (0, 2), (0, 0), (3, -4)]\].

(G1)(G3)(G4)

(G2)
Exercise 104 Reconsider the following programs and identify the declarations (of variables or formal parameters) in which you could replace a type T by its const-version const T.

a) Program 1 (Page 18)
b) Program 6 (Page 72)
c) Program 26 (Page 185)
d) Program 27 (Page 185)
e) Program 30 (Page 226)

Exercise 105 Find all mistakes (if any) in the following programs, and explain why these are mistakes. All programs share the following two function definitions and only differ in their main functions.

```c
int foo (int & i) {
    return i += 2;
}

const int & bar (int &i) {
    return i += 2;
}
```

d) int main()
 {
 int i = 5;
 const int j = foo (i);
 }

e) int main()
 {
 int i = 5;
 const int j = bar (++i);
 }

4.2.12 Challenges

Exercise 106 Implement an integral type bigint whose values have an arbitrary (but fixed) number of digits, for example 1,000 (recall that int values have 32 binary digits on many platforms). The type should have the operators +, -, *, /, % along with their assignment versions, and an output operator.

Write a program to test your number type. For example, given a and b, it should always hold that a = (a / b) * b + a % b.

Use the bigint to finally answer all the nagging questions that have haunted you for so long: what is the twentieth power of 2? What is F50, the fiftieth Fibonacci number, etc.?