2.2. INTEGERS 37

2.2

Integers

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere
15t Menschenwerk.

Leopold Kronecker, in a lecture to the Berliner
Naturforscher- Versammlung (1886)

Thas section discusses the types int and unsigned int for representing
integers and natural numbers, respectively. You will learn how to evalu-
ate arithmetic expressions over both types. You will also understand the
limaitations of these types, and—related to this—how their values can be
represented in the computer’s memory.

Here is our next C++ program. It asks the user to input a temperature in degrees
Celsius, and outputs it in degrees Fahrenheit. The conversion is defined by the following
formula.

9 - Degrees Celsius

2.
5 +3

Degrees Fahrenheit =

{

CO N O O i W N =

17 }

// Program: fahrenheit.C
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main ()

// Input

std::cout << "Temperature in degrees Celsius =7 ";
int celsius;

std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 *x celsius / 5 + 32 << " degrees Fahrenheit.\n";
return O;

Program 4: progs/fahrenheit.C

If you try out the program on the input of 15 degrees Celsius, you will get the
following output.

15 degrees Celsius are 59 degrees Fahrenheit.

38 CHAPTER 2. FOUNDATIONS

This output is produced when the expression statement in lines 14-15 of the program
is executed. Here we focus on the evaluation of the arithmetic expression

9 *x celsius / 5 + 32

in line 15. This expression contains the primary expressions 9, 5, 32, and celsius, where
celsius is a variable of type int. This fundamental type is one of the arithmetic types
in C++.

Literals of type int. 9, 5 and 32 are decimal literals of type int, with their values imme-
diately apparent. Decimal literals of type int consist of a sequence of digits from 0 to 9,
where the first digit must not be 0. The value of a decimal literal is the decimal number
represented by the sequence of digits. There are no literals for negative integers. You
can get value —9 by writing -9, but this is a composite expression built from the unary
subtraction operator (Section 2.2.4) and the literal 9.

2.2.1 Associativity and precedence of operators

The evaluation of an expression is to a large extent governed by the associativities
and precedences of the involved operators. In short, associativities and precedences
determine the logical parentheses in an expression that is not, or only incompletely,
parenthesized. We have already touched associativity in connection with the output
operator in Section 2.1.13.

C++ allows incompletely parenthesized expressions in order to save parentheses at
obvious places. This is like in mathematics, where we write 3 + 4 -5 when we mean
3+(4-5). We also write 34445, even though it is not a priori clear whether this means
(34+4)+5o0r 34 (445). Here, the justification is that addition is associative, so it does
not matter which variant we mean.

The price to pay for less parentheses is that we have to know the logical parentheses.
But this is a moderate price, since the two rules that are used most frequently are quite
intuitive and easy to remember. Also, there is always the option of explicitly adding
parentheses in case you are not sure where C++ would put them. Let us start with the
two essential rules for arithmetic expressions.

Arithmetic Evaluation Rule 1: Multiplicative operators have higher precedence than
additive operators.

The expression 9 * celsius / 5 + 32 involves the multiplication operator *, the divi-
sion operator /, and the addition operator +. All three are binary operators. In C++
as in mathematics, the multiplicative operators * and / have higher precedence than
the additive operators + and -. We also say that multiplicative operators bind more
strongly than additive ones.* This means, our expression contains the logical paren-

“In American English, this rule is known as “PEMDAS", in British English it’s “BODMAS", and in
German it’s “Punkt- vor Strichrechnung”.

2.2. INTEGERS 39

theses (9 * celsius / 5) + 32: it is a composite expression built from the addition
operator and its operands 9 * celsius / 5 and 32.

Arithmetic Evaluation Rule 2: Binary arithmetic operators are left associative. I

In mathematics, it does not matter how the sub-expression 9 * celsius / 5 is parenthe-
sized. But in C++, it is done from left to right, that is, the two leftmost sub-expressions
are grouped together. This is a consequence of the fact that the binary arithmetic op-
erators are defined to be left associative. The expression 9 * celsius / 5 is therefore
logically parenthesized as (9 * celsius) / 5, and our original expression has to be read
as

((9 * celsius) / 5) + 32

Identifying the operators in an expression. There is one issue we haven’t discussed yet,
namely that different C++ operators may have the same token. For example, - can be
a binary operator as in 3 - 4, but it can also be a unary operator as in -5. Which one
is meant must be inferred from the context. Usually, this is clear, and in cases where it
is not (but also in other cases), it is probably a good idea to add some extra parentheses
to make the expression more readable (see also the Details section below).

Let us consider another concrete example, the expression -3 - 4. It is clear that
the first - must be unary (there is no left hand side operand), while the second one is
binary (there are operands on both sides). But is this expression logically parenthesized
as -(3 - 4),oras (-3) - 47 Since we get different values in both cases, we better make
sure that we know the answer.

The correct logical parentheses are

(=3 — 4),

so the value of the expression -3 - 4 is —7. This follows from the third most important
rule for arithmetic expressions.

Arithmetic Evaluation Rule 3: Unary operators + and - have higher precedence than
their binary counterparts.

By using (explicit) parentheses as in 9 * (celsius + 5) * 32, precedences can be
overruled. To get the logical parentheses for such a partially parenthesized expression,
we apply the rules from above, considering the already parenthesized parts as operands.
In the example, this leads to the logical parentheses (9 * (celsius + 5)) * 32.

The Details section discusses how to paranthesize a general expression involving ar-
bitrary C++ operators, using their arities, precedences and associativities.

40 CHAPTER 2. FOUNDATIONS

2.2.2 Expression trees

In any composite expression, the logical parentheses determine a unique “top-level”
operator, namely the one that appears within a smallest number of parentheses. The
expression is then a composite expression, built from the top-level operator and its
operands that are again expressions.

The recursive structure of an expression can nicely be visualized in the form of an ez-
pression tree. In Figure 3, the expression tree for the expression 9 * celsius / 5 + 32
is shown.

9 * celsius / 5 + 32

9 x celsius

(9 * celsius) / 5

((9 * celsius) / 5) + 32

Figure 3: An expression tree for 9 * celsius / 5 + 32 and its logical parenthization
((9 * celsius) / 5) + 32. Nodes are labeled from one to seven.

How do we get this tree? The expression itself defines the root of the tree, and the
operands of the top-level operator become the root’s children in the tree. Each operand
then serves as the root of another subtree. When we reach a primary expression, it
defines a leaf in the tree, with no further children.

2.2.3 Evaluating expressions

From an expression tree we can easily read off the possible evaluation sequences for
the arithmetic expression. Such a sequence contains all sub-expressions occurring in
the tree, ordered by their time of evaluation. For this sequence to be valid, we have to
make sure that we evaluate an expression only after the expressions corresponding to
all its children have been evaluated. By looking at Figure 3, this becomes clear: before
evaluating 9 * celsius, we have to evaluate 9 and celsius, otherwise, we don’t have
enough information to perform the evaluation.

When we associate the evaluation sequence with the corresponding sequence of nodes
in the tree, a valid node sequence topologically sorts the tree. This means that any node
in the sequence occurs only after all its children have occurred. In Figure 3, for example,
the node sequence (1,2,5,3,6,4,7) induces a valid evaluation sequence. Assuming that

2.2. INTEGERS 41

the variable celsius has value 15, we obtain the following evaluation sequence. (In each
step, the sub-expression to be evaluated next is marked by a surrounding box.)

[9] * celsius / 5 + 32 —' 9 *[celsius]/ 5 + 32
2 [9%15]/ 5+ 32
5 135 /[5] + 32

s [135 /5] + 22
¢ 27 +[32]
:

759

The sequence (1,2,3,4,5,6,7) is another valid node sequence, inducing a different
evaluation sequence; the resulting value of 59 is the same. There are much more evalua-
tion sequences, of course, and it is unspecified by the C++ standard which one is to be
used.

In our small example, all possible evaluation sequences will result in value 59, but
it is also not hard to write down expressions whose values and effects depend on the
evaluation sequence being chosen (see Exercise 2(g), Exercise 10(h), and the Details
section below). A program that contains such an expression might exhibit unspecified
behavior. But through good programming style, this issue is easy to avoid, since it
typically only occurs when one tries to squeeze too much functionality into a single line
of code.

s
s
—
—
s
s

2.2.4 Arithmetic operators on the type int

In the program fahrenheit.C, we have already encountered the multiplicative operators
*x and /, as well as the binary addition operator +. Its obvious counterpart is the binary
subtraction operator -.

Table 1 lists arithmetic operators (and the derived assignment operators) that are
available for the type int, with their arities, precedences and associativities. The actual
numbers that appear in the precedence column are not relevant: it is the order among
precedences that matters.

Let us discuss the functionalities of these operators in turn, where *, + and - are
self-explanatory. But already the division operator requires a discussion.

The division operator. According to the rules of mathematics, we could replace the ex-
pression

9 * celsius / 5 + 32
by the expression

9 / 5 % celsius + 32

42

Table 1: Arithmetic and assignment operators for the type int.
or decrement operator expects an lvalue.
lvalue (pre-increment and pre-decrement), or an rvalue (post-increment
and post-decrement). Each assignment operator expects an lvalue as left
operand and an rvalue as Tight operand; the composite expression s an
lvalue. All other operators involve rvalues only and have no effects.

CHAPTER 2. FOUNDATIONS

| Description | Operator | Arity | Prec. | Assoc.
post-increment ++ 1 17 | left
post-decrement - 1 17 | left
pre-increment ++ 1 16 | right
pre-decrement - 1 16 | right
sign + 1 16 | right
sign - 1 16 | right
multiplication * 2 14 | left
division (integer) / 2 14 | left
modulus yA 2 14 | left
addition + 2 13 | left
subtraction - 2 13 | left
assignment = 2 4 | right
mult assignment *= 2 4 | right
div assignment /= 2 4 | right
mod assignment = 2 4 | right
add assignment += 2 4 | right
sub assignment -= 2 4 | right

Each increment

The composite expression is an

2.2. INTEGERS 43

without affecting its value and the functionality of the program fahrenheit.C. But if
we run the program with the latter version of the expression on the input of 15 degrees
Celsius, we get the following output:

15 degrees Celsius are 47 degrees Fahrenheit.

This result is fairly different from our previous (and correct) result of 59 degrees
Fahrenheit, so what is going on here? The answer is that the binary division operator
/ on the type int implements the integer division, in mathematics denoted by div.
This does not correspond to the regular division where the quotient of two integers is in
general a non-integral rational number.

The modulus operator. The remainder of the integer division can be obtained with the
binary modulus operator %, in mathematics denoted by mod. The mathematical rule

a=(adivb)b+ amodb

also holds in C++: for example, if a and b are variables of type int, the value of b being
non-zero, the expression

(a/ b)) *b +a¥%b

has the same value as a. The modulus operator is considered as a multiplicative operator
and has the same precedence (14) and associativity (left) as the other two multiplicative
operators * and /.

If both a and b have non-negative values, then a % b has a non-negative value as
well. This implies that the integer division rounds down in this case. If (at least) one of
a or b has a negative value, it is implementation defined whether division rounds up or
down.® Note that by the identity (a / b) * b + a % b, the rounding mode for division
also determines the functionality of the modulus operator. If b has value 0, the values
ofa / band a % b are undefined.

Coming back to our example (and taking precedences and associativities into ac-
count), we get the following valid evaluation sequence for our alternative Celsius-to-
Fahrenheit conversion.®

9 / 5 % celsius + 32 — 1 * celsius + 32
— 1 x 15 + 32
— 15 + 32
— 47

Here we see the “error” made by the integer division: 9 / 5 has value 1.

5There is a remark in the standard that future revisions may prescribe a rounding towards zero for
these cases.
6To avoid longish evaluation sequences, we will from now on suppress the evaluation of literals.

44 CHAPTER 2. FOUNDATIONS

Unary additive operators. We have already touched the unary - operator, and this operator
does what one expects: the value of the composite expression -ezpr is the negative of the
value of ezpr. There is a unary + operator, for completeness, although its “functionality”
is non-existing: the value of the composite expression +ezpr is the same as the value of
ezTpr.

Increment and decrement operators. Each of the tokens ++ and -- is associated with two
distinct unary operators that differ in precedence and associativity.

The pre-increment ++ and the pre-decrement -- are right associative. The effect of
the composite expressions ++ezpr and --ezpr is to increase (decrease, respectively) the
value of ezpr by 1. Then, the object referred to by expr is returned. For this to make
sense, expr has to be an lvalue. We also say that pre-increment is ++ in prefiz notation,
and similarly for --.

The post-increment ++ and the post-decrement -- are left associative. As before,
the effect of the composite expressions ezpr++ and ezpr-- is to increase (respectively
decrease) the value of ezpr by 1, and ezpr has to be an lvalue for this to work. The
return value, though, is an rvalue corresponding to the old value of erpr before the
increment or decrement took place. We also say that post-increment is ++ in postfiz
notation, and similarly for --.

The difference between the increment operators in pre- and postfix notation is illus-
trated in the following example program.

#include <iostream>

int main() {
int a = 7;
std::cout << ++a << "\n"; // outputs 8
std::cout << a++ << "\n"; // outputs 8
std::cout << a << "\n"; // outputs 9
return O;

3

You may argue that the increment and decrement operators are superfluous, since their
functionality can be realized by combining the assignment operator (Section 2.1.13) with
an additive operator. Indeed, if a is a variable, the expression ++a is equivalent in value
and effect to the expression a = a + 1. There is one subtlety, though: if expr is a
general lvalue, ++ezpr is not necessarily equivalent to expr = expr + 1. The reason
is that in the former expression, expr is evaluated only once, while in the latter, it is
evaluated twice. If expr has an effect, this can make a difference.

On the other hand, this subtlety is not the reason why increment and decrement
operators are so popular and widely used in C++. After all, it would be easy to avoid
them in practice. The truth is that incrementing or decrementing values by 1 are such
frequent operations in typical C++ code that it pays off to have shortcuts for them.

2.2. INTEGERS 45

Prefer pre-increment over post-increment. The statements ++i; and i++; are obviously
equivalent, as their effect is the same and the value of the expression is not used. You
can exchange them with each other arbitrarily without affecting the behavior of the sur-
rounding program. Whenever you have this choice, you should opt for the pre-increment
operator. Pre-increment is the simpler operation because the value of ++i can simply be
read off the variable i. In contrast, the post-increment has to “remember” the original
value of i. As pre-increment is simpler, it also tends to be more efficient.

Remark: We write “pre-increment tends to be more efficient” because in many cases
the compiler realizes when the value of an expression is not used. In such a case, the
compiler may choose on its own to replace the post-increment in the source code by a
“pre-increment” in machine language as an optimization. However, there is absolutely
no benefit in choosing a post-increment where a pre-increment would do as well. In this
case, you should take the burden from the compiler and optimize by yourself.

Also, post-increment and post-decrement are the only unary C++ operators that are
left associative. This makes their usage appear somewhat counterintuitive.

Assignment operators. The assignment operator = is available for all types, see Section
2.1.13. But there are specific operators that combine the arithmetic operators with an
assignment. These are the binary operators +=, -=, *=, /= and ’=. The expression
exprl += expr2 has the effect of adding the value of ezpr2 (an rvalue) to the value of
ezprl (an lvalue). The object referred to by expri is returned. This is a generalization
of the pre-increment: the expression ++ezxpr is equivalent to expr += 1. As before,
exprl += expr2 is not equivalent to expr! = erpr! + expr2 in general, since the
latter expression evaluates expr! twice.

The operators -=, *=, /= and %= work in the same fashion, based on the subtraction,
multiplication, division, and modulus operator, respectively.

All the assignment operators have precedence 4, i.e. they bind more weakly than the
other arithmetic operators. This is quite intuitive: a=b*c-d, say, means a=(b*c-d).

2.2.5 Value range

A variable of type int is associated with a fized number of memory cells, and therefore
also with a fixed number of bits, say b. We call this a b-bit representation.

Such a representation implies that an object of type int can assume only finitely
many different values. Since any bit can independently have two states, the maximum
number of representable values is 2°, and the actual value range is defined as the set

(=201 20T 1 ..., —1,0,1,...,2° " -1} CcZ

of 2° numbers.” You can find out the smallest and largest int values on your computer,
using the library limits. The corresponding code is given in Program 5.

"The C++ standard does not prescribe this, but any different choice of value range would be somewhat
unreasonable, given other requirements imposed by the standard.

46 CHAPTER 2. FOUNDATIONS

// Program: limits.C
// Output the smallest and the largest walue of type int.

#include <iostream>
#include <limits>

int main ()

{

9 std::cout << "Minimum int value is "

10 << std::numeric_limits<int>::min() << ".\n"
11 << "Maximum int value is "

12 << std::numeric_limits<int>::max() << " .\n";
13 return O;

0O~ O O i W N =

Program 5: progs/limits.C

When you run the program limits.C on a 32-bit system, you will most likely get the
following output.

Minimum int value is -2147483648.
Maximum int value is 2147483647.

Indeed, as 2147483647 = 23'—1, you can deduce that the number of bits used to represent
an int value on this system is 32. At this point, you are not supposed to understand the
expression std: :numeric_limits<int>::min() in detail, but we believe that you get its
idea.

It is clear that the arithmetic operators (except the unary + and the binary / and %)
cannot work exactly like their mathematical counterparts, even when their arguments
are restricted to representable int values. The reason is that the values of composite
expressions constructed from these operators can under- or overflow the value range of
the type int. The most obvious such example is the expression 2147483647+1. As we
have just seen, its mathematically correct value of 2147483648 is not representable over
the type int on your system, so you will inevitably get some other value.

Such under- and overflows are a severe problem in many practical applications, but
it would be an even more severe problem not to know that they can occur.

2.2.6 The type unsigned int

An object of type int can have negative values, but often we only work with natural
numbers.® Using a type that represents only non-negative values allows to extend the
range of positive values without using more bits. C++ provides such a type, it is called
unsigned int. On this type, we have all the arithmetic operators we also have for int,

8For us, the set IN of natural numbers starts with 0, N ={0,1,2,...}.

2.2. INTEGERS 47

with the same arities, precedences and associativities. Given a b-bit representation, the
value range of unsigned int is the set

0,1,...,2°~11C N

of 2° natural numbers. Indeed, when you replace all occurrences of int by unsigned int
in the program limits.C, it may produce the following output.

Minimum value of an unsigned int object is O.
Maximum value of an unsigned int object is 4294967295.

Literals of type unsigned int look like literals of type int, followed by either the
letter u or U. For example, 127u and OU are literals of type unsigned int, with their
values immediately apparent.

2.2.7 Mixed expressions and conversions

Expressions may involve sub-expressions of type int and of type unsigned int. For
example 17+17u is a legal arithmetic expression, but what are its type and value? In
such mized expressions, the operands are implicitly converted to the more general
type. By the C++ standard, the more general type is unsigned int. Therefore, the
expression 17+17u is of type unsigned int and gets evaluated step by step as

17+17u — 17u+17u — 34u

This might be somewhat confusing, since in mathematics, it is just the other way around:
Z (the set of integers) is more general than IN (the set of natural numbers). We are not
aware of any deeper justification for the way it is done in C++, but at least the conversion
is well-defined:

Non-negative int values are “converted” to the same value of type unsigned int;
negative int values are converted to the unsigned int value that results from (mathe-
matically) adding 2°. This rule establishes a bijection between the value ranges of int
and unsigned int.

Implicit conversions in the other direction may also occur but are not always well-
defined. Consider for example the declarations

int a = 3u;
int b 42949672951

The value of a is 3, since this value is in the range of the type int. But if we assume
the 32-bit system from above, the value of b is implementation defined according to the
C++ standard, since the literal 4294967295 is outside the range of int.

48 CHAPTER 2. FOUNDATIONS

2.2.8 Binary representation
Assuming b-bit representation, we already know that the type int covers the values

_2b71 .)2b71 —1)

e
while unsigned int covers
0,...,2°—1.

In this subsection, we want to take a closer look at how these values are represented
in memory, using the b available bits. This will also shed more light on some of the
material in the previous subsection.

The binary expansion of a natural number n € IN is the sum

n= i biZi,
i=0

where the b; are uniquely determined coefficients from {0, 1}, with only finitely many of
them being nonzero. For example,

13=1-2°40-2"+1-2241-23,

The sequence of the b; in reverse order is called the binary representation of n. The
binary representation of 13 is 1101, for example.

Conversion decimal — binary. The identity

n = ibizi = bo+ibiZi = bo+ibi+12”1 = bo+2ibmzi
i=0 i=1 i=0 =0

=n'

provides a simple algorithm to compute the binary representation of a given decimal
number n € IN. The least significant coefficient b, of the binary expansion of n is
nmod2. The other coefficients b;, 1 > 1, can subsequently be extracted by applying the
same technique to n’ = (n — by)/2.

For example, for n = 14 we get bp = 14mod2 = 0 and n’ = (14 —0)/2 = 7. We
continue with n =7 and get by =7mod2=1and n' = (7—1)/2 = 3. For n = 3 we get
b, =3mod2=1and n’ = (3—1)/2 = 1 which leaves us with n = b3 = 1. In summary,
the binary representation of 14 is b3b,b;by = 1110.

Conversion binary — decimal. To convert a given binary number by...b, into decimal
representation, we can once again use the identity from above.
k—1

k
D> b2t = bo+2) b2 = ... = bo+2(by+2(by+2(--+2by)...))
i=0 i=0

2.2. INTEGERS 49

For example, to convert the binary number bsb3b,b:by = 10100 into decimal repre-
sentation, we compute

((ba-24b3)-24b2)-24by)-24by = ((1-240)-241)-240)-24+0 = 20.

Representing unsigned int values. Since any unsigned int value
nelo,...,.2—1)

has a binary representation of length exactly b (filling up with leading zeros), this binary
representation is a canonical format for storing n using the b available bits. Like the
value range itself, this storage format is not explicitly prescribed by the C++ standard,
but hardly anything else makes sense in practice. As there are 2" unsigned int values,
and the same number of b-bit patterns, each pattern encodes one value. For b = 3, this
looks as follows.

representation
000
001
010
011
100
101
110
111

NG W= o3

Representing int values. A common way of representing int values using the same b bits
goes as follows. If the value n is non-negative, we store the binary representation of n
itself—a number from

{0,...,2°° 1 —1}.
That way we use all the b-bit patterns that start with 0.

If the value n is negative, we store the binary representation of n + 2°, a number
from

(201 201

This yields the missing b-bit patterns, the ones that start with 1. For b = 3, the resulting
representations are

50 CHAPTER 2. FOUNDATIONS

n | representation
—4 100
-3 101
-2 110
—1 111
0 000
1 001
2 010
3 011

This is called the two’s complement representation. In this representation, adding
two int values n and n’ is very easy: simply add the representations according to the
usual rules of binary number addition, and ignore the overflow bit (if any). For example,
to add —2 and —1 in case of b = 3, we compute

110
+ 111
1101

Ignoring the leftmost overflow bit, this gives 101, the representation of the result —3
in two’s complement. This works since the binary number behind the encoding of n is
either n or n + 2%. Thus, when we add the binary numbers for n and n’, the result is
congruent to n +n’ modulo 2° and therefore agrees with n +n’ in the b rightmost bits.

Using the two’s complement representation we can now better understand what hap-
pens when a negative int value n gets converted to type unsigned int. The standard
specifies that for this, n has to be incremented by 2. But under the two’s complement,
the negative int value n and the resulting positive unsigned int value n + 2° have the
same representation! This means that the conversion is purely conceptual, and no actual
computation takes place.

The C++ standard does not prescribe the use of the two’s complement, but the rule
for conversion from int to unsigned int is clearly motivated by it.

2.2.9 Integral types

There is a number of other fundamental types to represent signed and unsigned integers,
see the Details section. These types may differ from int and unsigned int with respect
to their value range. All these types are called integral types, and for each of them,
all the operators in Table 1 (Page 42) are available, with the same arities, precedences,
associativities and functionalities (up to the obvious limits dictated by the respective
value ranges).

2.2. INTEGERS 51

2.2.10 Details

Literals. There are also non-decimal literals of type int. An octal literal starts with
the digit 0, followed by a sequence of digits from 0 to 7. The value is the octal number
represented by the sequence of digits following the leading 0. For example, the literal
011 has value 9 =1-8"41-8°

Hezadecimal literals start with 0x, followed by a sequence of digits from 0 to 9 and
letters from A to F. The value is the hexadecimal number represented by the sequence
of digits and letters following the leading 0x. For example, the literal 0x1F has value
31=1-16"+15-16°

Logically parenthesizing a general expression. Given an expression that consists of a se-
quence of operators and operands, we want to deduce the logical parentheses. For each
operator in the sequence, we know its arity, its precedence (a number between 1 and 18,
see Table 1 on Page 42 for the arithmetic operators), and its associativity (left or right).
In case of a unary operator, the associativity specifies on which side of the operator its
operand is to be found.

Let us consider the following abstract example to emphasize that what we do here is
completely general and not restricted to arithmetic expressions.

expression X1 OPp; X2 Op, X3 OpP3 OP; X4
arity 2 2 2 1
precedence 4 13 13 16
associativity T l l T

Here is how the parentheses are obtained: for each operator, we identify its leading
operand, defined as the left hand side operand for left associative operators, and as the
right hand side operand otherwise. The leading operand for op; includes everything to
the relevant side between op; and the next operator of lower precedence than op;. In
other words, everything in between these two operators is “grabbed” by the “stronger”
operator.

In our example, the leading operand of op; is the subsequence x, op, x3 to the left
of op;, since the next operator of lower precedence to the left of op; is op;.

In the case of binary operators, we also find the secondary operand, the one to the
other side of the leading operand. The secondary operand for op; includes everything to
the relevant side between op; and the next operator of the same or lower precedence
than op;. The only difference to the leading operand rule is that the secondary operand
already ends when an operator of the same precedence appears.

According to this definition, the secondary operand of op; is op, X4 in our example.

Finally, we put a pair of parentheses around the subsequence corresponding to the
leading operand, the operator itself, and the secondary operand (if any).

Here is the table for our example again, enhanced with the subsequences of all four
operators that are put in parentheses according to the rules just described.

52 CHAPTER 2. FOUNDATIONS

expression X1 0P X2 0P, X3 op; op; X4
arity 2 2 2 1
precedence 4 13 13 16
associativity T l l T

op;, (x1 op X2 0P, X3 OP3 OPg; X4)
op, (x2 op, x3)

op3 (x2 op, X3 Op; op; X4)
0P, (opy x4)

Now we simply put together all parentheses that we have obtained, taking their
multiplicities into account. In our example we get the expression

(x1 op; ([x2 op, x3) op; (ops x4))).

By some magic, this worked out, and we have a fully parenthesized expression (the outer
pair of parentheses can be dropped again, of course). But note that we cannot expect
such nice behavior in general. Consider the following example.

expression X1 op; X2 OpP, X3
arity 2 2
precedence 13 13
associativity T l
0D, (x1 op; x2 ©Op; X3)
0D, (x 0D, X2 0Py X3)

The resulting parenthesized expression is

((x1 op; x2 op, X3)),

which does not specify the evaluation order. What comes to our rescue is that C++
only allows expressions for which the magic works out! The previous bad case is impos-
sible, for example, since all binary operators of the same precedence also have the same
associativity.

Unsigned arithmetic. We have discussed how int values are converted to unsigned int
values, and vice versa. The main issue (what to do with non-representable values)
also occurs during evaluation of arithmetic expressions involving only one of the types.
The C++ standard contains one rule for this. For all unsigned integral types, the
arithmetic operators work modulo 2°, given b-bit representation. This means that the
value of any arithmetic operation with operands of type unsigned int is well-defined. It
does not necessarily give the mathematically correct value, but the unique value in the
unsigned int range that is congruent to it modulo 2. For example, if a is a variable of
type unsigned int with non-zero value, then -a has value 2° — a.

No such rule exists for the signed integral types, meaning that over- and underflow
are dealt with at the discretion of the compiler.

2.2. INTEGERS 53

Sequences of + and -. We have argued above that it is usually clear which operators occur
in an expression, even though some of them share their token. But since the characters
+ and - are heavily overused in operator tokens, special rules are needed to resolve the
meanings of sequences of +’s, or of -’s.

For example, only from arities, precedences and associativities it is not clear how to
interpret the expressions a+++b or -—-a. The first expression could mean (a++)+b, but it
could as well mean a+(++b) or a+(+(+b). Similarly, the second expression could either
mean -(--a), --(-a) or -(-(-a).

The C++ standard resolves this dilemma by defining that a sequence consisting only
of +’s, or only of -’s, has to be grouped into pairs from left to right, with possibly one
remaining + or - at the end. Thus, a+++b means (a++)+b, and ---a means --(-a).
Note that for example the expression a++b would make sense when parenthesized as
a+(+b), but according to the rule just established, it is not a well-formed expression,
since a unary operator ++ cannot have operands on both sides. The expression ---a
with its logical parenthesization --(-a) is invalid for another reason: the operand of the
pre-increment must be an lvalue, but the expression -a is an rvalue.

Other integral types. C-++ contains a number of fundamental signed and unsigned inte-
gral types. The signed ones are signed char, short int, int and long int. The stan-
dard specifies that each of them is represented by at least as many bits as the previous
one in the list. The number of bits used to represent int values depends on the platform.
The corresponding sequence of unsigned types is unsigned char, unsigned short int,
unsigned int and unsigned long int.

These types give compilers the freedom of offering integers with larger or smaller
value ranges than int and unsigned int. Smaller value ranges are useful when memory
consumption is a concern, and larger ones are attractive when over- and underflow oc-
curs. The significance of these types (which are already present in the C programming
language) has faded in C++. The reason is that we can quite easily implement our own
tailor-made integral types in C++, if we need them. In C this is much more cumber-
some. Consequently, many C++ compilers simply make short int and long int an
alias for int, and the same holds for the corresponding unsigned types.

Order of effects and sequence points Increment and decrement operators as well as assign-
ment operators construct expressions with an effect. Such operators have to be used
with care for two reasons.

The obvious reason is that (as we already learned in the end of Section 2.1.1) the
evaluation order for the sub-expressions of a given expression is not specified in gen-
eral. Consequently, value and effect may depend on the evaluation order. Consider the
expression

++i + i

where we suppose that i is a variable of type int. If i is initially 5, say, then the value
of the composite expression may in practice be 11 or 12. The result depends on whether

54 CHAPTER 2. FOUNDATIONS

or not the effect of the left operand ++i of the addition is processed before the right
operand i is evaluated. The value of the expression ++i + i is therefore unspecified by
the C++ standard.

To explain the second (and much less obvious, but fortunately also much less relevant)
reason, let us consider the following innocent looking expression that involves a variable
i of type int.

io= ++i o+ 1

This expression has two effects: the increment of i and the assignment to i. Because
the assignment can only happen after the operands have been evaluated, it seems that
the order of the two effects is clear: the increment comes before the assignment, and the
overall value and effect are well-defined.

However, this is not true, for reasons that have to do with our underlying computer
model, the von Neumann architecture. From the computer’s point of view, the evaluation
of the sub-expression ++i consists of the following steps.

1. Copy the value of i from the main memory into one of the CPU registers;
2. Add 1 to this value in the register;
3. Write the register content back to main memory, at the address of i;

Clearly, the first two steps are necessary to obtain the value of the expression ++i and,
hence, have to be processed before the assignment. But the third step does not necessarily
have to be completed before the assignment. In order to allow the compiler to optimize
the transfer of data between CPU registers and main memory (which is very much
platform dependent), this order has not been specified. In fact, it is not unreasonable
to assume that the traffic between registers and main memory is organized such that
several items are transfered at once or quickly after another, using so-called bursts.

Suppose as before that i initially has value 5. If the assignment is performed after
the register content is written back to main memory, i = ++i + 1 sets i to 7. But if
the assignment happens before, the later transfer of the register value 6 overrides the
previous value of 7, and i is set to 6 instead.

The C++standard defines a sequence point to be a point during the evaluation se-
quence of an expression at which is guaranteed that all effects of previously evaluated
(sub)expressions have been carried out. It was probably the existence of highly opti-
mized C compilers that let the C++ standard refrain from declaring the assignment as a
sequence point. In other words, when the assignment to i takes place in the evaluation
i = ++i + 1, it is not specified whether the effect of the previously evaluated increment
operator has been carried out or not. In contrast, the semicolon that terminates an
expression statement is always a sequence point.

Therefore, we only have an issue with expressions that have more than one effect.
Hence, if you prefer not to worry about effect order, ensure that each expression that
you write generates at most one effect. Expressions with more than one effect can make

2.2. INTEGERS 55

sense, though, and they are ok, as long as some sequence points separate the effects and
put them into a well-defined order. This is summarized in the following rule.

Single Modification Rule: Between two sequence points, the evaluation of an expression
may modify the value of an object of fundamental type at most once.

An expression like i = ++i + 1 that violates this rule is considered semantically
illegal and leads to undefined behavior.

If you perceive this example as artificial, here is a “more natural” violation of the
single modificiation rule: if nextvalue is a variable of type int, it might seem that

nextvalue = 5 * nextvalue + 3
could more compactly be written as
(nextvalue *= 5) += 3

This will compile: (nextvalue *= 5) is an lvalue, so we can assign to it. Still, the latter
expression is invalid since it modifies nextvalue twice.

At this point, an attentive reader should wonder how an expression that involves sev-
eral output operators complies with the Single Modification Rule. Indeed, an expression
like

std::cout << a << ""8 = " K< b *x b << " \n"

has several effects all of which modify the lvalue std: :cout. This works since the type
of std: :cout (which we will not discuss here) is not fundamental and, hence, the Single
Modification Rule does not apply in this case.

2.2.11 Goals

Dispositional. At this point, you should ...

1) know the three Arithmetic Evaluation Rules;
2) understand the concepts of operator precedence and associativity;
3) know the arithmetic operators for the types int and unsigned int;

4) be aware that computations involving the types int and unsigned int may deliver
incorrect results, due to possible over- and underflows.

Operational. In particular, you should be able to ...

(G1) parenthesize and evaluate a given arithmetic expression involving operands of
types unsigned int and int, the binary arithmetic operators +,-, *, /, %, and the
unary -;

(G2) convert a given decimal number into binary representation and vice versa;

56 CHAPTER 2. FOUNDATIONS

(G3) derive the two’s complement representation of a given number in b-bit represen-
tation, for some b € IN;

(G4) write programs whose output is determined by a fixed number of arithmetic ex-
pressions involving literals and input variables of types int and unsigned int;

(Gb5) determine the value range of integral types on a given machine (using a program).

2.2.12 Exercises

Exercise 8 Parenthesize the following expressions and then evaluate them step by
step. This means that types and values of all intermediate results that are computed
during the evaluation should be provided. (G1)
a) -2-4x3 b)) 10%6%8%3) 6-3+4x5

d) 5Su+b*3u e) 31/4/2 f) -1-1u+1-(-1)

Exercise 9 Whaich of the following character sequences are not legal expressions, and
why? For the ones that are, give the logical parenthesization. (In order to avoid
(misleading?) hints, we have removed the spaces that we usually include for the

sake of better readability.) (G1)
a) c=at7+--b b) c=-a=b c) c=a=-b
d) a-a/bxb e) bx=++atb f) a-ax+-b

g) T+a=bx2 h) a+3%--bt+at+ 1) Dbt++--a
These exercises require you to read the paragraph on logically parenthesizing a general

expression in the Details section. Exercise 7) also requires you to read the paragraph on
sequences of + and - in the Details section.

Exercise 10 For all legal expressions from Ezercise 9, provide a step-by-step evalu-

ation, supposing that initially a has value 5, b has value 2, and the value of c 1s

undefined. Whach of the expressions result in unspecified or undefined behavior?
(G1)

Exercise 11 Prove that for all a > 0 and b,c > 0, the following equation holds:
(adivb)divc = adiv(bc).

Exercise 12 Compute by hand binary representations of the following decimal num-
bers. (G2)
a) 15 b) 172 c¢) 329 d) 1022

Exercise 13 Compute by hand decimal representations of the following binary num-
bers. (G2)
a) 110111 b) 1000001 ¢) 11101001 d) 101010101

2.2. INTEGERS 57

Exercise 14 Assuming a 4-bit representation, compute the binary two’s complement
representations of the following decimal numbers. (G3)
a) 6 b) 4 ¢c) -8 d) 9 e) -3

Exercise 15 Write a program celsius.C that converts temperatures from degrees Fah-
renheit into degrees Celsius.

The initial output that prompts the user to enter the temperature in degrees
Fahrenheit should also contain lower and upper bounds for the allowed inputs.
These bounds should be chosen such that no over- and underflows can occur in
the subsequent computations, given that the user respects the bounds. You may for
this exercise assume that the integer division rounds towards zero for all operands:
for example, -5 / 2 then rounds the exact result —2.5 to —2.

The program should output the correct result in degrees Celsius as a mized ra-
tional number of the form x3 (meaning x +y/9), where x,y € Z and |y| < 8. For
exzample, 13‘—91 could be output simply as 13 4/9. We also allow for erample the
output -1 -1/9 (meaning —1—1/9 =—-10/9). (G4)

Exercise 16 Write a program threebin.C that reads a (decimal) number a > 0 from
standard input and outputs the last three bits of a’s binary representation. Fill up
with leading zeros in case the binary representation has less than three bits. (G4)

2.2.13 Challenges

Exercise 17 Josephus was a Jewish military leader in the Jewish-Roman war of 66-
78. After the Romans had invaded his garrison town, the few soldiers (among
them Josephus) that had survived the killings by the Romans decided to commit
suicide. But somehow, Josephus and one of his comrades managed to surrender to
the Roman forces without being killed (Josephus later became a Roman citizen and
well-known historian).

This historical event 1s the background for the Josephus Problem that offers a
(mythical) explanation about how Jospehus was able to avoid suicide. Here is the
problem.

41 people (numbered 0,1,...,40) are standing in a circle, and every k-th per-
son 1s killed until no one survives. For k = 3, the killing order 1is therefore
2,5,8,...,38,0,4,.... Where in the circle does Joespehus have to position himself
in order to be the last survivor (who then obuviosuly doesn’t need to kill himself)?

a) Write a program that solves the Josephus problem; the program should receive
as wnput the number k and output the number p(k) € {0,...,40} of the last
SUTVIVOT.

b) Let us assume that Josephus is not able to chose his position in the circle, but
that he can in return choose the parameter k € {1,...,41}. Is it possible for
him to survive then, no matter where he initially stands?

58

CHAPTER 2. FOUNDATIONS

