3.2. RECURSION 197

3.2 Recursion

This section introduces recursive functions, functions that directly or in-
directly call themselves. You will see that recursive functions are very
natural in many situations, and that they lead to compact and readable
code close to mathematical function definitions. We will also ezxplain
how recursive function calls are processed, and how recursion can (in
principle) be replaced with iteration. In the end, you will see two ap-
plications (sorting, and drawing fractals) that demonstrate the power or
TEeCUTSION.

3.2.1 A warm-up

Many mathematical functions are naturally defined recursively, meaning that the func-
tion to be defined appears in its own definition. For example, for any n € IN, the number
n! can recursively be defined as follows.

1, ifn<1
n":
Tl nm=1), ifn>1.

In C++ we can also have recursive functions: a function may call itself. This is
nothing exotic, since after all, a function call is just an expression that can in principle
appear anywhere in the function’s scope, and that scope includes the function body.
Here is a recursive function for computing n!; in fact, this definition exactly matches the
mathematical definition from above.

// POST: return value is n!
unsigned int fac (unsigned int n)

{
if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Here, the expression fac(n-1) is a recursive call of fac.

Infinite recursion. With recursive functions, we have the same issue as with loops (Sec-
tion 2.4.2): it is easy to write down function calls whose evaluation does not terminate.
Here is the shortest way of creating an infinite recursion: define the function

void f ()
{

£O;
}

198 CHAPTER 3. FUNCTIONS

with no arguments and evaluate the expression f(). The reason for non-termination
is clear: the evaluation of f() consists of an evaluation of f() which consists of an
evaluation of f () which...you get the picture.

Like for loops, the function definition has to make sure that progress towards termi-
nation is made in every function call. For the function fac above, this is the case: each
time fac is called recursively, the value of the call argument becomes smaller, and when
the value reaches 1, no more recursive calls are performed: we say that the recursion
“bottoms out”.

3.2.2 The call stack

Let’s try to understand what exactly happens during the evaluation of fac(3), say.
The formal argument n is initialized with 3, and since this is greater than 1, the
statement return n * fac(n-1); is executed next. This first evaluates the expression
n * fac(n-1) and in particular the right operand fac(n-1). Since n-1 has value 2, the
formal argument n is therefore initialized with 2.

But wait: what is “the” formal argument? Automatic storage duration implies that
each function call has its “own” fresh instance of the formal argument, and the lifetime
of this instance is the respective function call. In evaluating f(n-1), we therefore get
a new instance of the formal argument n, on top of the previous instance from the call
£(3) (that has not yet terminated). But which instance of n do we use in the evaluation
of £(n-1)7 Quite naturally, it will be the new one, the one that “belongs” to the call
f(n-1). This rule is in line with the general scope rules from Section 2.4.3: the relevant
declaration is always the most recent one that is still visible.

The technical realization of this is very simple. Everytime a function is called, the
call argument is evaluated, and the resulting value is put on the call stack which is
simply a region in the computer’s memory.®

Like a stack of papers on your desk, the call stack has the property that the object
that came last is “on top”. Upon termination of a function call, the top object is taken
off the stack again. Whenever a function call accesses or changes its formal argument, it
does so by accessing or changing the corresponding object on top of the stack.

This has all the properties we want: every function call works with its own instance
of the formal argument; when it calls another function (or the function itself recursively),
this instance becomes temporarily hidden, until the nested call has terminated. At that
point, the instance reappears on top of the stack and allows the original function call to
work with it again.

Table 5 shows how this looks like for f(3), assuming that the right operand of the
multiplication operator is always evaluated first. Putting an object on the stack “pushes”
it, and taking the top object of “pops” it.

Because of the call stack, infinite recursions do not only consume time but also

5if the function has several arguments, several values are put on the call stack; to keep the description
simple, we concentrate on the case of one argument.

3.2. RECURSION 199

call stack (bottom «+— top) evaluation sequence action

fac(3) push 3
n: 3 n * fac(n-1)
n: 3 n * fac(2) push 2
n3|n2 n * (n * fac(n-1))
n:3 | n:2 n *x (n x fac(1)) push 1
n3|n2 n:]‘ n*x (nx*x1) pop
n3|n2 n*x (2x*x1)
n:3|n:2 n*x 2 pop
n: 3 3 %2
n: 3 6 pop

Table 5: The call stack, and how it evolves during an evaluation of fac(3); the
respective value of n to use 1s always the one on top

memory. Unlike infinite loops, they usually lead to a program abortion as soon as the
memory reserved for the call stack is full.

3.2.3 Basic practice

Let us consider two more simple recursive functions that are somewhat more interesting
than fac. They show that recursive functions are particularly amenable to correctness
proofs of their postconditions, and this makes them attractive. On the other hand,
we also see that it is easy to write innocent-looking recursive functions that are very
inefficient to evaluate.

Greatest common divisor. Consider the problem of finding the greatest common divisor
gcd(a, b) of two natural numbers a, b. This is defined as the largest natural number that
divides both a and b without remainder. In particular, gcd(n,0) = gcd(0,n) = n for
n > 0; let us also define ged(0,0) := 0.

The Fuclidean algorithm finds gcd(a,b), based on the following

Lemmal If b > 0, then
ged(a,b) = ged(b, amodb).
Proof. Let k be a divisor of b. From

a=(adivb)b+ amodb

200 CHAPTER 3. FUNCTIONS

it follows that

b b
% = (adivb)E + %.

Since adivb and b/k are integers, we get

amodb a
—— €N — e\
” S = ” S
In words, if k is a divisor of b, then k divides a if and only if k divides amodb. This
means, the divisors of a and b are exactly the divisors of b and amodb. This proves
that gcd(a, b) and ged(b, amodb) are equal. O

Here is the corresponding C++ function for computing the greatest common divisor
of two unsigned int values, according to the Euclidean algorithm.

// POST: return value is the greatest common divisor of a and b
unsigned int gcd (unsigned int a, unsigned int b)

{

if (b == 0) return a;
return gcd(b, a % b); // b != 0
}

The Euclidean algorithm is very fast. We can easily call it for any unsigned int values
on our platform, without noticing any delay in the evaluation.

Correctness and termination. For recursive functions, it is often very easy to prove that
the postcondition is correct, by using the underlying mathematical definition directly
(like n! for fac), or by using some facts that follow from the mathematical definition
(like Lemma 1 for gcd).

The correctness proof must involve a termination proof, so let’s start with this: any
call to gcd terminates, since the value b of the second argument is bounded from below
by 0 and gets smaller in every recursive call (we have amodb < b).

Given this, the correctness of the postcondition follows from Lemma 1 by induction
on b. For b =0, this is clear. For b > 0, we inductively assume that the postcondition
is correct for all calls to gcd where the second argument has value b’ < b. Since b’ =
amodb satisfies b’ < b, we may assume that the call gcd(b, a % b) correctly returns
gcd(b, amodb). But by the lemma, ged(b, amodb) = ged(a, b), so the statement

return gcd(b, a % b);

correctly returns gcd(a, b).

Fibonacci numbers. The sequence 0,1,1,2,3,5,8,13,21,... of Fibonacci numbers is one
of the most famous sequences in mathematics. Formally, the sequence is defined as

3.2. RECURSION 201

follows.
FO = O,
F] = 1 y
F. = Foi+Fio n>1.

This means, every element of the sequence is the sum of the two previous ones. From
this definition, we can immediately write down a recursive C++ function for computing
Fibonacci numbers, getting termination and correctness for free.

// POST: return wvalue is the n-th Fibonacci number F_n
unsigned int fib (unsigned int n)

{

if (n == 0) return O;

if (n == 1) return 1;

return fib(n-1) + fib(n-2); // n > 1
}

If you write a program to compute the Fibonacci number F,, using this function, you
will notice that somewhere between n = 30 and n = 50, the program becomes very slow.
You even notice how much slower it becomes when you increase n by just 1.

The reason is that the mathematical definition of F,, does not lead to an efficient
algorithm, since all values F;,1 < n—1, are repeatedly computed, some of them extremely
often. You can for example check that the call to fib(50) computes F45 already twice
(once directly in fib(n-2), and once indirectly from fib(n-1). F47 is computed three
times, F4¢ five times, and F45 eight times (do you see a pattern?).

3.2.4 Recursion versus iteration

From a strictly functional point of view, recursion is superfluous, since it can be simu-
lated through iteration (and a call stack explicitly maintained by the program; we could
simulate the call stack with an array). We don’t have the means to prove this here, but
we want to show it for the recursive functions that we have seen in the previous section.

The function gcd is very easy to write iteratively, since it is tail-end recursive. This
means that there is only one recursive call, and that one appears at the very end of
the function body. Tail-end recursion can be replaced by a simple loop that iteratively
updates the formal arguments until the termination condition is satisfied. In the case of
gcd, this update corresponds to the transformation (a,b) — (b, amodb).

// POST: return wvalue is the greatest common divisor of a and b
unsigned int gcd2 (unsigned int a, unsigned int b)
{
while (b != 0) {
unsigned int a_prev = a;
a = b;
b a_prev % b;

202 CHAPTER 3. FUNCTIONS

}
return a;

}

You see that we get longer and less readable code, and that we need an extra variable to
remember the previous value of a before the update step; in the spirit of Section 2.4.8,
we should therefore use the original recursive formulation.

Our function fib for computing Fibonacci numbers is not tail-end recursive, but it
is still easy to write it iteratively. Remember that F,, is the sum of F,, ; and F,, ;. We
can therefore write a loop whose iteration i computes F; from the previously computed
values F;_, and F;_; that we maintain in the variables a and b.

// POST: return wvalue is the mn-th Fibonacci number F_n
unsigned int fib2 (unsigned int n)

{

if (n == 0) return O;

if (n <= 2) return 1;

unsigned int a = 1; // F_1

unsigned int b = 1; // F_2

for (unsigned int i = 3; i <= n; ++i) {
unsigned int a_prev = a; // F_{i-2}
a = b; // F_{i-1}
b += a_prev; // F_{i-1} += F_{+1-2} -> F_<

}

return b;

Again, this non-recursive version fib2 is substantially longer and more difficult to
understand than fib, but this time there is a benefit: fib2 is much faster, since it
computes every number Fi,1 < n ezactly once. While we would grow old in waiting
for the call £ib(50) to terminate, £ib2(50) gives us the answer in no time. (Unfortu-
nately, this answer may be incorrect, since F5y could exceed the value range of the type
unsigned int.)

In this case we would prefer fib2 over fib, simply since fib is too inefficient for
practical use. The more complicated function definition of fib2 is a moderate price to
pay for the speedup that we get.

3.2.5 Primitive recursion

Roughly speaking, a mathematical function is primitive recursive if it can be written
as a C++ function f in such a way that f neither directly nor indirectly calls itself with
call arguments depending on f. For example,

unsigned int f (unsigned int n)
{

if (n == 0) return 1;

3.2. RECURSION 203

return f(f(n-1) - 1);
}

is not allowed, since f recursively calls itself with a argument depending of f£. This does
not mean that the underlying mathematical function is not primitive recursive, it just
means that we have taken the wrong C++ function. Indeed, the above f implements
the mathematical function satisfying f(n) = 1 for all n, and this function is obviously
primitive recursive.

In the early 20-th century, it was believed that the functions whose values can in
principle be computed by a machine are exactly the primitive recursive ones. Indeed,
the function values one computes in practice (including gcd(a,b) and F,) come from
primitive recursive functions.

It later turned out that there are computable functions that are not primitive recur-
sive. A simple and well-known example is the binary Ackermann function A(m,n),
defined by

n+1, ifm=0
Ammn)=< A(m—1,1), fm>0n=0
Am—1,A(mn—1)), if m>0,n>0.

The fact that this function is not primitive recursive requires a proof (that we don’t
give here). As already noted above, it is necessary but not sufficient that this definition
recursively uses A with a argument that depends on A.

It may not be immediately clear that the corresponding C++ function

// POST: return value s the Ackermann function value A(m,n)
unsigned int A (unsigned int m, unsigned int n) {

if (m == 0) return n+1;
if (n == 0) return A(m-1,1);
return A(m-1, A(m, n-1));

3

always terminates, but Exercise 83 asks you to show this. Table 6 lists some Ackermann
function values. For m < 3, A(m,n) looks quite moderate, but starting from m = 4, the
values get extremely large. You can still compute A (4, 1), although this takes surprisingly
long already. You might be able to compute A(4,2); after all, 2°°53¢—3 has “only” around
20,000 decimal digits. But the call to A(4,3) will not terminate within any observable
period.

It can in fact be shown that A(n,n) grows faster than any primitive recursive function
in n (and this is a proof that A cannot be primitive recursive). Recursion is a powerful
but also dangerous tool, since it is easy to encode (too) complicated computations with
very few lines of code.

3.2.6 Sorting

Sorting a sequence of values (numbers, texts, etc.) into ascending order is a very basic
and important operation. For example, a specific value can be found much faster in a

204 CHAPTER 3. FUNCTIONS

n
0 1 2 3 n
0| 1 2 3 4 n+1
11 2 3 4 5 n+2
m 2] 3 5 7 9 2n+3
31 5 13 29 61 2n3 3
65536 265536 o | |42
4113]65533|2 3|12 3 2 -~ 3

Table 6: Some values of Ackermann’s function

sorted than in an unsorted sequence (see Exercise 88). You know this from daily life, and
that’s why you sort your CDs, and why the entries in a telephone directory are sorted
by name.

We have asked you in Exercise 60 to write a program that sorts a given sequence
of integers; Exercise 77 was about making this into a function that sorts all numbers
described by a given pointer range. In both exercises, you were not supposed to do any
efficiency considerations.

Here we want to catch up on this and investigate the complezity of the sorting
problem. Roughly speaking, the complexity of a problem is defined as the complexity
(runtime) of the fastest algorithm that solves the problem. In computing Fibonacci
numbers in Section 3.2.3 and Section 3.2.4, we have already seen that the runtimes of
different algorithms for the same problem may vary a lot. The same is true for sorting
algorithms, as we will discover shortly.

Let us start by analyzing one of the “obvious” sorting algorithms that you may have
come up with in Exercise 60. The simplest one that the authors can think of is minimum-
sort. Given the sequence of values (let’s assume they are integers), minimum-sort first
finds the smallest element of the sequence; then it interchanges this element with the
first element. The sequence now starts with the smallest element, as desired, but the
remainder of the sequence still needs to be sorted. But this is done in the same way: the
smallest element among the remaining ones is found and interchanged with the second
element of the sequence, and so on.

Assuming that the sequence is described by a pointer range [first, last), minimum-
sort can be realized as follows.

// PRE: [first, last) is a walid range
// POST: the elements *p, p in [first, last) are in ascending order
void minimum_sort (intx* first, int* last)

{
for (int*x p = first; p !'= last; ++p) {
// find minimum in nonempty range described by [p, last)
int* p_min = p; // pointer to current minimum

int* q = p; // pointer to current element

3.2. RECURSION 205

while (++q != last)
if (*q < *p_min) p_min = q;
// interchange *p with *p_min
std::iter_swap (p, p_min);
}
}

The standard library function std::iter_swap interchanges the values of the objects
pointed to by its two arguments. There is also a function std::min_element that we
could use to get rid of the inner loop; however, since we want to analyze the function
minimum_sort in detail, we refrain from calling any nontrivial standard library function
here.

What can we say about the runtime of minimum_sort for a given range? That it
depends on the platform, this is for sure. On a modern PC, the algorithm will run much
faster than on a vintage computer from the twentieth century. There is no such thing
as “the” runtime. But if we look at what the algorithm does, we can find a measure of
runtime that is platform-independent.

A dominating operation in the sense that it occurs very frequently during a call to
minimum_sort is the comparison *q < *p_min. We can even exactly count the number
of such comparisons, depending on the number of elements n that are to be sorted. In
the first execution of the while statement, the first element is compared with all n — 1
succeeding elements. In the second execution, the second element in compared with all
the n — 2 succeeding elements, and so on. In the second-to-last execution of the while
statement, finally, we have one comparison, and that’s it. We therefore have the following

Observation 1 The function minimum_sort sorts a sequence of n elements with

nmn-—1)
2
comparisons between sequence elements.

14+42+..n—1=

Why do we specifically count these comparisons? Because any other operation is ei-
ther performed much less frequently (for example, the declaration statement int* q = p
is executed only n times), or with approximately the same frequency. This concerns the
assignment p_min = g which may happen up to n(n — 1)/2 times, and the expression
++q != last; this one is evaluated even more frequently, namely n(n —1)/2 + n times.
The total number of operations is therefore at most cyn(n — 1)/2 4+ ¢,n for some con-
stants cq, c;. For large n, the linear term c,n is negligible compared to the quadratic term
cin(n — 1)/2; we can therefore conclude that the total number of operations needed to
sort n numbers is proportional to the number of comparisons between sequence elements.

This implies the following: if you measure the runtime of the whole sorting algorithm,
the resulting time Ti,1q Will be proportional to the time T, that is being spent with
comparisons between sequence elements.® Since T.omp is in turn proportional to the

5Due to the effects of caching and other add-ons to the von-Neumann architecture, this is not necessarily
true on your platform.

206 CHAPTER 3. FUNCTIONS

number of comparisons itself, this number is a good indicator for the efficiency of the
algorithm.

If you think about sorting more complicated values (like names in a telephone di-
rectory), a comparison between two elements might even become the single most time-
consuming operation. In such a scenario, T.omp may eat up almost everything of Tiotat,
making the comparison count an even more appropriate measure of efficiency.

To check that all this is not only grey theory, let us make some experiments and
measure the time that it takes to execute a program with the following main function,
for various values of n. As our “test case”, we use the jumbled sequence O,n—1,1,n—2, ...,
and after having called the function minimum_sort from above, we check whether we now
indeed have the ascending sequence 0,1,...,n — 1. Yes, this program does other things
apart from the actual sorting, but all additional operations are “cheap” in the sense that
their number is proportional to n at most; according to our above line of arguments,
they should therefore not matter.

int main ()

{
int n = 100000; // number of walues to be sorted
int* a = new int[n];
std::cout << "Sorting " << n << " integers...\n";

// create sequence: 0, n-1, 1, n-2,...
for (int i=0; i<n; ++1i)
if (i % 2 == 0) al[i]l = i/2; else al[i] = n-1-1i/2;

// sort into ascending order
minimum_sort (a, a+n);

// is it really sorted ?
for (int i=0; i<n-1;++i)
if (al[i] != i) std::cout << "Sorting error!\n";

delete[] a;

return O;

Table 7 summarizes the results. For every value of n, Gcomp is the number of Gi-
gacomparisons (107 comparisons), according to Observation 1. In other words, Gcomp=
10~°n(n—1)/2. Time is the absolute runtime of the program in minutes and seconds, on
a modern PC. sec/Gcomp is Time (in seconds) divided by Gcomp and tells us how many
seconds the program needs to perform one Gigacomparison.

The table shows that the number of seconds per Gigacomparison is around 3.4 for all
considered values of n. As predicted above, the runtime in practice is therefore indeed

3.2. RECURSION 207

n | 100,000 200,000 400,000 800,000 1,600,000

Gcomp 5 20 80 320 1280
Time (min) 0:17 1:07 4:24 18:06 73:32
sec/Gcomp 3.4 3.35 3.3 3.4 3.45

Table 7: Number of comparisons and runtime of minimum-sort

proportional to the number of comparisons between sequence elements. This number
quadruples from one column to the next, and so does the runtime.

We also see that sorting numbers using minimum-sort appears to be pretty ineffi-
cient. 1,600,000 is not large by today’s standards, but to sort that many numbers takes
more than one hour! Given that sec/Gcomp appears to be constant, we can even estimate
the time that it would take to sort 10,000,000 numbers, say. For this, we derive from
Observation 1 the required number of Gigacomparisons (50,000) and multiply it with
3.4. The resulting 170,000 seconds are almost two days.

Essentially the same figures result from running other well-known simple sorting
algorithms like bubble-sort or insert-sort. Can we do better? Yes, we can, and recursion
helps us to do it!

Merge-sort. The paradigm behind the merge-sort algorithm is this: if a problem is (too)
large to be solved directly, subdivide it into smaller subproblems that are easier to solve,
and then put the overall solution together from the solutions of the subproblems. This
paradigm is known as dwwide and conquer.

Here is how this works for sorting. Let us imagine that the numbers to be sorted
come as a deck of cards, with the numbers written on them. The first step is to partition
the deck into two smaller decks of half the size each. These two decks are then sorted
independently from each other, with the same method; but the main ingredient of this
method comes only now: we have to merge the two sorted decks into one sorted deck.
But this is not hard: we put the two decks in front of us (both now have their smallest
card on top); as long as there are still cards in one or both of the decks, the smaller of
the two top cards (or the single remaining top card) is taken off and put upside down on
a new deck that in the end represents the result of the overall sorting process. Figure 18
visualizes the merge step.

Here is how merge-sort can be realized in C++, assuming that we have a function
merge that performs the above operation of merging two sorted sequences into one sorted
sequence.

// PRE: [first, last) is a wvwalid Tange
// POST: the elements *p, p in [first, last) are in ascending order
void merge_sort (int* first, int* last)
{
int n = last - first;
if (n <= 1) return; // mothing to do
int* middle = first + n/2;

208 CHAPTER 3. FUNCTIONS

Figure 18: Merging two sorted decks of cards into one sorted deck

merge_sort (first, middle); // sort first half

merge_sort (middle, last); // sort second half

merge (first, middle, last); // merge both halfs
}

If there is more than one element to sort, the function splits the range [first, last)
into two ranges [first, middle) and [middle, last) of lengths |[n/2]| and [n/2]. Just
as a reminder, for any real number x, [x] is the smallest integer greater or equal to x (“x
rounded up”), and |x| is the largest integer smaller or equal to x (“x rounded down”).
If n is even, both values |n/2| and [n/2] are equal to n/2, and otherwise, the first value
is smaller by one.

As its next step, the algorithm recursively sorts the elements described by both
ranges. In the end, it calls the function merge on the two ranges. In commenting the
latter function, we stick to the deck analogy that we have used above. If you have
understood the deck merging process, you will perceive the definition of merge as being
straightforward.

// PRE: [first, middle), [middle, last) are waltd ranges; 1in

// both of them, the elements are in ascending order
void merge (int* first, int* middle, int* last)
{

int n = last - first; // total number of cards

int* deck = new intl[n]; // new deck to be built

int* left = first; // top card of left deck

int* right = middle; // top card of right deck

for (int* d = deck; d != deck + n; ++d)
// put mnext card onto new deck
if (left == middle) *d = *right++; // left deck is empty
else if (right == last) *d = xleft++; // right deck is empty
else if (*xleft < *right) *d = *xleft++; // smaller top card left
else *d = *xright++; // smaller top card right

// copy mew deck back into [first, last)

3.2. RECURSION 209

int *d = deck;
while (first != middle) *first++ = *xd++;
while (middle '= last) *middle++ *xd++;

delete[] deck;

Analyzing merge-sort. As for minimum-sort, we will count the number of comparisons
between sequence elements that occur when a sequence of n numbers is being sorted.
Again, we can argue that the total number of operations is proportional to this number
of comparisons. For merge-sort, this fact is not so immediate, though, and we don’t
expect you to understand it now. But for the benefit of (not only) the sceptic reader,
we will check this fact experimentally below, as we did for minimum-sort.

All the comparisons take place during the calls to the function merge at the various
levels of recursion, so let us first count the number of comparisons between sequence
elements that one call to merge performs in order to create a sorted deck of n cards from
two sorted decks.

It is apparent from the function body (and also from our informal description of the
merging process above) that at most one comparison is needed for every card that is
put on the new deck. Indeed, we may have to compare the two top cards of the left
and the right deck in order to find out which card to take off next. But if one of the
two decks becomes empty (this situation definitely occurs before the last card is put on
the new deck), we don’t do any further comparisons. This means that at most n — 1
comparisons between sequence elements are performed in merging two sorted decks into
one sorted deck with n cards.

Knowing this, we can now prove our main result.

Theorem 2 The function merge_sort sorts a sequence of n > 1 elements with at most
(n—1)[log,n]
comparisons between sequence elements.

Proof. We define T(n) to be the mazimum possible number of comparisons between
sequence elements that can occur during a call to merge_sort with an argument range
of length n. For example, T(0) = T(1) = 0, since for ranges of lengths 0 and 1, no
comparisons are made. We also get T(2) = 1, since for a range of length 2, merge-sort
performs one comparison (in merging two sorted decks of one card each into one sorted
deck of two cards). In a similar way, we can convince ourselves that T(3) = 2. There
are sequences of length 3 for which one comparison suffices (the first card may be taken
off the left deck which consists only of one card), but the maximum number that defines
T(3) is 2.
For general n > 2, we have the following recurrence relation:

THHTIS) 41, (3.1)

T(n) < T(15 5

210 CHAPTER 3. FUNCTIONS

n | 100,000 200,000 400,000 800,000 1,600,000

Mcomp 1.7 3.6 7.6 16 33.6
Time (sec) 0.75 1.29 1.96 3.20 5.36
sec/Gcomp 441 358 257 200 160

Table 8: Number of comparisons and runtime of merge-sort

To see this, let us consider a sequence of n elements that actually requires the max-
imum number of T(n) comparisons. This number of comparisons is the sum of the
respective numbers in sorting the left and the right half, plus the number of comparisons
during the merge step. The former two numbers are (by construction of merge_sort and
definition of T) at most T(|n/2|) and T([n/2]), while the latter number is at most n—1
by our previous considerations regarding merge. It follows that T(n), the actual number
of comparisons, is bounded by the sum of all three numbers.

Now we can prove the actual statement of the theorem. Since the merge-sort al-
gorithm is recursive, it is natural that the proof is inductive. For n = 1, we have
T(1) =0=(1—1)[log, 2], so the statement holds for n = 1.

For n > 2, let us assume that the statement of the theorem holds for all values in
{1,...,n—1} (this is the inductive hypothesis). From this hypothesis, we need to derive
the validity of the statement for the number n itself (note that [n/2|, [n/2] > 1). This
goes as follows.

Tn) < T(L%J)+T([%1)+n—1 (Equation 3.1))
< ([%J — 1)[log2L%ﬂ + ([%1 — 1)[logz[%ﬂ +n—1 (inductive hypothesis)
< (15)=1)([ogan] = 1)+ ([5]~1)([logyn] —1) +n — 1 (Exercise 89)
= (n—2)([log,n] =N +n—1 (n=[3]+[3])
< (m—1)([log;n] —1)+n—1
(

1
n—1)[log, n|.

O

As for min-sort, let us conclude with some experiments to check whether the number
of comparisons between sequence elements is indeed a good indicator for the runtime in
practice. The results in Table 8 look very different from the ones in Table 7.

Since merge_sort incurs much less comparisons than minimum_sort, our unit here is
just Mcomp, the number of Megacomparisons (10° comparisons), according to Theorem 2.
In other words, Mcomp= 10~°(n—1)[log, n]. Time is the absolute runtime of the program,
this time in seconds and not minutes. But as in Table 7, sec/Gcomp tells us how many
seconds the program needs to perform one Gigacomparison.

We first observe that this latter number decreases with n, where the rate of decrease
becomes smaller and smaller. On our platform, we can go up to roughly n = 51,200, 000
and find that sec/Gcomp continues like this in Table 8: 154, 146, 135, 128, 124.

3.2. RECURSION 211

This seems to indicate that the runtime is proportional to the number of comparisons
only for very large n. If you think about it, this is not surprising. Cheap operations
that are performed n times, say, eat up a much higher fraction of the total runtime
when n is small. This is because n is relatively large compared to the upper bound of
(n — 1)[log,n| on the number of comparisons between sequence elements. But since
we ignore the cheap operations in our comparison count, this count is too optimistic for
small n. Only as n becomes very large, the ratio between n and (n—1)[log, n| becomes
negligible and we start to see the predicted proportionality.

For minimum-sort, this phenomenon does not show since n is negligible compared
to n(n—1)/2 already for small n.

The most positive news of Table 8 is that merge_sort is actually a practical sorting
algorithm. While it takes minimum-sort more than two hours to process 1,600,000
numbers, merge_sort does the same in around 5 seconds. This is mainly due to the
fact that (n — 1)[log,n] is a much smaller number than n(n — 1)/2, the number of
comparisons needed by minimum_sort (that’s why we switched from Gcomp to Mcomp).

On the other hand, the time needed by merge_sort per Gcomp is dramatically higher
than in minimum-sort; for n = 1,600, 000, we observe a factor of around 50. It may be
surprising that the factor is this large, but the fact that it ¢s larger can be explained.
merge_sort is a more complicated algorithm than minimum-sort, with its recursive struc-
ture, the extra memory needed for the new deck, etc. The price to pay is that less com-
parisons can be done per second, since a lot of time is needed for other operations. But
this is a moderate price, since we can more than pay for it by the gain in total runtime.

3.2.7 Lindenmayer systems

In this final section we want to present another application in which recursion is predom-
inant and difficult to avoid (an iterative version would indeed require an explicit stack).
As a bonus, this applications lets us draw beautiful pictures.

Let us first fix an alphabet ¥ which is simply a finite set of symbols, for example
Y = {F +,—}. Let Z* denote the set of all words that we can form from symbols in X.
For example, F+ F+ € X*.

Next, we fix a function P : X — X*. P maps every symbol to a word, and these are
the productions. We might for example have the productions

o — P(o)
F —» F+F+
+ -+
J— H J—

Finally, we fix an initial word s € X*, for example s = F.

The triple £ = (X, P,s) is called a Lindenmayer system. Such a system generates
an infinite sequence of words s = wy, wy,... as follows. To get the next word w; from
the previous word w;_;, we simply substitute all symbols in w; ; by their productions.

212 CHAPTER 3. FUNCTIONS

Figure 19: The turtle before and after processing the command sequence F + F+

In our example, this yields
wo = F
wy = F+F+
wy = F+F++4F+F++
wy = F+F++F+F++4+F+F4++F+F+++

The next step is to “draw” these words, and this gives the pictures we were talking
about.

Turtle graphics. Imagine a turtle sitting at some point p on a large piece of paper, with
its head pointing in some direction, see Figure 19 (left). The turtle can understand the
commands F, +, and —. F means “move one step forward”, + means “turn counter-
clockwise by an angle of 90 degrees”, and — means “turn clockwise by an angle of 90
degrees”. The turtle can process any sequence of such commands, by executing them
one after another. We are interested in the resulting path taken by the turtle on the
piece of paper. The path generated by the command sequence F + F+, for example, is
shown in Figure 19 (right), along with the position and orientation of the turtle after
processing the command sequence.

The turtle can therefore graphically interpret any word generated by a Lindenmayer
system over the alphabet {F +,—}.

Recursively drawing Lindenmayer systems. For o € X, let w{ denote the word resulting
from o by the i-fold substitution of all symbols according to their productions. In our
running example, we have for example w, = wh = F+F + +F + F+ + and w{ = + for
all i.

The point is now that can we express w{ in terms of the w;_;’s of other symbols,
and this is where recursion comes into play. Suppose that P(c) = o;--- ox. Then we can
obtain w{ as follows. We first substitute o by oy - -- oy (1-fold substitution), and in the
resulting word o - - - 0y we apply (i— 1)-fold substitution to all the symbols. This shows
that =

o __ o1 Ok
Wi = Wi g Wi,

3.2. RECURSION 213

This formula also implies that the drawing of w{ is obtained by simply concatenating
the drawings for w{';,...,w ;. To get the actual word w;, we simply concatenate the
drawings of all w?, for o running through the symbols of the initial word s.

Program 27 shows how this works for our running example with productions F +—
F + F+,+ — +,— — — and initial word F. Since Pi(+) = +, P{(—) = — for all i, we do
not need to substitute + and — and get

wi=wl =wl ; +wl ; +. (3.2)

The program assumes the existence of a library turtle with predefined turtle command
functions forward, left (counterclockwise rotation with some angle) and right (clock-
wise rotations with some angle) in namespace ifm.

In the documentation of the program, we have omitted the “trivial” productions
+ +— +,— — —, and in specifying a Lindenmayer system, we can do so as well: we will
usually only list productions for symbols that are not mapped to themselves.

1 // Prog: lindenmayer.C

2 // Draw turtle graphics for the Lindenmayer system with
3 // production F -> F+F+ and 4initial word F.
4

5 #include <iostream>

6 #include <IFM/turtle>

7

8 // POST: the word w_i°F 4s drawn

9 void f (unsigned int i) {

10 if (i == 0)

11 ifm::forward(); // F

12 else {

13 f(i-1); // w_{i-1}"F

14 ifm::1left (90); /) +

15 f(i-1); // w_{i-1}"F

16 ifm::1eft (90); /7 +

17 }

18 }

19

20 int main () {

21 std::cout << "Number of iterations =7 ";
22 unsigned int n;

23 std::cin >> n;

24

25 // draw w_n = w_n(F)

26 f(n);

27

28 return O0;

N
©
(-

214 CHAPTER 3. FUNCTIONS

Program 27: progs/lindenmayer.C

For input n = 14, the program will produce the following drawing.

As n gets larger, the picture does not seem to change much; it rotates, and some
more details develop, but apart from that the impression is the same. Assume you could
draw the picture for n = co. Then equation (3.2) would give

Weo = Weo + Wo +.

This is a self-similarity: the drawing of w,, consists of two rotated drawings of itself.
We have a fractal!

Additional features. We can extend the definition of a Lindenmayer system to include a
rotation angle « that may be different from 90 degrees. This is shown in Program 28
that draws a snowflake for input n =5.

3.2. RECURSION

0O~ O O i W N =

N NN =R
NP O © 00 O Ol W N R O ©

23
24
25
26
27
28
29
30
31
32
33
34
35
36

215

// Prog: smowflake.C

// Draw turtle graphics for the Lindenmayer system with
// production F -> F-F++F-F, 4initial word F++F++F and
// rTotation angle 60 degrees.

#include <iostream>
#include <IFM/turtle>

// POST: the word w_%1 F <5 drawn
void f (unsigned int i) {

if (i == 0)
ifm::forward () ;

else {
f(i-1);
ifm::right (60);
f(i-1);
ifm::1left (120);
f(i-1);
ifm::right (60);
f(i-1);

}

¥

int main () {

/7

//
//
//
//
//
//
//

F
w_{i-1}"F
w_{i-1}"F
++

w_{i-1}"F

w_{i-1}"F

std::cout << "Number of iterations =7 ";

unsigned int n;
std::cin >> n;

// draw w_n = w_n F++w_n "F++w_n"F
f(n); // w_n"F
ifm::1left (120); /) ++

f(n); // w_n"F
ifm::1left (120); /)

f(n); // w_n"F

return O;

Program 28: progs/snowflake.C

To get more flexibility, we can also extend the alphabet X of symbols. For example,

we may add symbols without any graphical interpretation; these are still useful, though,
since they may be used in productions. For example, the Lindenmayer system with
Y ={F,+,—, X, Y}, initial word X and productions

X = X4+ YF+
Y — —FX-Y

216

CHAPTER 3. FUNCTIONS

yields the dragon curve (ws4, angle of 90 degrees).

The corresponding code is shown in Program 29.

O 00 O O W N

DN NN MNMNINDNDNDDNDERERR R R [B e
OO0 JONEWNR, OW©WOW-ITOU ™ WNRO

// Prog: dragon.C

// Draw turtle graphics for the Lindenmayer system with
// productions X -> X+YF+, Y -> -FX-Y, 4nitial word X
// and rotation angle 90 degrees

#include <iostream>

#include <IFM/turtle>

void y (unsigned int i); // necessary: z and y call each other
// POST: w_t1"X 4s drawn

void x (unsigned int i) {
if (4 > 0) {

x(i-1); // w_{i-1}"X
ifm::1eft (90); /7t
y(i-1); /S w_{i-1}"Y
ifm::forward(); // F
ifm::1eft (90); /7t

// POST: w_1"Y <5 drawn
void y (unsigned int i) {
if (i > 0) {

ifm::right (90); /7 -
ifm::forward (); // F
x(i-1); // w_{i-1}"X
ifm::right (90); /7 -
y(i-1); /) w_{i-1}"Y

3.2. RECURSION 217

30 }

31

32 int main () {

33 std::cout << "Number of iterations =7 ";
34 unsigned int n;

35 std::cin >> n;

36

37 // draw w_n = w_n"X
38 x(n);

39

40 return O0;

41 %}

Program 29: progs/dragon.C

Finally, one can add symbols with graphical interpretation. Commonly used symbols
are f (jump one step forward, this doesn’t leave a trace), [(remember current position)
and | (jump back to last remembered position). It is also typical to add new symbols
with the same interpretation as F, say.

3.2.8 Details

Lindenmayer systems. Lindenmayer systems are named after the Danish biologist Aristide
Lindenmayer (1925-1985) who proposed them in 1968 to model the growth of plants.
Lindenmayer systems (with generalizations to 3-dimensional space) have found many
applications in computer graphics.

3.2.9 Goals
Dispositional. At this point, you should ...

1) understand the concept of recursion, and why it makes sense to define a function
through itself;

2) understand the semantics of recursive function calls and be aware that they do not
always terminate;

3) appreciate the power of recursion in sorting and drawing Lindenmayer systems.

Operational. In particular, you should be able to ...

(G1) find pre- and postconditions for given recursive functions;
(G2) prove or disprove termination and correctness of recursive function calls;

(G3) translate recursive mathematical function definitions into C++ function defini-
tions;

218 CHAPTER 3. FUNCTIONS

(G4) rewrite a given recursive function in iterative form;
(Gb) recognize inefficient recursive functions and improve their performance;

(G6) count the number of operations of a given type in a recursive function call, using
induction as the main tool;

(G7) write recursive functions for given tasks.

3.2.10 Exercises

Exercise 82 Find pre- and postconditions for the following recursive functions. (G1)

a) bool f (int n)
{

if (n == 0) return false;
return !f(n-1);

b) void g (unsigned int n)
{
if (n == 0) {
std::cout << "x";
return;
}
g(n-1);
g(n-1);
}

C) unsigned int h (unsigned int n, unsigned int b) {
if (n == 1) return O;
return 1 + h (n / b, b);
}

Exercise 83 Prove or disprove for any of the following recursive functions that it
terminates for all possible arguments. In this theory exercise, overflow should not
be taken into account, i.e. you should pretend that the value range of unsigned int
15 equal to IN. (G2)

a) unsigned int f (unsigned int n)
{
if (n == 0) return 1;
return f(f(n-1));
}

3.2. RECURSION 219

b) // POST: return value is the Ackermann function walue A(m,n)
unsigned int A (unsigned int m, unsigned int n) {

if (m == 0) return n+1;
if (n == 0) return A(m-1,1);
return A(m-1, A(m, n-1));

}

c) unsigned int f (unsigned int n, unsigned int m)

{
if (n == 0) return O;
return 1 + £ ((n + m) / 2, 2 *x m);
}
Exercise 84

a) Write and test a C++ function that computes binomaial coefficients (E),n,k €
IN. These may be defined in various equivalent ways. For example,

ny n!
k) kKl(n—-Xk)

or
0, ifn<k
@); 1, fn=kork=0
"+ (), ifn>kk>0
or
0, Fn<k
@); 1, ifn >k k=0

r(v) #n>kk>0

b) Which of the three variants is best suited for the implementation, and why?
Argue theoretically, but underpin your arguments by comparing at least two
different implementations of the function.

(G3)(G5) (GT7)

Exercise 85 In how many ways can you own CHF 1? Despite its somewhat philo-
sophical appearance, the question is a mathematical one. Given some amount of
money, in how many ways can you partition it using the available denominations
(bank notes and coins)? The denominations in CHF are 1000, 200, 100, 50, 20,
10 (banknotes), 5, 2, 1, 0.50, 0.20, 0.10, 0.05 (coins). The amount of CHF' 0.20,

220 CHAPTER 3. FUNCTIONS

for example, can be owned in four ways (to get integers, let’s switch to centimes):
(20),(10,10),(10,5,5),(5,5,5,5).

Solve the problem for any given input amount, by writing a program partition
that defines the following function (all values to be understood as centimes).

// PRE: [first, last) 4is a wvalid nonempty range that describes

// a sequence of demomimations d_1 > d_2 > ... > d_n > 0
// POST: return value is the number of ways to partition amount
// using denominations from d_1, ..., d_n

unsigned int partitions (unsigned int amount,
unsigned intx* first,
unsigned int#* last);

Use your program to determine in how many ways you can own CHF 1, and CHF
10. Can your program compute the number of ways for CHF 50?2 (GT)

Exercise 86 Suppose you want to crack somebody’s secret code, consisting of d digits
between 1 and 9. You have somehow found out that exactly k of these digits are
1’s.

a) Write a program that generates all possible codes. The program should contain
a function that solves the problem for given arguments d and k.

b) Adapt the program so that it also outputs the number of possible codes.

For example, 1f d =2 and k =1, the output may look like this:

12 13 14 15 16 17 18 19 21 31 41 51 61 71 81 91
There were 16 possible codes.

(G7)

Exercise 87 Rewrite the following recursive function in iterative form and test with
a program whether your iterative version is correct. What can you say about the
runtimes of both variants for values of n up to 100, say? (G4)(G5b)

unsigned int f (unsigned int n)

{
if (n <= 2) return 1;
return f(n-1) + 2 x f(n-3);
}

Exercise 88 The following function finds an element with a given value x in a sorted
sequence (if there is such an element).

// PRE: [first, last) s a wvalid range, and the elements x*p,
/7 p in [first, last) are in ascending order

// POST: return wvalue is a pointer p in [first, last) such

// that *p = z, or the pointer last, if mno such pointer

3.2. RECURSION 221

// erists
int* binary_search (int* first, int* last, int x)
{
int n = last - first;
if (n == 0) return last; // empty range
if (n == 1)
if (xfirst == x)
return first;
else
return last;
// n >= 2
int* middle = first + n/2;
if (*middle > x) {
// = can’t be in [middle, last)

int* p = binary_search (first, middle, x);
if (p == middle)
return last; // z not found
else
return p;
} else

// *middle <= z; we may skip [first, middle)
return binary_search (middle, last, x);

What is the mazimum number T(n) of comparisons between sequence elements
and x that this function performs if the number of sequence elements is n? Try
to find an upper bound on T(n) that is as good as possible. (You may use the
statement of Ezercise 89.) (G6)

Exercise 89 For any natural number n > 2, prove the following two (in)equalities.
(G6)
n n
Nog,| 311 < log,[271 = [log,n] — 1.

Exercise 90 Write programs that produce turtle graphics drawings for the following
Lindenmayer systems (L, P,s). (GT)

a) L={F+,—},s=F+F+F+Fand P given by

F o FF+F+F+F+F+F—F

b) L ={X,Y,+,—}, s =Y, and P given by

X = Y+ X+Y
Y - X=-Y-—-X.

222 CHAPTER 3. FUNCTIONS

For the drawing, use rotation angle o« = 60 degrees and interpret both X and Y as
“move one step forward”.

c) Like b), but with the productions

X = X+Y+4+Y -X——-XX-=Y+
Y = X+YW++Y+X—-—-X-Y.

Exercise 91 The Towers of Hanoi puzzle (that can actually be bought from shops) is
the following. There are three wooden pegs labeled 1,23, where the first peg holds
a stack of n disks, stacked in decreasing order of size, see Figure Figure 20.

1 2 3

Figure 20: The Tower of Hanoi

The goal 1s to transfer the stack of disks to peg 3, by moving one disk at a time
from one peg to another. The rule is that at no time, a larger disk may be on top
of a smaller one. For example, we could start by moving the topmost disk to peg 2
(move (1,2)), then move the next disk from peg 1 to peg 3 (mowve (1,3)), then move
the smaller disk from peg 2 onto the larger disk on peg 3 (move (2,3)), etc.

Write a program hanoi.C that outputs a sequence of moves that does the required
transfer, for given input n. For example, if n = 2, the above wnitial sequence
(1,2)(1,3)(2,3) s already complete and solves the puzzle. Check the correctness of
your program by hand at least for n = 3, by manually reproducing the sequence of
moves on a piece of paper (or an actual Tower of Hanot, if you have one). (G7)

3.2.11 Challenges

Exercise 92 The game Connect Four s played by two players on a rectangular upright
board of n rows and m columns that is initially empty. The players (let’s call them
White and Black) move alternatingly, where the player whose turn it is drops a
piece of her color onto a column that 1s not full yet.

The first player to get four pieces of her color consecutively aligned in a column,
row, or diagonal wins the game. If the board becomes full before this happens, the
game 1S a draw.

3.2. RECURSION 223

Figure 21 shows a possible sequence of initial moves, and Figure 22 depicts a
winning situation for White (you can tell right away that Black was stupid).

[J
O O
O ol) ol ol)

Figure 21: Furst moves in a Connect Four game with 4 rows and 5 columns

QO
o0
00

Figure 22: Whate wins in a Connect Four game with 4 rows and 5 columns

Wmrite a program connectfour.C that can play Connect Four against a human
player, either as White or Black. But we don’t want a program that can play
decently, we want a program that plays optimally! This means that at any time
during the game, the machine player selects a best possible move. This 1s a move
that leads to a winning situation for the machine player as fast as possible if the
machine player can win at all. If the machine player is bound to lose, the best
move 1S the one that keeps the game going for as long as possible. If the game can’t
be won by either player, the best move 1s any move that keeps the game in a state
of draw. In all cases, the machine player assumes that the human player also plays
optimally (or, that the machine player plays against another instance of itself).

The program should at least be able to handle boards with 4 rows and up to 6
columns. If the program 1is really mean, it may tell the human player after how
many more pieces it will have won. If this number goes down substantially after a
move of the human player, it is clear that the human didn’t play optimally.

Use the program to determine for all games with 4 rows and up to 6 columns
whether a) White can always win if she plays optimally, or b) Black can always
win if she plays optimally, or c) the game s a draw, if both players play optimally.

224 CHAPTER 3. FUNCTIONS

