Appendix B

Solutions

Solution to Exercise 1. (d) and (f) are not identifiers, since they do not start with a letter.
(g) is not an identifier, since it contains the character #. (b) is not allowed as a variable
name, but it is a valid identifier.

Solution to Exercise 2. (c) is not an expression, since the first operand of the assignment
operator must be an lvalue, but 1 is a literal, hence an rvalue. (f) is not an expression,
since there is no closing parenthesis for the opening one. (h) is invalid, since (a*3) is an
rvalue, but the left operand of the assignment operator must be an lvalue.

Solution to Exercise 3. (a), (e), and (g) are rvalues by definition of the binary multipli-
cation operator. (b) and (d) are lvalues by definition of the assignment operator.

Solution to Exercise 4. (a) has value 6, obtained by multiplying the value of the primary
expression 1 with the value of the composite expression (2+3). The latter value is 6,
for the same reason. (b) has value 5, obtained by assigning value 5 to b first (right
assignment), and then to a (left assignment). (d) has value 1, by definition of the
assignment operator. (e) has value 35, since the operands (a=5) and (b=7) have values
5 and 7, respectively.

In case of (g), the value is unspecified. If the right operand is evaluated first, we get
value 25, but if the left operand comes first, b may have some value other than 5, and
the left operand evaluates to this other value. The final result will not be 25, then.

Solution to Exercise 5.

// Program: multhree.C
// Compute the product of three numbers.

#include <iostream>

int main()

{
// tinput of a, b and c
std::cout << "Compute a * b * c for a =7 "
int a;

O ©O0 ~NO Ok wN

=

297

298 APPENDIX B. SOLUTIONS

11 std::cin >> a;

12

13 std::cout << "... and b =7 ";

14 int b;

15 std::cin >> b;

16

17 std::cout << "... and c =7 ";

18 int c;

19 std::cin >> c;

20

21 // output a * b * c,

22 std::cout << a << " x " <K<K b <K< " x " K< ¢ <K< "=
23 << a * b x ¢ << ".\n";
24 return O0;

25

Solution to Exercise 6.

1 // Program: power20.C

2 // Ratise a number to the power twenty.
3

4 #include <iostream>

5

6 int main()

7 A

8 // input

9 std::cout << "Compute a~20 for a =7 ";
10 int a;

11 std::cin >> a;

12

13 // computation

14 int b = a *x a; // b = a"2

15 int ¢ = b * b; // ¢c = a4

16 int d = ¢ *x ¢; // d = a”8

17 int e = d *x d; // e = a"16

18

19 // output e * c, i.e. a"20

20 std::cout << a << ""20 = " << e * c << ".\n";
21 return O;

22

Solution to Exercise 7. For the lower bound in a), we argue by induction that a; < a? for

all i (we can’t do more than double the number in each step). In order to get a; = n,
we therefore must have

a? >ay=a",
or 2 > n. It follows that
t>1gn > |lgn| =A(n).

For the upper bound, we have to come up with a computation for a™ that needs at
most A(n) +v(n)—1 steps. This is simple (and called the binary method). By doubling
a A(n) times, we can compute in A(n) steps all powers of the form a? that are less or

equal to a™ For example, in A(20) = 4 steps, we can get the values a,a? a* a8 a'®.

299

Since n is the sum of exactly v(n) of these 2%, a™ is the product of exactly v(n) of these
a’® (this is a simple consequence of the formula a™™ = a™- a™). It follows that we can
obtain a™ by simply multiplying these v(n) values together, and since we already have
them, this can be done in v(n) — 1 further multiplications.

For b), we give an example where the upper bound is not tight. Consider n = 15

(1111 in binary). We have A(15) = 3 and v(15) = 4, so the binary method would need 6
multiplications. But we can do it with five multiplications, as follows:

aj

a; =
asz =
ag =

as

ap
aj
az
as
a4

* ¥ X X *

ao
ao
az
as
az

// a”2
// a”3
// a~6
// a"12
// a~15

In general, no exact formula for {(n) is known.

