378 APPENDIX B. SOLUTIONS

Solution to Exercise 95.

a) // PRE: n >= 0
// POST: return value s false 4f n is even and true if n is odd

b) // PRE: n >= 0
// POST: 2°n stars have been written to standard output

c) Let’s analyze this function: if n = b e > 0, then it is not hard to see that the
function outputs e = log, n. An obvious precondition is b # 0. If n is not a power
of b, things may go wrong, since the first argument may become 0 at some point,
and then we enter an infinite recursion. This happens for example if 1 < n < b.
Also, if b =1, we have an infinite recursion if n > 1. Let us therefore assume that
b > 2.

Since n can always be written in the form
k .
n=) B, 0<Bi<bVi
i=0

we can easily compute what happens, assuming that k > 1 and By > O (this just
means n > b). The first integer division by b “cuts off” 3, and yields

k
TLI — Z Bibi_1'
i=1

The next division cuts off 3; and yields

k

TL// — Z Bibifz.

i=2

The pattern is clear: we eventually get the number (3. If Bx = 1, the function call
terminates, otherwise, the next division yields O as the first call parameter, and we
have an infinite recursion. This yields the following pre- and postconditions.

// PRE: b >= 2, there exists e with b e <= n < 2*b e
// POST: return value is e = log_b(n), rounded down

Solution to Exercise 96.

a) This does not always terminate. Consider the call £(1). This recursively calls
£ (£(0)) which is £(1) again, and so on.

379

b) Let us move the call parameter A(m, n-1) out of the recursive call to make things

more clear. This does not change anything since that parameter has to be evaluated
before the recursive function call anyway.

unsigned int A (unsigned int m, unsigned int n) {
// POST: return value is the Ackermann function wvalue A(m,n)
if (m == 0) return n+1;
if (n == 0) return A(m-1,1);
unsigned int param = A(m, n-1);
return A(m-1, param);

}

Now we see that the pair (m,n) gets lezicographically smaller in every recursive
call. Under lexicographic order, (m’,n’) < (m,n) if m’ < m, or if m’ = m and
n’ < n. Therefore, starting from (m,n), the first parameter must go down by one
after a finite number of recursive calls, meaning that it must also reach 0 after a
finite number of recursive calls. At that point, the recursion bottoms out.

c) This one is somewhat tricky, since when you run it, it always seems to terminate.
But this is only due to overflow in the arithmetic. Mathematically, this function
does not terminate: if m > n, then no parameter decreases in the recursive call,
and we again have

ni=m+m)div2<m<2m=m'.

Solution to Exercise 97. Here is the program for a) and b).

00~ O Ol WwWwNKE

// Prog: mccarthy.C
// defines and calls McCarthy’s 91 Function
#include <iostream>

// POST: return wvalue is M(n), where M 4is McCarthy’s 91 Function
unsigned int mccarthy (unsigned int n) {
if (n > 100)

return n - 10;
else
return mccarthy (mccarthy(n + 11));
}
int main()
{
// input

std::cout << "Compute McCarthy’s 91 Function M(mn) for n =7 ";
unsigned int n;
std::cin >> n;

// computation and output
std::cout << "M(" << n << ") = " << mccarthy(n) << "\n";

return O;

380 APPENDIX B. SOLUTIONS

For c), you play with the program a little and start to guess that

n—10, ifn>100
M(“)—{ 91, ifn <100

and this obviously explains the name McCarthy’s 91 Function. Here is an inductive
proof of this fact. Actually, we only need to handle the finitely many casesn =0, ..., 100
since for n > 100, the result n — 10 follows from the definition. So we do backwards
induction. Assume that we need to establish the validity of the formula for a given
n < 100. We assume that the formula is already correct for all larger values of n. The
definition gives us

M(n) = M(M(n + 11)).

Ifn+11 > 100, we thus get M(n) = M(n+11—-10) = M(n+1). If n = 100, this is
M(101) = 91, and if n < 100, then n+1 < 100, so by induction we also get M(n+1) = 91.
If n+ 11 <100, we inductively get M(n + 11) = 91, hence

M(n) = M(91) :=M(M(102))
= M(92) := M(M(103))
= M(93) =
= M(99) := M(M(110))
= M(100) := M(M(111))

M(101) = 91

Solution to Exercise 98. Let us start with part b). The first variant has the problem
that if we first compute n! and only then divide by k! and (n — k)!, we can’t compute
many binomial coefficients, since n! does not fit into an unsigned int variable already
for small n (if we have 32-bit arithmetic, then 12! is the highest we can do).

The second variant is bad since it is very slow. We have the same phenomenon as with
the Fibonacci numbers: the computation time is at least proportional to the computed
number itself, and binomial coefficients are quite large.

The third solution seems to be best in practice, but even here, we have to be somewhat
careful in the implementation. We should first multiply (Ej) with n, and only then
divide by k. First dividing by k is tempting in order to keep the numbers small but
that doesn’t work, since (L‘:}) might not be divisible by k. This third method produces
intermediate numbers that are larger than absolutely necessary, but only by at most n.

unsigned int binomial (unsigned int n, unsigned int k)
{

if (n < k) return O;

if (k == 0) return 1;

return n * binomial(n-1, k-1) / k;

}

381

Solution to Exercise 99.

// Prog: partition.C

// compute inm how many ways a fized amount of money can be
// partioned using the avatilable denominations (banknotes
// and coins). This program is for the currency CHF, where
the denominations are (in centimes)

© 00~ O U WN
R
N

// 100000, 20000, 10000, 5000, 2000, 1000 (banknotes)
// 500, 200, 100, 50, 20, 10, 5 (coins)
/7
// Ezample: CHF 0,20 can be partitioned in four ways
10 /7 (20), (10, 10), (10, 5, 5), and (5, 5, 5, 5)
11 #include<iostream>
12
13 // PRE: [first, last) %is a valid nonempty range that describes
14 // a sequence of demominations d_1 > d_2 > ... > d_n > 0
15 // POST: return wvalue is the number of ways to partition amount
16 // using demominations from d_1, ..., d_n
17 unsigned int partitions (unsigned int amount,
18 unsigned intx* first,
19 unsigned int* last)
20 {
21 if (amount == 0) returmn 1;
22 unsigned int ways = 0;
23 // ways = ways_1 + ... + ways_n, where ways_i %S the number
24 // of ways to partition amount using d_t as the largest
25 // denomination
26 for (unsigned intx d = first; d != last; ++d)
27 // ways_i = number of partitions of the form (d_i, X), with
28 // (X) being a partition of amount-d_i using d_%i,...,d_n
29 if (amount >= *d) ways += partitions (amount-*d, d, last);
30 return ways;
31 %
32
33 int main()
3¢ {
35 // the 13 denominations of CHF
36 unsigned int chf[] =
37 {100000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5};
38
39 // input
40 std::cout << "In how many ways can I own x CHF-centimes for x =7 ";
41 unsigned int x;
42 std::cin >> x;
43
44 // comutation and output
45 std::cout << partitions (x, chf, chf+13) << "\n";
46
47 return O0;
48 1

The number of ways in which you can own CHF 1 is 50, and CHF 10 can be owned
in 104561 ways. The above program becomes very slow for larger values, since during
the recursive calls, many values are computed over and over again. For CHF 50, we
already have to wait “forever”. We can speed things up by using dynamic programming.
We don’t even have to change the structure of our function, but we provide it with an
additional twodimensional array to store the values that have already been computed.
Whenever we need a value, we first check whether it has already been computed, and
only if this is not the case, we recursively call the function.

382 APPENDIX B. SOLUTIONS

// Prog: partition.C

// compute in how many ways a fized amount of money can be
// partioned using the available denominations (banknotes
// and coins). This program is for the currency CHF, where
the denominations are (in centimes)

© 00O U WN
R
N

// 100000, 20000, 10000, 5000, 2000, 1000 (banknotes)
/7 500, 200, 100, 50, 20, 10, 5 (coins)
/7
// Ezample: CHF 0,20 can be partitioned in four ways
10 /7 (20), (10, 10), (10, 5, 5), and (5, 5, 5, 5)

11 #include <iostream>
12 #include <algorithm>

13

14 // PRE: [first, last) %is a valid nonempty range that describes
15 // a sequence of demominations d_1 > d_2 > ... > d_n > 0
16 // memory %s a pointer to a twodimensional array with

17 // number of rows >= amount, and number of columns >=

18 // last-first, with the following property:

19 // for 0 < a < amount, and for d in [first, last),

20 // memory [a-1][last-d-1] either has wvalue -1,

21 // or it is equal to dyn_prog_partitions (a, d, last, memory)
22 // POST: return value is the number of ways to partition amount
23 // using denominations from d_1, ..., d_n

24 unsigned int dyn_prog_partitions (unsigned int amount,

25 unsigned intx* first,

26 unsigned intx* last,

27 int ** memory)

28 {

29 if (amount == 0) return 1;

30 unsigned int ways = 0;

31 // ways = ways_1 + ... + ways_n, where ways_i s the number
32 // of ways to partition amount wusing d_i as the largest

33 // denomination

34 for (unsigned intx d = first; d != last; ++d)

35 // ways_i = number of partitions of the form (d_i, X), with
36 // (X) being a partition of amount-d_i using d_%i,...,d_n
37 if (amount >= *d) {

38 // s ways_i already stored in memory?

39 int stored_value = -1;

40 if (amount > *d)

41 stored_value = memory[amount - *d - 1][last-d-1];

42 if (stored_value != -1)

43 ways += stored_value;

44 else

45 ways += dyn_prog_partitions (amount - *d, d, last, memory);
46 }

47 // store the mnew value

48 memory [amount -1] [last-first-1] = ways;

49 return ways;

50 1}

51

52 // PRE: [first, last) is a wvalid nonempty range that describes
53 // a sequence of denominations d_1 > d_2 > ... > d_n > 0
54 // POST: return value is the number of ways to partition amount
55 // using demominations from d_1, ..., d_n

56 unsigned int partitions (unsigned int amount,

57 unsigned int* first,

58 unsigned int* last)

59 {

60 // allocate memory for dymamic programming approach

61 int** memory = new int*[amount];

62 for (int** m = memory; m < memory + amount; ++m) {

63 *m = new int[last-first];

64 std::fill (*m, *m + (last-first), -1);

}

// call the wversion with memory
unsigned int result =

dyn_prog_partitions (amount, first,

// delete memory

last, memory);

for (int** m = memory; m < memory + amount; ++m)

delete [] *m;
delete memory;

return result;

}

int main()

{
// the 13 denominations of CHF
unsigned int chf[] =

{100000, 20000, 10000, 5000, 2000,

// input

1000, 500, 200, 100,

50,

20,

std::cout << "In how many ways can I own x CHF-centimes for x =7

unsigned int x;
std::cin >> x;

// comutation and output
std::cout << partitiomns (x, chf,

return O;

chf+13) << "\n";

10,

.
>

5};

383

With this, we can very quickly compute the number of ways for CHF 50; it is

513269191. Beyond that, the type unsigned int is at some point no longer sufficient to
represent the number of ways, since these are simply too many.

Solution to Exercise 100.

#include <iostream>

// PRE: d >= k

// POST: all codes with digits between 1 and 9 are output that
// result from the partial code p by an extension with d

// digits, k of which are 1;
// number of such codes
unsigned int crack (unsigned int p,
{

if (d == 0) {

the return wvalue

unsigned int d,

// k == 0 as well by PRE, and we have a full code

std::cout << p << " ",
return 1;

}

// there are two possibilities to continue:

// next digit 4s 1, or mot

unsigned int n = 0; // total number of codes

0oss ;oon 7 we st17 ave S e
// p 1 ly 1 till h 1’s left

if (k > 0)
n += crack (10 * p + 1, d - 1,

// poss 2: only +f not all remaining digits have to be 1°’s

if (4 > k)

k

1);

// mnexzt digit

s the

s

1

unsigned int k)

384 APPENDIX B. SOLUTIONS

26 for (unsigned int i=2; i<10; ++1i)

27 n += crack (10 * p + i, d - 1, k); // next digit 4s 1 != 1
28

29 return n;

30 %

31

32 // PRE: d >= &k

33

34 // POST: all d-digit codes with digits between 1 and 9 are
3 // output that have exzactly k digits equal to one;
36 // the return value is the number of such codes

37 unsigned int crack (unsigned int d, unsigned int k)

38 {

39 return crack (0, d, k);

40 3

41

42 int main() {

43 int n = crack (2, 1);

44 std::cout << "\nThere were " << n << " possible codes.\n";
45 return O;

46

Solution to Exercise 101. The function is rewritten in a way similar to what we did with
the Fibonacci numbers. The recursive variant becomes very slow at some point, while
the iterative version is always fast.

1 #include<iostream>

2

3 unsigned int f (unsigned int n)

4 {

5 if (n <= 2) return 1;

6 return f(n-1) + 2 * f(n-3);

7 }

8

9 unsigned int f_it (unsigned int n)

10 {

11 if (n <= 2) return 1;

12 unsigned int a = 1; // f(0)

13 unsigned int b = 1; // f(1)

14 unsigned int ¢ = 1; // f(2)

15 for (unsigned int i = 3; i < n; ++i) {
16 unsigned int a_prev = a; // f(i-3)

17 a = b; // f(i-2)

18 b = c; // f(i-1)

19 c =b + 2 x a_prev; /7 F(i)

20 }

21 return c + 2 * a; // f(n-1) + 2 * f(n-3)
22 }

23

24 int main()

25 {

26 std::cout << "Comparing f and f_it...\n";
27 for (int n = 0; n < 100; ++n)

28 std::cout << f(n) << " = " << f_it(n) << "\n";
29

30 return O;

31 }

385
Solution to Exercise 102. As for merge-sort, it can be shown that T(0) =0,T(1) =1 and

T(n) < 1+ max <T(L%J),T([%1>, n>2.

Given this, a bound of T(n) < 1+ [log, | can be shown by induction.

Solution to Exercise 103. The inequality simply follows from the fact that log,x is a
monotone increasing function. To see the equation, let us first consider the case where
n is a power of two, n = 2, say, with k > 1. Then all involved numbers are integers,
the rounding operation does nothing, and the statement follows from

logzg =log,n—1.
Otherwise (if n is not a power of two), let us choose the unique number k such that
28 < < 28T,
By taking logarithms, it follows that
k <log,m <k+1,
SO
[log,n] =k +1. (B.1)

We also have
n

Zk—] e Zk
< 5 <25,
and this yields
2 < 1D <ox
2
Taking logarithms, we get
k—1<log,[]<K,

and this means that

n
[loga[511 = k. (B.2)
The desired equality now follows from (B.1) and (B.2).

Solution to Exercise 104.

386 APPENDIX B. SOLUTIONS

o))
~—

1 // Prog: lsys62a.C

2 // Draw turtle graphics for the Lindenmayer system with
3 // production F -> FF+F+F+F+F+F-F, 4nitial word F+F+F+F
4 // and rotation angle 60 degrees

5

6 #include <iostream>

7 #include <IFM/turtle>

8

9 void f (unsigned int i) {

10 // POST: the word w_t F 4is drawn

11 if (i == 0)

12 ifm::forward(); // F

13 else {

14 f(i-1); // w_{i-1}"F

15 f(i-1); // w_{i-1}"F

16 ifm::1left (90); /7 o+

17 £(i-1); // w_{i-1}"F

18 ifm::1left (90); /7 o+

19 £(i-1); // w_{i-1}"F
20 ifm::1left (90); /7 o+
21 f(i-1); // w_{i-1}"F
22 ifm::1left (90); /7 o+
23 f(i-1); // w_{i-1}"F
24 ifm::1left (90); /) +
25 f(i-1); // w_{i-1}"F
26 ifm::right (90); // -
27 f(i-1); // w_{i-1}"F
28 }
29 }
30
31 int main () {
32 std::cout << "Number of iterations =7 ";
33 unsigned int n;
34 std::cin >> n;
35
36 // draw w_n = w_n(F+F+F+F)
37 f(n); ifm::1left(90); f(n); ifm::1left (90);
38 f(n); ifm::1left (90); f(n);
39 return O0;
40

1 // Prog: lsys62b.C

2 // Draw turtle graphics for the Lindenmayer system with
3 // productions X -> Y+X+Y, Y -> X-Y-X, initial word Y
4 // and rotation angle 60 degrees

5

6 #include <iostream>

7 #include <IFM/turtle>

8

9 void y (unsigned int i);
10 // mnecessary: = and y call each other

11

12 void x (unsigned int i) {

13 // POST: w_i"X is drauwn

14 if (i == 0)

15 ifm::forward ();

16 else {

17 y(i-1); // w_{i-1}"Y
18 ifm::left (60); /7 +

19 x(i-1); // w_{i-1}"X

20 ifm::1eft (60); /7 +

21

y(i-1);
}
}

void y (unsigned int

// w_{i-1}"Y

i) {

// POST: w_t"Y is drauwn

if (i == 0)
ifm::forward ();

else {
x(i-1);
ifm::right (60);
y(i-1);
ifm::right (60);
x(i-1);

}

}

int main () {

// w_{i-1}"X
// -
// w_{i-1}"Y
// -
// w_{i-1}"X

std::cout << "Number of iterations

unsigned int n;
std::cin >> n;

// draw w_n = w_n"Y

y(n);

return O;

387

// Prog: lsys62c.C

// Draw turtle graphics for the Lindenmayer system with

// productions X ->

X+Y++Y-X--XX-Y+,

Y -> -X+YY++Y+X--X-Y,

// initial word Y and rotation angle 60 degrees

#include <iostream>
#include <IFM/turtle>

void y (unsigned int

// mecessary: z and y call each other

void x (unsigned int

i);

i) {

// POST: w_i"X is drauwn

if (i == 0)
ifm::forward ();

else {
x(i-1);
ifm::1left (60);
y(i-1);
ifm::left (60);
ifm::1left (60);
y(i-1);
ifm::right (60);
x(i-1);
ifm::right (60);
ifm::right (60);
x(i-1);
x(i-1);
ifm::right (60);
y(i-1);
ifm::1left (60);

// w_{i-1}"X
/7 o+
// w_{i-1}"Y
/7 o+
/) o+
// w_{i-1}"Y
// -
// w_{i-1}"X
/7 -
// -
// w_{i-1}"X
// w_{i-1}"X
/7 -
// w_{i-1}"Y
/) o+

388

35 void y (unsigned int i) {

36 // POST:

w_t"Y <s drawn

38 ifm::forward ();

39 else {

40 ifm::right (60); //
41 x(i-1); //
42 ifm::1left (60); //
43 y(i-1); //
44 y(i-1); 7/
45 ifm::left (60); //
46 ifm::1left (60); //
47 y(i-1); //
48 ifm::1left (60); //
49 x(i-1); //
50 ifm::right (60); //
51 ifm::right (60); //
52 x(i-1); //
53 ifm::right (60); //
54 y(i-1); //
b5 }

56 }

57

58 int main () {

59 std::cout << "Number of iterations
60 unsigned int n;

61 std::cin >> n;

62

63 // draw w_n = w_n"Y

64 y(n);

65

66 return O;

67

if (1 == 0)

w_{i-1}"X
+
w_{i-1}"Y
w_{i-1}"Y
+
+
w_{i-1}"Y
+
w_{i-1}"X

w_{i-1}"X

w_{i-1}"Y

=7 n.
H ’

APPENDIX B. SOLUTIONS

Solution to Exercise 105.

00~ O Ol W+

To move n disks from peg s to peg t, we can first move the
topmost n — 1 disks to the helper peg, then move the bottommost disk directly to peg
t, and then move the n — 1 disks again, this time from the helper peg to peg t. In
the following program, we do this through a recursive function. As a small hack, we
determine the number of the third helper peg as 6 —s — t.

// Prog:

hanot.C

// solves the Tower of Hanoti puzzle

s and t are different and both in {1,2,3}

the sequence of moves mnecessary to transfer a stack of n
disks from peg s to peg t is written to standard output

int s,

int t)

// move topmost n-1 disks from s to helper peg 6-s-t

t);

// move bottommost disk from s to t

t);

#include <iostream>
// PRE:
// POST:
/7
void hanoi (unsigned int n,
{
if (n > 0) {
hanoi (n-1, s, 6-s-
std::cout << " ("
hanoi (n-1, 6-s-t,
}
}

<< s << "

’ll << t << II)";
// move the n-1 disks from the helper peg to the t

389

21 int main ()

22 A

23 // input

24 std::cout << "Move a stack of n disks for n =7 "
25 unsigned int n;

26 std::cin >> n;

28 // output

29 hanoi (n, 1, 3);
30 std::cout << "\n";
31

32 return 0;

33

Solution to Exercise 106. Here comes our handwaving: what is the average number E;
of packages that you need to buy, given that you are still missing i stickers? Obviously,
Eo =0, and E,, is the value that we are interested in.

If you are missing 1 > O stickers, you definitely have to buy another package, and this
might decrease the number of missing stickers. In fact, the new number is between i (if
you already have all five stickers that were in the package) and i — 5 (if all stickers were
new). What is the probability that you go down to i — k missing stickers, k = 0, ..., 57?
For this event to happen, exactly k out of the 5 stickers have to come from the i that
you are missing, and 5 — k have to come from the n —1i that you already have. The total
number of 5-tuples of stickers is

ny n!
(5) ~ 5l(n—=>5)!"

i\ n—1
k/\5—k
of them lead to the aforementioned event. (Recall that the binomial coefficient (?)

counts the number of ways in which { objects can be selected from a total of m objects.)
This gives us the recursive formula

and

Ei:]—l_iMEik’ i>0.
k=0 (5)

Note that for 1 < 5, this formula features negative subscripts 1 — k, but all these have
multiplicative factor 0.

This formula is an incarnation of the partition theorem for conditional expectation,
but the handwaving is this: given that you are missing i > O stickers, you need another
package, and then the average number of packages for i — k missing stickers, where the
probability that a given k occurs is the above fraction.

390 APPENDIX B. SOLUTIONS

The recursive formula is still not useful since E; depends on E; (for k = 0), but we
can get rid of this by multiplying with (g‘)

(5)- (05 e =)+ £ () e

Thus we get

Ei:%Jf 5 Mﬂb i>0.
(5)_(5) k=1 (5)_(5)

The program now simply computes (and stores) the E;’s according to this formula,
in the order E, (which we know), Eq,E;,...,E,. In this way, we have always already
computed the values that we need.

We use the third function from Exercise 98 to compute binomial coefficients, but
since these may become pretty large, we work over the type double right away. (525),
the largest binomial coefficient that may come up, is 430960344486, a number that would
require more than 32 bits but less than 53, so it will even exactly fit into a double).

1 // Prog: panini.C

2 // computes the exzpected number of 5-sticker packages that need
3 // to be purchased in order to have all n stickers in the collection
4

5 #include<iostream>

6

7 // POST: computes binomial coefficient "n choose k"

8 double binomial (unsigned int n, unsigned int k)

9 {

10 if (n < k) return 0.0;

11 if (k == 0) return 1.0;

12 return n * binomial (n-1, k-1) / k;

13}

14

15 int main ()

16 {

17 // input

18 std::cout << "Collection size =7 ";

19 unsigned int n;

20 std::cin >> n;

21

22 // allocate the array...

23 double* E = new double[n+1]; // E_O0,...,E_n

24

25 // ...and fill <t

26 E[0] = 0;

27 for (unsigned int i = 1; i <= n; ++i) {

28 double d = binomial (n, 5) - binomial (n-i, 5);

29 E[i] = ©binomial(n, 5) / 4d;

30 for (unsigned int k = 1; k < 6 && k <= i; ++k)

31 E[i] += binomial (i, k) * binomial (n-i, 5-k) / d * E[i-k];
32 }

33

34 // output

35 std::cout << "Average number of packages is " << E[n] << ".\n";

37 // clean up

38 delete[] E;
39

40 return O0;
41 3}

391

According to this program, the expected number of packages for n = 555 is 763.213,
so up to rounding to integer, the newspaper was right.

Solution to Exercise 107. Naturally, it’s hard to present a solution here. Instead, let us
just list the program corresponding to the production

F o FF+[4F—F—F —[-F+F+F

given as an example in the challenge.

1 // Prog: bush.C

2 // Draw turtle graphics for the Lindenmayer system with
3 // production F -> FF+[+F-F-F]-[-F+F+F], initial word F
4 // and rotation angle 22 degrees
5

6 #include <iostream>

7 #include <IFM/turtle>

8

9 // POST: the word w_%"F 4is drawn
10 void f (unsigned int i) {

11 if (i == 0)

12 ifm:: forward(); // F

13 else {

14 f(i-1); // F

15 £(i-1); // F

16 ifm::left (22); /7 o+

17 ifm::save (); /7 [

18 ifm::left (22); /7 o+

19 £(i-1); // F

20 ifm::right (22); // -

21 f(i-1); // F

22 ifm::right (22); // -

23 f(i-1); // F

24 ifm::restore(); //]

25 ifm::right (22); // -

26 ifm::save (); /7 [

27 ifm::right (22); // -

28 f(i-1); // F

29 ifm::left (22); /) +

30 f(i-1); // F

31 ifm::left (22); // +

32 f(i-1); // F

33 ifm::restore(); //]

34 }

3B

36

37 int main () {

38 std::cout << "Number of iterations =7 ";
39 unsigned int n;

40 std::cin >> n;

41

42 // draw w_n = w_n(F), vertically
43 ifm::1left (90);

44 f(n);

392 APPENDIX B. SOLUTIONS

46 return O0;
47

