
Appendix B

Solutions

Solution to Exercise 1. (d) and (f) are not identi�ers, sine they do not start with a letter.(g) is not an identi�er, sine it ontains the harater #. (b) is not allowed as a variablename, but it is a valid identi�er.
Solution to Exercise 2. () is not an expression, sine the �rst operand of the assignmentoperator must be an lvalue, but 1 is a literal, hene an rvalue. (f) is not an expression,sine there is no losing parenthesis for the opening one. (h) is invalid, sine (a*3) is anrvalue, but the left operand of the assignment operator must be an lvalue.
Solution to Exercise 3. (a), (e), and (g) are rvalues by de�nition of the binary multipli-ation operator. (b) and (d) are lvalues by de�nition of the assignment operator.
Solution to Exercise 4. (a) has value 6, obtained by multiplying the value of the primaryexpression 1 with the value of the omposite expression (2*3). The latter value is 6,for the same reason. (b) has value 5, obtained by assigning value 5 to b �rst (rightassignment), and then to a (left assignment). (d) has value 1, by de�nition of theassignment operator. (e) has value 35, sine the operands (a=5) and (b=7) have values
5 and 7, respetively.In ase of (g), the value is unspei�ed. If the right operand is evaluated �rst, we getvalue 25, but if the left operand omes �rst, b may have some value other than 5, andthe left operand evaluates to this other value. The �nal result will not be 25, then.
Solution to Exercise 5. The least ommon multiple of 2, ..., n is the produt of allmaximalprime powers less or equal to n. For n = 10, for example, we get 23 � 32 � 5 � 7 = 2520.For n = 20, we get

24 � 32 � 5 � 7 � 11 � 13 � 17 � 19 = 232792560,and for n = 30

24 � 33 � 52 � 7 � 11 � 13 � 17 � 19 � 23 � 29 = 2329089562800.307

308 APPENDIX B. SOLUTIONSThe following program omputes these numbers. Interestingly, delaring lcm of type
int leads to an inorret value for n = 30 on a 32-bit system, due to overow. But using
ifm::integer, our arbitrary-preision integers also mentioned in Challenge 9, yields theorret results.1 // Prog : lcm.C (least common multiple)2 // computes the least common multiple of 10 , 20, and 3034 #include <iostream >5 #include "integer .h"67 int main ()8 {9 // the least common multiple of the number 2,...,n is the product10 // of all maximal prime powers that are less or equal to n.11 // Example: the least common multiple of 2 ,... ,10 is 2^3 * 3^2 * 5 * 71213 std ::cout << "Least common multiple of 2 up to...\n";14 // 10: 2^3 * 3^2 * 5 * 715 ifm :: integer lcm = 2*2*2 * 3*3 * 5 * 7;16 std ::cout << 10 << ": " << lcm << "\n";1718 // 20: 2^4 * 3^2 * 5 * 7 * 11 * 13 * 17 * 1919 lcm = lcm * 2 * 11 * 13 * 17 * 19;20 std ::cout << 20 << ": " << lcm << "\n";2122 // 30: 2^4 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19 * 23 * 2923 lcm = lcm * 3 * 5 *23 * 29;24 std ::cout << 30 << ": " << lcm << "\n";2526 return 0;2728 }

Solution to Exercise 6.1 // Program: multhree.C2 // Compute the product of three numbers.34 #include <iostream >56 int main ()7 {8 // input of a, b and c9 std ::cout << "Compute a * b * c for a =? ";10 int a;11 std ::cin >> a;1213 std ::cout << "... and b =? ";14 int b;15 std ::cin >> b;1617 std ::cout << "... and c =? ";18 int c;19 std ::cin >> c;2021 // output a * b * c,22 std ::cout << a << " * " << b << " * " << c << " = "23 << a * b * c << ".\n";24 return 0;

30925 }

Solution to Exercise 7.1 // Program: power20.C2 // Raise a number to the power twenty .34 #include <iostream >56 int main ()7 {8 // input9 std ::cout << "Compute a^20 for a =? ";10 int a;11 std ::cin >> a;1213 // computation14 int b = a * a; // b = a^215 int c = b * b; // c = a^416 int d = c * c; // d = a^817 int e = d * d; // e = a^161819 // output e * c, i.e. a^2020 std ::cout << a << "^20 = " << e * c << ".\n";21 return 0;22 }

Solution to Exercise 8. Here is the well-formatted program, omplete with informativeoutput and sensible omments. We have also �xed the two errors (main() instead of
main[], and std::cin >> b instead of cin >> b). This solves parts a), b), d), and e).1 // SquareProduct.C2 // Reads in two numbers , outputs the square of their product34 #include <iostream >56 int main () {78 // declare variables9 int a;10 int b;11 int c;1213 // input14 std :: cout << "This program reads in two numbers a and b, ";15 std :: cout << "and outputs a^2 * b^2.\n";16 std :: cout << "Please input a= \n";17 std ::cin >> a;18 std :: cout << "Please input b= \n";19 std ::cin >> b;2021 // computation and output22 c = a * b;23 std :: cout << "The result is ";24 std :: cout << c * c << ".\n";2526 return 0;27 }

310 APPENDIX B. SOLUTIONSFor part), here is the list of omposite expressions from the original (�xed) program,along with their status.� std::cin >> a (lvalue)� std::cin >> b (lvalue)� a * b (rvalue)� c = a * b (lvalue)� c * c (rvalue)� std::cout << c * c (lvalue)
Solution to Exercise 9. Here are the two programs:1 // Program: power8_slow.C2 // Raise a number to the eighth power ,3 // using integers of arbitrary size4 // and with seven multiplications56 #include <iostream >7 #include "integer .h"89 int main ()10 {11 // input (no prompt , as we intend to read from file)12 ifm :: integer a;13 std ::cin >> a;1415 // computation16 ifm :: integer b = a * a; // b = a^217 b = b * a; // b = a^318 b = b * a; // b = a^419 b = b * a; // b = a^520 b = b * a; // b = a^621 b = b * a; // b = a^722 b = b * a; // b = a^82324 // no output , as we are interested in computation time25 return 0;26 }1 // Program: power8_fast.C2 // Raise a number to the eighth power ,3 // using integers of arbitrary size4 // and with three multiplications56 #include <iostream >7 #include "integer .h"89 int main ()10 {11 // input (no prompt , as we intend to read from file)12 ifm :: integer a;13 std ::cin >> a;

3111415 // computation16 ifm :: integer b = a * a; // b = a^217 b = b * b; // b = a^418 b = b * b; // b = a^81920 // no output , as we are interested in computation time21 return 0;22 }Running them on inputs up to 100, 000 deimal digits, you will see that power8_fast.Cis indeed faster. But while the number of multipliations performed by power8_fast.Cis only 42% of the orresponding number for power8_slow.C (3 vs. 7), this does notdiretly translate to the runtimes. Instead, you will observe that power8_fast.C needsaround 75% of the time required by power8_slow.C (and this remains stable as the in-puts get larger). Thus the speedup is muh less than you might have expeted from justounting multipliations. Why is this so?In order to really answer this, you would have to know how the type ifm::integeris implemented; but for our disussion, it is enough to know that multipliation of two
ifm::integers works aording to the shool method. Do you remember how this isdone? When you multiply two numbers on a piee of paper, you multiply the �rstnumber with eah individual digit of the seond number and write down all the results(properly aligned). Then you just add them up (see Page 11 for an example of the shoolmethod).If the two numbers have m and n digits, respetively, you have n intermediate results,with m or m + 1 digits eah, meaning that in total, you will write down roughly mndigits. This is also what the omputer does, and the time to do it will be roughlyproportional to mn. Let us heat a little and assume that the time is really mn (itould in reality be around 10mn, or any other fator times mn, but the speedup of
power8_fast.C ompared to power8_slow.C does not depend on this).With this knowledge at hand, we an already understand the 75% from above. Let'slook at power8_slow.C �rst, and let us assume that the input number a has m digits.Then the �rst multipliation (a * a) needs time m2 and results in the number b with(roughly) 2m digits. The next multipliation b * a features numbers with 2m and mdigits and therefore takes time 2m2. The result has (roughly) 3m digits. Then wemultiply numbers with 3m and m digits, in time 3m2, and the result has (roughly) 4mdigits. Continuing in this way, we see that the time to perform all multipliations is(roughly) (1 + 2 + � � �+ 7)m2 = 28m2.Now omes power8_fast.C. The �rst multipliation again takes time m2, but sinethe seond one features two numbers with (roughly) 2m digits, the time for the seondmultipliation is 4m2 and results in a number with (roughly) 4m digits. In the thirdmultipliation, we therefore multiply two 4m-digit numbers, in time 16m2. In total, thistakes time (1+4+16)m2 = 21m2. And sine 21 is 75% of 28, this alulation is a prettygood explanation of the experimental observations.
Solution to Exercise 10. For the lower bound in a), we argue by indution that ai � a2i

312 APPENDIX B. SOLUTIONSfor all i (we an't do more than double the number in eah step). In order to get at = n,we therefore must have
a2t � at = an,or 2t � n. It follows that
t � lgn � blgn = λ(n).For the upper bound, we have to ome up with a omputation for an that needs atmost λ(n)+ν(n)− 1 steps. This is simple (and alled the binary method). By doubling

a λ(n) times, we an ompute in λ(n) steps all powers of the form a2i that are less orequal to an. For example, in λ(20) = 4 steps, we an get the values a, a2, a4, a8, a16.Sine n is the sum of exatly ν(n) of these 2i, an is the produt of exatly ν(n) of these
a2i (this is a simple onsequene of the formula an+m = an � am). It follows that we anobtain an by simply multiplying these ν(n) values together, and sine we already havethem, this an be done in ν(n) − 1 further multipliations.For b), we give an example where the upper bound is not tight. Consider n = 15(1111 in binary). We have λ(15) = 3 and ν(15) = 4, so the binary method would need 6multipliations. But we an do it with �ve multipliations, as follows:
a1 = a0 * a0 // a^2

a2 = a1 * a0 // a^3

a3 = a2 * a2 // a^6

a4 = a3 * a3 // a^12

a5 = a4 * a2 // a^15In general, no exat formula for ℓ(n) is known.

