338 APPENDIX B. SOLUTIONS

Solution to Exercise 50.

a)6 /4 *x2.0f -3—
1 *x2.0f -3—

2.0f - 3 —

-1.0f

b) 2 + 15.0e7f - 3 / 2.0 * 1.0e8 —1310°>27
15.0e7f - 3 / 2.0 * 1.0e8 —

15.0e7f - 1.5 * 1.0e8 —

15.0e7f - 1.5e8 —

0.0

c) 392593 * 2735.0f - 8192 * 131072 + 1.0 —
binary: 10...00011111f - 8192 * 131072 + 1.0 —

23 times get lost
1073741824.0f - 8192 * 131072 + 1.0 —

1073741824.0f - 1073741824 + 1.0 —
0.0f + 1.0 —
1.0

d) 16 * (0.2f + 262144 - 262144.0) —
16 * (b1nary10 .0.00110 0T10f - 262144.0) —

18 times get lost

16 * binary:0.0011 —
3.0

@l

Solution to Exercise 51.

a) This is easy and doesn’t take any calculations: 0.25 = 1/4 = 1-272. As a binary
number, this is 0.01.

339

b) We employ the rules from Section 2.5.5.

152 — bo=1
2(152—-1) = 2-052 = 1.04 - b;=1
2(1.04—1) = 2-0.04 = 008 — b,=0
2(0.08—0) = 2-0.08 = 0.16 — b_3=0
2(016—-0) = 2-0.16 = 032 — b4=0
2(032—-0) = 2-032 = 064 - bs5=0
2064—0) = 2-0.64 = 128 — b ¢=1
2(1.28—1) = 2-0.28 = 056 — b_;=0
2(056—0) = 2-056 = 1.12 —» b_g=1
2(112—-1) = 2:0.12 = 024 - bo=0
2(024—-0) = 2-0.24 = 048 — b_10=0
2(048—0) = 2-048 = 096 — b_;; =0
2(096—0) = 2-096 = 192 — b_j;2=1
2(192—1) = 2-092 = 1.84 — b_;3=1
2(1.84—1) = 2-084 = 168 — b_u=1
2(1.68—1) = 2:068 = 136 — b_j5=1
2(136—-1) = 2036 = 072 — b_14=0
2(072—-0) = 2-072 = 144 — b_;;=1
2(144—1) = 2.044 = 088 — b_13=0
2(0.88—0) = 2-088 = 176 — b_jo=1
2176 —=1) = 2-076 = 152 — by, =1

Phew, finally the sequence becomes periodic, and we get the binary expansion
1.10000101000111101011.

c) We employ the rules from Section 2.5.5.

13 = bo=1
203—-1) = 2-03 = 06 — b=
206—0) = 2-06 = 12 — b,=1
202—1) = 2-02 = 04 — b.s=
2004—0) = 2-04 = 08 — by=
2008-0) = 2-08 = 1.6 — b.s=
206—1) = 2-06 = 12 — b=

We see that the expansion is periodic and yields the binary number 1.01001.

d) We write 11.1 = 10 + 1.1 and add the binary expansion 1010.0 of 10 to the bi-
nary expansion 1.00011 of 1.1 derived in Section 2.5.5. The resulting expansion is
1011.00011.

340

APPENDIX B. SOLUTIONS

Solution to Exercise 52.

a)

b)

d)

0.25 has normalized binary floating point representation 1.0 - 272 and is therefore
smaller than any number in F*(2,5,—1,2). The nearest number is therefore the
smallest number in this system, namely 0.5 with normalized binary representation
1.0-27". In F(2,5,—1,2), we can represent 0.25 exactly as 0.1-27".

1.52 has normalized binary floating point representation 1.10000101000111101011-
2°. To get the nearest number in F*(2,5,—1,2), we have to round to 5 significant
digits. The result is 1.1000 - 2° = 1.5, obtained by rounding down, since 1.1001 -
2° = 1.5625, obtained by rounding up, is farther away. The nearest number in
F(2,5,—1,2) is the same, since this system has only extra numbers smaller than
any normalized number. Such numbers cannot be nearest to numbers larger than
some normalized number.

1.3 has normalized binary floating point representation 1.07001. To get the nearest
number in F*(2,5,—1,2), we have to round to 5 significant digits. The result is
1.0101 - 2° = 1.3125, obtained from rounding up, since 1.0100 - 2° = 1.25, obtained
from rounding down, is farther away. The nearest number in F(2,5,—1,2) is the
same.

11.1 is larger than any number in the system F*(2,5,—1,2). Recall that the largest
number is 1.1111-22=4+4+2+1+1/2+1/4 = 7.75, and this is the nearest number
to 11.1, also in F(2,5,—1,2).

Solution to Exercise 53. The smallest normalized number is always 2°mi~. In case of
single precision, this is 272, for double precision, it is 271922, Recall that the largest
normalized number is

()=

For single precision, this yields

1 24
(1 o <§>) 2128 _ 2128 _2104.

For double precision, we get

1\ 53
(] o (§> > 21024 _ 1024 _ 5971

Solution to Exercise 54. For each exponent, F*(f3,D, €min, €max) has p — 1 possibili-
ties for the first digit, and 3 possibilities for the remaining p — 1 digits. The size of
F*(B,P, €min, €max) 18 therefore

2(emax — €min T 1)(‘3 - 1)Bp71>

341

if we take the two possible signs into account.
F(B, P, €min, €max) has extra nonnegative numbers of the form

0.d;...d, 126

and there are 3P~ of them. Adding the non-positive ones and subtracting 1 for counting
0 twice, we get

2pP T —1
extra numbers.

Solution to Exercise 55. The binary expansion of 0.1 is 0.00011, obtained from the
representation of 1.1 by subtracting 1. This value has to be rounded to the nearest value
with 24 significant digits. Let us write out the expansion so that we get the first 26
significant digits of 0.00017:

0.00011001100110011001100110011.
It follows that we have to round up to 1 at digit 24 to get the nearest float value
1.10011001100110011001107 - 2%,

To see how this value differs from 0.1, let’s convert it back into decimal representation.
Interestingly, this is always possible without any error, since 0.1 (binary) is 0.5 (decimal),
0.01 (binary) is 0.25 (decimal), and so on. The decimal value that we obtain is

0.100000001490116119384765625.

Solution to Exercise 56. We compare floating point numbers for equality in i '= 1.0,
although one of them (namely the value of i) is the result of inexact computations, as-
suming a base-2 floating point number system. The inexactness comes from the rounding
of 0.1 to a floating point number, and from the subsequent addition of numbers. In prac-
tice, this leads to an infinite loop, since i '= 1.0 will always be satisfied.

Solution to Exercise 57. 'We are adding very large to very small numbers during later
steps of this loop. At some point, the value of i might have become so large that the
increment by 1 has no effect anymore. We therefore get an infinite loop also in this case.

Solution to Exercise 58.

// Prog: dec2float.C
// compute the float representation of a number
// in the open 4nterval (0,2)

#include <iostream>

OOl W

342 APPENDIX B. SOLUTIONS

7 int main ()

8 {

9 // input

10 std::cout << "Decimal number x (0 < x < 2) =7 ";
11 float x;

12 std::cin >> x;

13

14 // T = w ¥ 27e

15 float w = x;

16 int e = 0;

17

18 // as long as w < 1, decrement e and double w
19 for (; w < 1.0f; w *= 2.0f) --e;

20

21 // Now we have 1 <= w < 2, apply rule from lecture
22 std::cout << "Significand: ";

23 for (; w !'= 0.0; w = 2.0f * (w - int(w)))

24 std::cout << int(w);

25

26 std::cout << "\nExponent: " << e << "\n";

27

28 return O;

29 1}

Solution to Exercise 59.

1 // Prog: double_integer.C

2 // tests whether a given double value is integer

3 //

4 #include<iostream>

5

6 int main ()

7 {

8 // input

9 std::cout << "Decimal number =7 ";

10 double d;

11 std::cin >> d;

12 double abs_d =d > 0 ? d: -d; // /d/

13

14 // |d] can be written in the form m * 2"e, where m is a
15 // natural number whose last binary digit <s 1. Then [d] 1is
16 // integer if and only 4if e>=0. Having m, we can therefore
17 // conclude that d is integer <f and only <f [d] >=m
18

19 // step 1: mnormalize such that number ¢s in [1,2)

20 double e = abs_d;

21 while (e >=2) e/=2; // ensure e < 2;

22 while (e < 1) ex=2; // ensure e >=1;

23

24 // step 2: compute binary expansion m like in the lecture notes
25 double m = 0;

26 while (e > 0) {

27 // move last binary digit of e into m

28 m x= 2;

29 if (e >= 1) {

30 m += 1;

31 e = 2*x(e-1);

32 } else

33 e = 2%e;

34 }

35

36 // step 3: compare with abs_d

37 std::cout << d;

343

38 if (abs_d >= m)

39 std::cout << " is integer .\n";

40 else

41 std::cout << " is not integer.\n";
42

43 return O;

44 3}

Solution to Exercise 60. Here is the program based on the first formula.

1 // Prog: pil.C

2 // approxzimate pi according to first n terms of the formula
3 // pio= 4 - 4/3 + 4/5 - 4/7 ...

4

5 #include <iostream>

6

7 int main ()

8 {

9 // input

10 std::cout << "Number of iterations =7 ";
11 unsigned int n;

12 std::cin >> n;

13

14 // computation (forward sum)

15 double pif = 0.0;

16 for (int i = 1; i < 2%n; i += 2)

17 if (i % 4 == 1)

18 pif += 4.0 / i;

19 else

20 pif -= 4.0 / i;

21

22 // computation (backward sum)

23 double pib = 0.0;

24 for (int i = 2*%*n-1; i > 0; i -= 2)

25 if (i % 4 == 1)

26 pib += 4.0 / i;

27 else

28 pib -= 4.0 / i;

29

30 // output

31 std::cout << "Pi is approximately "

32 << pif << " (forward sum), or "
33 << pib << " (backward sum); the difference is "
34 << pif - pib << "\n";

35

36 return 0;

37 %

When you run it for n = 10,000, for example, it gives on our platform the approxi-
mation 3.14139 (still off in the fourth digit after the decimal point). For n = 100, 000,
we get 3.14157 (still off in the fifth digit after the decimal point). For n = 1,000, 000,
finally, the result is correct to five digits after the decimal point: 3.14159.

Here is the approximation based on the second formula.

// Prog: pi2.C
// approximate pi according to the first n terms of the formula
// pt = 2 + 2%1 / 3 + 2%1*2 / 3*5 + 2x1%243 / 3*%5%7

O W N

#include <iostream>

344 APPENDIX B. SOLUTIONS

6
7 int main ()
8

{
9 // input
10 std::cout << "Number of iterations =7 ";
11 unsigned int n;
12 std::cin >> n;
13
14 // auziliary wvariables
15 // initialized for first term of forward sum (i=0)
16 double numer = 2.0; // numerator t-th term
17 double denom = 1.0; // denominator i-th term
18
19 // forward sum
20 // pif: wvalue after term ¢ (=0 initially, then i=1,2,...,n-1)
21 double pif = 2.0;
22 for (int i = 1; i < n; ++i)
23 pif += (numer *= i) / (denom *= (2%i + 1)); // update to term 1%
24 // nmow numer and denom are the ones for i=n-1
25
26 // backward sum
27 // pib: wvalue after term ¢ (i=n-1 <nitially, then <¢=n-2,...,1,0)
28 double pib = numer / denom;
29 for (int i = n-1; i >=1; --i) {
30 pib += (numer /= i) / (denom /= (2*i + 1)); // update to term i1-1
31 }
32
33 // output
34 std::cout << "Pi is approximately "
35 << pif << " (forward sum), or "
36 << pib << " (backward sum); the difference is "
37 << pif - pib << "\n";
38
39 return 0;
40 }

This already gives the result 3.14159 for n = 17 on our platform, so this version is
obviously preferable.

Solution to Exercise 61.

1 // Program: babylonian.C

2 // Approzimation of the square root of a positive real number
3

4 #include <iostream>

5

6 int main (){

7

8 // Read input

9 double s; // input number

10 double eps = 0.001; // the epsilon, %i.e. maxr square error
11

12 std::cout << "Which number do you want to take the square root of?";
13 std::cout << "\n";

14 std::cin >> s;

15

16 // Compute square root

17 double x = s / 2.0; // initialize solution

18 unsigned int n = 0; // counter for number of iterations
19

20 while (x * x - s >= eps || s - x * x >= eps) {

21 ++n;

22
23
24
25
26
27
28
29

x =(x + s / x)/ 2.0

345

}
std::cout << "The square root of " << s << " is: " << x << std::endl;
std::cout << "The number of iterations done: " << n << std::endl;

return O;

Solution to Exercise 62.

00~ O Ol wN -

WO D D D D D D D 00 00 0 00 00 0 0 0 L0 LN NN NN DD DD N NI DD S R R e
PBIOT PR BV HNOOOTIONPERONLOORITIOCT RPNV OO~ UT W R O ©

49
50
51
52

// Program: fpsys.C

// Provide a graphical representation of floating point numbers

#include <iostream>
#include <IFM/window>

int main()
{
// Input parameters of floating point system
std::cout << "Draw F#*(2,p,e_min,e_max).\np =7 ";
unsigned int p;
std::cin >> p;
std::cout << "e_min =7 ";
int emin;
std::cin >> emin;
std::cout << "e_max =7 ";
int emax;
std::cin >> emax;

// We compute significands using integral arithmetic, that
// scaled by 2 (p-1).

// compute the smallest normalized significand 2~ (p-1)

unsigned int smin = 1;

for (unsigned int i = 1; i < p; ++1i) smin *= 2;

// compute the largest normalized significand (27p)-1
unsigned int smax = 2 * smin - 1;

// compute 2 emin
double pemin = 1;

for (int i = 0; i < emin; ++i) pemin *= 2;
for (int i = 0; i > emin; --i) pemin /= 2;
// compute 2 emaz
double pemax = 1;
for (int i = 0; i < emax; ++i) pemax *= 2;
for (int i = 0; i > emax; --i) pemax /= 2;

// For each positive number = of the system draw a circle
// with radius = around the window center

// parameters to scale output

int ¢cx = (ifm::wio.xmax() - ifm::wio.xmin()) / 2;
int cy = (ifm::wio.ymax() - ifm::wio.ymin()) / 2;
double scale = cx / (pemax * smax);

// zero

ifm::wio << ifm::Point(cx, cy);
// loop over all normalized significands

for (unsigned int i = smin; i <= smax; ++1i)
// loop over all ezpomnents
for (double m = pemin; m <= pemax; m *= 2)

ifm::wio << ifm::Circle(cx, cy, int(m * i * scale));

s,

346

53
54
55

}

APPENDIX B. SOLUTIONS

ifm::wio.wait_for_mouse_click();
return O;

Solution to Exercise 63.

© 00 ~yO O wN

46

Prog: mandelbrot.C
draws (a part of) the Mandelbrot set and allows the user to
zoom in by clicking with the mouse on the region to be enlarged

The Mandelbrot set <¢s defined as the set of all complex numbers
¢ such that the complez iteration formula z := z°2 + ¢ (starting
with 2=0) always yields values 2z of absolute wvalue at most two.
In the computations below, we perform a large but fized number
of steps of this iteration for a given c; if all computed values
are at most two in absolute wvalue, we consider c as part of the
Mandelbrot set (and depict its corresponding pizel in black),
otherwise we draw a white pizel.

#include <IFM/window>

int main ()

{

// the currently considered subset of the complexz plane, initially
// [-2, 1] = [-1, 1] (covers the so-called main cardioid of the

// Mandelbrot set)

double r_min = -2; double r_max = 1;

double i_min = -1; double i_max= 1;

// window scaling factor; change this for larger/smaller display
// window
double window_scale = 500;

// zoom factor from one iteration to the next
double zoom_factor = 10;

// the display window dimensions in pizels (window should be
// congruent to the current complex plane subset)
int x_size = int (window_scale * (r_max - r_min));
int y_size = int (window_scale * (i_max - i_min));

// open the display window
ifm::Wstream w (x_size, y_size,
"The Mandelbrot set (click to zoom in)");

// mazimum number of iterations (the higher, the more accurate;
// the lower, the faster)
unsigned int max_iter = 500;

// matin drawing loop; one iteration for every zoom scale
for (;;) {
// go through all pizels
for (int x=0; x<x_size; ++x)
for (int y=0; y<y_size; ++y) {

// compute corresponding point in complexz plane
double r = r_min + x / window_scale;
double i = i_min + y / window_scale;

// do the Mandelbrot iteration for that point
// interpreted as complez number c¢ = (r,i)
double r_z = 0; // z (real part)

double i_z = 0; // z (imaginary part)

347

58 unsigned int iter = 0;

59 while (iter < max_iter && r_z * r_z + i_z * i_z <= 4) {
60 // lz| <= 2; replace z by z2°2 + ¢

61 double h = r_z *x r_z - i_z * i_z + r; // new z_r
62 iz =2 % r_z *x i_z + i; // mew z_1
63 r_z = h;

64 ++iter;

65 }

66 // coloring: maz_iter -> black, other -> white
67 if (iter == max_iter)

68 w.set_color (w.number_of_colors()-2); // black
69 else

70 w.set_color (w.number_of_colors()-1); // white
71 w << ifm::Point (x, y);

72 }

73

74 // zoom %n; mew center is mouse click position

75 int x_c; int y_c;

76 w.get_mouse_click (x_c, y_c);

77 double r_c = r_min + x_c / window_scale;

78 double i_c = i_min + y_c / window_scale;

79 double r_span = r_max - r_min;

80 double i_span = i_max - i_min;

81 r_min = r_c - 0.5 *x r_span / zoom_factor;

82 r_max = r_c + 0.5 *x r_span / zoom_factor;

83 i_min = i_c - 0.5 * i_span / zoom_factor;

84 i_max = i_c + 0.5 * i_span / zoom_factor;

85 window_scale *= zoom_factor;

86 w.clear ();

87 }

88

89 return 0;

20

Solution to Exercise 64. CGAL is the Computational Geometry Algorithms Library,
an open source C++ library of data structures and algorithms for solving geometric
problems. The CGAL homepage is www.cgal.org.

CGAL: :orientation is a function that determines for three given points p, q,r € R?
whether r lies to the left, on, or to the right of the oriented line through p and q. The
resulting values (CGAL::LEFTTURN, CGAL::COLLINEAR, or CGAL::RIGHTTURN) define the
orientation of the point triple {p, q,r}. CGAL::LEFTTURN means that p, q,r appear in
counterclockwise order around the triangle spanned by p, q,r, while CGAL: :RIGHTTURN
signals clockwise order. CGAL: :COLLINEAR means that all three points are on a common
line, so the triangle is “flat”.

The writer of the email is surprised since the orientation of a point triple should not
change when all point coordinates are multiplied with a fixed scalar (in this case 100).
But in reality, it does change, at least according to the function CGAL: :orientation.

The reason is that the integer coordinates of the points (14,22),(15,21),(19,17)
can be converted to float or double (we don’t exactly know which of the two the
writer of the email is using) without any error. In contrast, some of the coordinates of
(0.14,0.22),(0.15,0.21),(0.19,0.17) don’t have finite binary representations, so in con-
verting them to float or double, errors are inevitable. Since the points are math-
ematically collinear (on the same line), it is clear that the tiniest error is enough to

348 APPENDIX B. SOLUTIONS

destroy this property. That’s why CGAL: :orientation delivers a result different from
CGAL: : COLLINEAR.
Here is what you could answer the writer of the email.

Hi,

assuming that you use type float or double to represent the point
coordinates, the inconsistency that you reported is due to the
conversion of point coordinates from the decimal input format to the
internally used binary format. Decimal integers like 14, 22 etc. can be
represented exactly in binary format, and CGAL::orientation returns

the correct answer CGAL::COLLINEAR for the three points with integer
coordinates. But decimal fractions like 0.14, 0.22 etc. do not
necessarily have finite representations in binary format. This is like
trying to write the number 1/3 as a decimal fraction. The best you can
do is 0.33333... but wherever you stop, you make a small error.

Now, CGAL::orientation sees the points (0.14, 0.22), (0.15, 0.21) and
(0.19,0.17) only after the conversion to binary format, and this
conversion introduces some (tiny) errors. But since the points are
mathematically collinear, even the tiniest errors may have the effect
of destroying collinearity. This is exactly what you observed.

The problem is inevitable in working with floating-point numbers, since
you cannot circumvent the decimal-to-binary conversion. All you can do
is to only use point coordinates (integers, for example) for which the
conversion is exact.

