B.8. RECURSION 381
B.8 Recursion

Solution to Exercise [110

a) // PRE: n >= 0
// POST: return wvalue is false if n is even and true if n %is odd

b) // PRE: n >= 0
// POST: 2°n stars have been written to standard output

c) Let’s analyze this function: if n = b e > 0, then it is not hard to see that the
function outputs e = log, n. An obvious precondition is b # 0. If n is not a power
of b, things may go wrong, since the first argument may become 0 at some point,
and then we enter an infinite recursion. This happens for example if T < n < b.
Also, if b =1, we have an infinite recursion if n > 1. Let us therefore assume that
b > 2.

Since n can always be written in the form
k .
n=) Bib, 0<Bi<bVi
i=0

we can easily compute what happens, assuming that k > 1 and By > O (this just
means n > b). The first integer division by b “cuts off” 3, and yields

k
TL/ — Z Bibi—].
i=1

The next division cuts off 3; and yields

k
n/l — § Bibliz-
i=2

The pattern is clear: we eventually get the number 3. If B =1, the function call
terminates, otherwise, the next division yields O as the first call parameter, and we
have an infinite recursion. This yields the following pre- and postconditions.

// PRE: b >= 2, there exzists e with b"e <= n < 2%b e
// POST: return wvalue ¢ts e = log_b(n), rounded douwn

Solution to Exercise 1111

a) This does not always terminate. Consider the call £(1). This recursively calls
f(£(0)) which is £(1) again, and so on.

382 APPENDIX B. SOLUTIONS

b) Let us move the call parameter A(m, n-1) out of the recursive call to make things

more clear. This does not change anything since that parameter has to be evaluated
before the recursive function call anyway.

unsigned int A (unsigned int m, unsigned int n) {
// POST: return value is the Ackermann function value A(m,n)

if (m == 0) return n+1;
if (n == 0) return A(m-1,1);
unsigned int param = A(m, n-1);

return A(m-1, param);

Now we see that the pair (m,n) gets lexicographically smaller in every recursive
call. Under lexicographic order, (m/,n’) < (m,n) if m’ < m, or if m’ = m and
n’ < n. Therefore, starting from (m,n), the first parameter must go down by one
after a finite number of recursive calls, meaning that it must also reach 0 after a
finite number of recursive calls. At that point, the recursion bottoms out.

c) This one is somewhat tricky, since when you run it, it always seems to terminate.
But this is only due to overflow in the arithmetic. Mathematically, this function
does not terminate: if m > n, then no parameter decreases in the recursive call,
and we again have

n=Mm+m)div2<m<2m=m'.

Solution to Exercise Here is the program for a) and b).

00~ O O W

// Prog: mccarthy.cpp
// defines and calls McCarthy’s 91 Function
#include <iostream>

// POST: return wvalue ts M(n), where M is McCarthy’s 91 Function
unsigned int mccarthy(const unsigned int n) {
if (n > 100)

return n - 10;
else
return mccarthy(mccarthy(n + 11));
}
int main ()
{
// input

std::cout << "Compute McCarthy’s 91 Function M(n) for n =7 ";
unsigned int n;
std::cin >> n;

// computation and output
std::cout << "M(" << n << ") = " << mccarthy(n) << "\n";

return O;

B.8. RECURSION 383

For c), you play with the program a little and start to guess that

n—10, ifn> 100
M(“)—{ 91, ifn <100

and this obviously explains the name McCarthy’s 91 Function. Here is an inductive
proof of this fact. Actually, we only need to handle the finitely many casesn =0,...,100
since for n > 100, the result n — 10 follows from the definition. So we do backwards
induction. Assume that we need to establish the validity of the formula for a given
n < 100. We assume that the formula is already correct for all larger values of n. The
definition gives us

M(n) = M(M(n + 11)).

If n+ 11 > 100, we thus get M(n) = M(n+ 11 —-10) = M(n+1). If n = 100, this is
M(101) =921, and if n < 100, then n+1 < 100, so by induction we also get M(n+1) = 91.
If n+11 <100, we inductively get M(n+ 11) = 91, hence

M(n) M(91) := M(M(102))
— M(92) := M(M(103))
— M(93) =
— M(99) := M(M(110))
— M(100) := M(M(111))
M(101) = 91

Solution to Exercise Let us start with part b). The first variant has the problem
that if we first compute n! and only then divide by k! and (n — k)!, we can’t compute
many binomial coefficients, since n! does not fit into an unsigned int variable already
for small n (if we have 32-bit arithmetic, then 12! is the highest we can do).

The second variant is bad since it is very slow. We have the same phenomenon as with
the Fibonacci numbers: the computation time is at least proportional to the computed
number itself, and binomial coefficients are quite large.

The third solution seems to be best in practice, but even here, we have to be somewhat
careful in the implementation. We should first multiply (Ej) with n, and only then
divide by k. First dividing by k is tempting in order to keep the numbers small but
that doesn’t work, since (Ej) might not be divisible by k. This third method produces
intermediate numbers that are larger than absolutely necessary, but only by at most n.

unsigned int binomial (unsigned int n, unsigned int k)
{

if (n < k) return O;

if (k == 0) returmn 1;

return n * binomial(n-1, k-1) / k;

}

384 APPENDIX B. SOLUTIONS

Solution to Exercise [114l

// Prog: partition.cpp

// compute in how many ways a fized amount of money can be
// partioned using the avatilable denominations (banknotes
// and coins). This program is for the currency CHF, where
the denominations are (in centimes)

00N O UR WN -
R
N

/7 100000, 20000, 10000, 5000, 2000, 1000 (banknotes)
// 500, 200, 100, 50, 20, 10, 5 (coins)
/7
9 // Ezample: CHF 0,20 can be partitioned in four ways
10 // (20), (10, 10), (10, 5, 5), and (5, 5, 5, 5)
11 #include<iostream>
12
13 // PRE: [first, last) is a wvalid nonempty range that describes
14 // a sequence of demominations d_1 > d_2 > ... > d_n > 0
15 // POST: return wvalue is the number of ways to partition amount
16 // using denominations from d_1, ..., d_n
17 unsigned int partitions (const unsigned int amount,
18 const unsigned int* first,
19 const unsigned int* last)
20 {
21 if (amount == 0) return 1;
22 unsigned int ways = 0;
23 // ways = ways_1 + ... + ways_n, where ways_t¢ %s the number
24 // of ways to partition amount using d_i as the largest
25 // denomination
26 for (const unsigned int*x d = first; d != last; ++d)
27 // ways_i = number of partitions of the form (d_i, X), with
28 // (X) being a partition of amount-d_i using d_i,...,d_n
29 if (amount >= *d) ways += partitions (amount-*d, d, last);
30 return ways;
31}
32
33 int main()
34 {
35 // the 13 denominations of CHF
36 unsigned int chf[] =
37 {100000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5};
38
39 // input
40 std::cout << "In how many ways can I own x CHF-centimes for x =7 ";
41 unsigned int x;
42 std::cin >> x;
43
44 // comutation and output
45 std::cout << partitioms (x, chf, chf+13) << "\n";
46
47 return 0;
48 }

The number of ways in which you can own CHF 1 is 50, and CHF 10 can be owned
in 104561 ways. The above program becomes very slow for larger values, since during
the recursive calls, many values are computed over and over again. For CHF 50, we
already have to wait “forever”. We can speed things up by using dynamic programming.
We don’t even have to change the structure of our function, but we provide it with an
additional twodimensional array to store the values that have already been computed.
Whenever we need a value, we first check whether it has already been computed, and
only if this is not the case, we recursively call the function.

B.8. RECURSION

00O Ol WK

W WWWWNNNDNNDNMDNNNDNDDNDEFEF B = =
BWNFOOONOUIE WD, O O©OWNO O WwNEFO©

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
b4
55

57
58
59
60
61
62

64

385

// Prog: partition2.cpp

// compute in how many ways a fized amount of money can be
// partioned using the available denominations (banknotes
// and coins). This program is for the currency CHF, where
// the denominations are (in centimes)

// 100000, 20000, 10000, 5000, 2000, 1000 (banknotes)
/7 500, 200, 100, 50, 20, 10, & (coins)

/7

// Ezample: CHF 0,20 can be partitioned in four ways

/7 (20), (10, 10), (10, 5, 5), and (5, 5, 5, 5)

#include<iostream>
#include<algorithm>

// PRE: [first, last) is a wvalid nonempty range that describes

// a sequence of demominations d_1 > d_2 > ... > d_n > 0

// memory is a pointer to a twodimensional array with

// number of rows >= amount, and number of columns >=

// last-first, with the following property:

// for 0 < a < amount, and for d in [first, last),

// memory [a-1][last-d-1] either has value -1,

/7 or it is equal to dyn_prog_partitions (a, d, last, memory)
// POST: return wvalue is the number of ways to partition amount

// using denominations from d_1, ..., d_n

unsigned int dyn_prog_partitions (const unsigned int amount,
const unsigned int* first,
const unsigned int* last,
int** memory)

{
if (amount == 0) return 1;
unsigned int ways = 0;
// ways = ways_1 + ... + ways_n, where ways_t¢ %s the number
// of ways to partition amount using d_i as the largest
// denomination
for (const unsigned int*x d = first; d != last; ++d)
// ways_i = number of partitions of the form (d_i, X), with
// (X) being a partition of amount-d_%i using d_<,...,d_n
if (amount >= *d) {
// is ways_t already stored in memory?
int stored_value = -1;
if (amount > *d)
stored_value = memory[amount - *d - 1][last-d-1];
if (stored_value != -1)
ways += stored_value;
else
ways += dyn_prog_partitions (amount - *d, d, last, memory);
}
// store the new wvalue
memory [amount -1] [last-first-1] = ways;
return ways;
}
// PRE: [first, last) is a valid nonempty range that describes
/7 a sequence of demominations d_1 > d_2 > ... > d_n > 0
// POST: return wvalue ts the number of ways to partition amount
// using denominations from d_1, ..., d_n

unsigned int partitions (unsigned int amount,
const unsigned int* first,
const unsigned int* last)

{
// allocate memory for dymamic programming approach
int** const memory = new int*[amount];
for (int** m = memory; m < memory + amount; ++m) {
*m = new int[last-first];

std::fill (*m, *m + (last-first), -1);

}

APPENDIX B. SOLUTIONS

}

// call the wversion with memory
const unsigned int result =
dyn_prog_partitions (amount, first, last, memory);

// delete memory

for (int** m = memory; m < memory + amount; ++m)
delete[] *m;

delete [] memory;

return result;

int main()

{

// the 13 denominations of CHF
unsigned int chf[] =
{100000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5};

// input

std::cout << "In how many ways can I own x CHF-centimes for x =7 ";
unsigned int x;

std::cin >> x;

// comutation and output
std::cout << partitions (x, chf, chf+13) << "\n";

return O;

With this, we can very quickly compute the number of ways for CHF 50; it is

513269191. Beyond that, the type unsigned int is at some point no longer sufficient to
represent the number of ways, since these are simply too many. But we may switch to
ifm: :integer and then even get the answer for CHF 100 quickly (it is 47580509178).

00~ O Ol W

DN NDNDNDNDNDREEFERF = =
OO WNRFRPROOONOOTE W~ O

/7
#i
#i
#i

Prog: partition3.cpp
compute in how many ways a fized amount of money can be
partioned using the available denominations (banknotes
and coins). This program is for the currency CHF, where
the denominations are (in centimes)
100000, 20000, 10000, 5000, 2000, 1000 (banknotes)
500, 200, 100, 50, 20, 10, 5 (coins)

Exzample: CHF 0,20 can be partitioned in four ways
(20), (10, 10), (10, 5, 5), and (5, 5, 5, 5)
nclude<iostream>
nclude<algorithm>
nclude<IFM/integer.h>

PRE: [first, last) is a valid nonempty range that describes
a sequence of demominations d_1 > d_2 > ... > d_n > 0
memory 15 a pointer to a twodimensional array with
number of rows >= amount, and number of columns >=
last-first, with the following property:
for 0 < a < amount, and for d in [first, last),
memory [a-1][last-d-1] either has value -1,
or 4t is equal to dym_prog_partitions (a, d, last, memory)
POST: return wvalue is the number of ways to partition amount
ustng demominations from d_1, ..., d_n

ifm::integer dyn_prog_partitions (const unsigned int amount,

const unsigned int* first,

B.8.

27
28

30
31
32
33
34
35
36
37
38

RECURSION

const unsigned int* last,
ifm::integer** memory)

{
if (amount == 0) return 1;
ifm::integer ways = O0;
// ways = ways_1 + ... + ways_n, where ways_%i is the number

// of ways to partition amount using d_i as the largest
// demomination
for (const unsigned int*x d = first; d != last; ++d)
// ways_i = number of partitions of the form (d_i, X), with
// (X) being a partition of amount-d_%i using d_i,...,d_n
if (amount >= *d) {
// is ways_i already stored in memory?

ifm::integer stored_value = -1;
if (amount > *d)
stored_value = memory[amount - *d - 1][last-d-1];
if (stored_value != -1)
ways += stored_value;
else
ways += dyn_prog_partitions (amount - *d, d, last, memory);
}
// store the new value
memory [amount -1] [last-first-1] = ways;
return ways;
}
// PRE: [first, last) is a wvalid nonempty range that describes
// a sequence of demominations d_1 > d_2 > ... > d_n > 0
// POST: return wvalue is the number of ways to partition amount
// using denominations from d_1, ..., d_n

ifm::integer partitions (unsigned int amount,
const unsigned intx first,
const unsigned int* last)

{
// allocate memory for dynamic programming approach
ifm::integer** const memory = new ifm::integer*[amount];
for (ifm::integer** m = memory; m < memory + amount; ++m) {
*m = new ifm::integer[last-first];
std::fill (*m, *m + (last-first), -1);
}

// call the wversion with memory
const ifm::integer result =
dyn_prog_partitions (amount, first, last, memory);

// delete memory

for (ifm::integer** m = memory; m < memory + amount; ++m)
delete[] *m;

delete [] memory;

return result;

int main()

{
// the 13 denominations of CHF
unsigned int chf[] =

{100000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20,

// input

std::cout << "In how many ways can I own x CHF-centimes for x =7
unsigned int x;

std::cin >> x;

// comutation and output

387

10, 51};

".
H

388 APPENDIX B. SOLUTIONS

92 std::cout << partitioms (x, chf, chf+13) << "\n";
93

94 return O0;

95

Solution to Exercise

1 #include<iostream>

2

3 // PRE: d >= k&

4 // POST: all codes with digits between 1 and 9 are output that
5 // result from the partial code p by an extension with d
6 // digits, k of which are 1; the return value %s the
T/ number of such codes

8 wunsigned int crack (const unsigned int p, const unsigned int d,
9 const unsigned int k)

10 {

11 if (d == 0) {

12 // k == 0 as well by PRE, and we have a full code

13 std::cout << p << " "

14 return 1;

15 }

16

17 // there are two possibilities to continue:

18 // next digit is 1, or not

19 unsigned int n = 0; // total number of codes

20

21 // poss 1: only if we still have 1°’s left

22 if (kx > 0)

23 n += crack (10 * p + 1, d - 1, k - 1); // nezt digit is 1
24

25 // poss 2: only if not all remaining digits have to be 1’s
26 if (d > k)

27 for (unsigned int i=2; i<10; ++i)

28 n += crack (10 * p + i, d - 1, k); // next digit is 1 /= 1
29

30 return n;

31}

32

33 // PRE: d >= k

34

35 // POST: all d-digit codes with digits between 1 and 9 are

36 // output that have ezactly k digits equal to one;

37 // the return value is the number of such codes

38 unsigned int crack (const unsigned int d, const unsigned int k)
39 {

40 return crack (0, d, k);

41 3

42

43 int main() {

44 const int n = crack (2, 1);

45 std::cout << "\nThere were " << n << " possible codes.\n";
46 return O0;

47 }

Solution to Exercise [I16] The function is rewritten in a way similar to what we did with
the Fibonacci numbers. The recursive variant becomes very slow at some point, while
the iterative version is always fast.

B.8. RECURSION 389

00O Ol WK

W WNNMNDNDNMDNNNDNDNDEFE - B = =
H O OOONOU P WNFOOOONOOUIEd WNRFL OO

32
33

// Prog: rec2it2.cpp
// rewrites a recursive function in iterative form a la Fibomacct
#include<iostream>

unsigned int f (const unsigned int n)

{
if (n <= 2) return 1;
return f(n-1) + 2 *x f(n-3);
}
unsigned int f_it (const unsigned int n)
{
if (n <= 2) return 1;
unsigned int a = 1; // f(0)
unsigned int b = 1; // f(1)
unsigned int c = 1; // f(2)
for (unsigned int i = 3; i < n; ++i) {
const unsigned int a_prev = a; // f(i-3)
a = b; // f(i-2)
b = c; // fi-1)
c =b + 2 *x a_prev; /7 f(i)
}
return ¢ + 2 * a; // f(n-1) + 2 * f(n-3)
}
int main()
{
std::cout << "Comparing f and f_it...\n";
for (int n = 0; n < 100; ++n)
std::cout << f(n) << " = " << f_it(n) << "\n";
return O;
}

Solution to Exercise [I17] Here, we cannot directly use the Fibonacci trick, since it is not
sufficient to remember only a constant number of previous function values. But we can
simply remember all values by using an array. Here, both versions are reasonably fast,
since the second recursive call is to a problem of size n/2 only.

00O 0Tk W -

// Prog: rec2it2.cpp
// rewrites a recurstive function in iterative form by using an array
#include<iostream>

unsigned int f (const unsigned int n)

{
if (n == 0) return 1;
return f(n-1) + 2 * f(n/2);
}
unsigned int f_it (const unsigned int n)
{
if (n == 0) return 1;
unsigned int* const f_values = new unsigned int[n+1]; // f(0),...,f(n)

f_values [0] = 1;
for (unsigned int i=1; i<=n; ++1i)
f_values[i] = f_values[i-1] + 2 * f_values[i/2];
const unsigned int result = f_values[n];
delete[] f_values;
return result;

390 APPENDIX B. SOLUTIONS

n | 1,600,000 3,200,000 6,400,000 128,000,000

merge_sort 0.83 1.75 3.65 7.4
std: :sort 0.32 0.76 1.7 3.65
speedup 2.6 2.3 2.14 2.0

Table 10: Runtime in seconds of merge-sort vs./ std::sort

22

23 int main()

24 {

25 std::cout << "Comparing f and f_it...\n";

26 for (int n = 0; n < 100; ++n)

27 std::cout << f(n) << " = " << f_it(n) << "\n";
28

29 return O0;

30

Solution to Exercise [118] Here is the sorting program.

1 // Prog: std_sort.cpp

2 // tests std::sort on random input
3

4 #include<iostream>

5 #include<algorithm>

6

7 int main ()

8 {

9 // input of number of values to be sorted
10 unsigned int n;

11 std::cin >> n;

12

13 int* const a = new int[n];

14

15 std::cout << "Sorting " << n << " integers...\n";
16

17 // create sequence:

18 for (int i=0; i<n; ++i) ali] = i;
19 std::random_shuffle (a, a+n);

20

21 // sort into ascending order

22 std::sort (a, a+n);

23

24 // is it really sorted ?

25 for (int i=0; i<n-1;++1i)

26 if (ali] != i) std::cout << "Sorting error!\n";
27

28 delete[] a;

29

30 return O0;

31

On the platform of the authors, the following happens Table . Here, Speedup is the
factor by which std: :sort is faster than merge_sort in absolute runtime. We see that
the speedup is larger for smaller inputs but then approaches a factor of 2.

B.8. RECURSION 391

Solution to Exercise As for merge-sort, it can be shown that T(0) =0,T(1) =1 and
T(n) <1+ max (T(Lnj),T((n}) S on>2.

Given this, a bound of T(n) < 1+ [log,n| can be shown by induction.

Solution to Exercise 120, The inequality simply follows from the fact that log,x is a
monotone increasing function. To see the equation, let us first consider the case where
n is a power of two, n = 2%, say, with k > 1. Then all involved numbers are integers,
the rounding operation does nothing, and the statement follows from

logzg =log,n — 1.
Otherwise (if n is not a power of two), let us choose the unique number k such that
28 <mn < 28T,
By taking logarithms, it follows that
k <log,n < k+1,
SO
[log,n] =k+1. (B.1)
We also have
2 < T <2k,
and this yields

Taking logarithms, we get

k—1<log,[] <k

and this means that

[log, 511 = k. (B.2)

The desired equality now follows from (B.1)) and (B.2].

Solution to Exercise 121]

392 APPENDIX B. SOLUTIONS

¥
Nt

1 // Prog: lindenmayer_a.cpp

2 // Draw turtle graphics for the Lindenmayer system with
3 // production F -> FF+F+F+F+F+F-F, 4nitial word F+F+F+F
4 // and rotation angle 60 degrees

5

6 #include <iostream>

7 #include <IFM/turtle>

8

9 void f (const unsigned int i) {

10 // POST: the word w_t F is drawn

11 if (i == 0)

12 ifm::forward(); // F

13 else {

14 f(i-1); // w_{i-1}"F

15 £(i-1); // w_{i-1}"F

16 ifm::left (90); /7 o+

17 f(i-1); // w_{i-1}"F

18 ifm::left (90); /7 o+

19 f(i-1); // w_{i-1}"F

20 ifm::1left (90); // o+

21 f(i-1); // w_{i-1}"F

22 ifm::1left (90); /) +

23 f(i-1); // w_{i1-1}"F

24 ifm::1left (90); /) +

25 f(i-1); // w_{i-1}"F

26 ifm::right(90); // -

27 f(i-1); // w_{i-1}"F

28 }

29 }

30

31 int main () {

32 std::cout << "Number of iterations =7 ";
33 unsigned int n;

34 std::cin >> n;

35

36 // draw w_n = w_n(F+F+F+F)

37 f(n); ifm::1left(90); f(n); ifm::1left (90);
38 f(n); ifm::1left (90); f(n);

39 return O;

40 }

1 // Prog: lindenmayer_b.cpp

2 // Draw turtle graphics for the Lindenmayer system with
3 // productions X -> Y+X+Y, Y -> X-Y-X, initial word Y
4 // and rotation angle 60 degrees

5

6 #include <iostream>

7 #include <IFM/turtle>

8

9 void y (const unsigned int i);

10 // mnecessary: = and y call each other

11

12 void x (const unsigned int i) {

13 // POST: w_i°X is drawn

14 if (i == 0)

15 ifm:: forward ();

16 else {

17 yG-1); // w_{i-1}"Y

18 ifm::1left (60); // +

19 x(i-1); // w_{i-1}"X

20 ifm::1left (60); /) o+

RECURSION 393

21 y(i-1); // w_{i-1}"Y
22 }

23 }

24

25 void y (const unsigned int i) {

26 // POST: w_i"Y is drawn

27 if (i == 0)

28 ifm:: forward ();

29 else {

30 x(i-1); // w_{i-1}"X
31 ifm::right (60); /) -

32 yi-1); /) w_{i-1}"Y
33 ifm::right (60); // -

34 x(i-1); // w_{i-1}"X
35 }

36 }

37

38 int main () {

39 std::cout << "Number of iterations =7 ";
40 unsigned int n;

41 std::cin >> n;

42

43 // draw w_n = w_n"Y

44 y(n);

45

46 return O0;

47 3

)

1 // Prog: lindenmayer_c.cpp

2 // Draw turtle graphics for the Lindenmayer system with
3 // productions X -> X+Y++Y-X--XX-Y+, Y -> -X+YV++Y+X--X-Y,
4 // initial word Y and rotation angle 60 degrees
5

6 #include <iostream>

7 #include <IFM/turtle>

8

9 wvoid y (const unsigned int i);

10 // necessary: = and y call each other
11

12 void x (const unsigned int i) {

13 // POST: w_i1"X 4is drawn

14 if (i == 0)

15 ifm::forward ();

16 else {

17 x(i-1); /7 w_{i-1}"X

18 ifm::1left (60); /) o+

19 y(i-1); // w_{i-1}"Y

20 ifm::1left (60); /[*

21 ifm::left (60); VR

22 y(i-1); /) w_{i-1}"Y
23 ifm::right (60); /7=

24 x(i-1); // w_{i-1}"X

25 ifm::right (60); s

26 ifm::right (60); /7 -

27 x(i-1); /7w {i-1}"X

28 x(i-1); /7w {i-1}"X

29 ifm::right (60); s

30 y(i-1); // w_{i-1}"Y
31 ifm::left (60); /7 4+

32 }

33 }

w
~

394

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
b5
56

58
59
60
61
62
63

65
66
67

void y (const unsigned int i) {

// POST: w_i1"Y is drawn

if (i == 0)
ifm::forward ();

else {
ifm::right (60); V4
x(i-1); //
ifm::1left (60); //
y(i-1); //
y(i-1); //
ifm::1left (60); /7
ifm::1left (60); //
y(i-1); //
ifm::1left (60); //
x(i-1); //
ifm::right (60); //
ifm::right (60); 7/
x(i-1); //
ifm::right (60); 7/
y(i-1); //

}

}

int main () {

w_{i-1}"X
+
w_{1-1}"Y
w_{i-1}"Y
+
+
w_{i-1}"Y
+
w_{i-1}"X
w_{i-1}"X

w_{i-1}"Y

APPENDIX B. SOLUTIONS

std::cout << "Number of iterations =7 ";

unsigned int n;
std::cin >> n;

// draw w_n = w_n"Y
y(n);

return O;

Solution to Exercise [I22l To move n disks from peg s to peg t, we can first move the
topmost n — 1 disks to the helper peg, then move the bottommost disk directly to peg
t, and then move the n — 1 disks again, this time from the helper peg to peg t. In
the following program, we do this through a recursive function. As a small hack, we
determine the number of the third helper peg as 6 —s — t.

the sequence of moves mnecessary to transfer a stack of n

disks from peg s to peg t is written to standard output

n, const int s,

const int t)

// move topmost n-1 disks from s to helper peg 6-s-t

’u << t << u)u;

1 // Prog: hanot.cpp

2 // solves the Tower of Hanoti puzzle

3

4 #include<iostream>

5

6 // PRE: s and t are different and both in {1,2,3}
7 // POST:

8 //

9 wvoid hanoi (const unsigned int

10 {

11 if (n > 0) {

12

13 hanoi (n-1, s, 6-s-t);

14 // move bottommost disk from s to t

15 std::cout << "(" << s << "

16 // move the n-1 disks from the helper peg to the t
17 hanoi (n-1, 6-s-t, t);

18 }

19 1}

[\~]
o

B.8. RECURSION 395

21 int main ()

22 A

23 // input

24 std::cout << "Move a stack of n disks for n =7 ";
25 unsigned int n;

26 std::cin >> n;

27

28 // output

29 hanoi (n, 1, 3);
30 std::cout << "\n";
31

32 return O0;

33

Solution to Exercise [I23] ~ The Lucas-Lehmer test is based on the recursive sequence
$1,82,... defined as follows.

S1 = 4,
si = st ,—2, i>1.
The actual test is provided by the following

Theorem. Let n > 3 be prime. The Mersenne number 2™ — 1 is prime if
and only if s,, 1 is divisible by 2™ — 1.

Thus, we simply need to compute s, ; and check this. The good thing is (see also
Exercise that in order to compute the remainder of s,,_; modulo 2™ — 1, it suffices to
do all calculations modulo 2™ — 1. This is quite a saving, since the number s,,_; is huge
compared to 2™ — 1 itself, for larger n. Here is the program.

// Program: lucas_lehmer.cpp
// finds Mersenne primes using the Lucas-Lehmer test

#include <iostream>
#include <cmath>
#include <cassert>
#include <IFM/integer.h>

00 O Ok WK

9 // PRE: n > 2
10 // POST: return wvalue is true %f and only if n %is prime
11 bool is_prime (const unsigned int n)

12 {

13 assert (n > 2);

14

15 // Computation: test possible divisors d up to sqrt(m)
16 const unsigned int bound = (unsigned int)(std::sqrt(m));
17 unsigned int d;

18 for (d = 2; d <= bound && n % d != 0; ++d);

19

20 // Output

21 return d > bound;

22}

23

24 // PRE: p > 2 4s prime, M_p = 2°p-1

25 // POST: returns true if and only <f M_p = 2°p-1 is prime

26 // according to the Lucas-Lehmer test

27 bool lucas_lehmer (const unsigned int p, const ifm::integer M_p)

396 APPENDIX B. SOLUTIONS

28 {

29 assert (p > 2 && is_prime (p));

30

31 // compute (p-1)-st term of sequence s, modulo M_p
32 ifm::integer s = 4; // s_1

33 for (unsigned int i = 2; i < p; ++i)

34 s = (s * s - 2) % M_p;

35 return (s == 0);

36

37

38 int main()

39 {

40 // try all prime ezponents

41 unsigned int p = 3;

42 ifm::integer m_p = 8; // 27p = M_p + 1

43 std::cout << "List of Mersenne primes 2°p-1 (p > 2):\n";
44 for (;;) {

45 if (is_prime (p) && lucas_lehmer (p, m_p-1))
46 std::cout << "27" << p << "-1" << std::endl;
47 ++p; m_p *= 2;

48 }

49

50 return O;

51 }

Running it for something like eight days produced the following output (it gets really
slow only beyond exponent 1,000).

List of Mersenne primes 27p-1 (p > 2):
273-1

)

)
| |
= e

)

)

)

)
|

N NNDNDNDNDDNDN
)
W o Wk = = N0
= = O N Ww
|
e e i =

)

e
|
[y

27107-1
27127-1
2°521-1
27607-1
271279-1
272203-1
272281-1
273217-1
274253-1
274423-1
279689-1
279941-1
2711213-1

Solution to Exercise [I24, Here comes our handwaving: what is the average number E;

B.8. RECURSION 397

of packages that you need to buy, given that you are still missing i stickers? Obviously,
Eo =0, and E,, is the value that we are interested in.

If you are missing i > O stickers, you definitely have to buy another package, and this
might decrease the number of missing stickers. In fact, the new number is between 1 (if
you already have all five stickers that were in the package) and i — 5 (if all stickers were
new). What is the probability that you go down to i — k missing stickers, k =0, ..., 57
For this event to happen, exactly k out of the 5 stickers have to come from the i that
you are missing, and 5 —k have to come from the n —1 that you already have. The total
number of 5-tuples of stickers is

ny n!
<5> ~ 5l(n—=5)!"

]y

of them lead to the aforementioned event. (Recall that the binomial coefficient (”;)
counts the number of ways in which £ objects can be selected from a total of m objects.)
This gives us the recursive formula

and

> ()

Ei:‘l—'—ZfEifk) i>0.
k=0 (5)

Note that for i < 5, this formula features negative subscripts 1 — k, but all these have

multiplicative factor 0.

This formula is an incarnation of the partition theorem for conditional expectation,
but the handwaving is this: given that you are missing i > O stickers, you need another
package, and then the average number of packages for 1 — k missing stickers, where the
probability that a given k occurs is the above fraction.

The recursive formula is still not useful since E; depends on E; (for k = 0), but we
can get rid of this by multiplying with (TS‘)

(5)- (5)= ()£ () G2

Thus we get

i>0.

(-0 =605
The program now simply computes (and stores) the E;’s according to this formula,

in the order Ey (which we know), Eq,E,,...,E,. In this way, we have always already
computed the values that we need.

o6y WG o

398 APPENDIX B. SOLUTIONS

We use the third function from Exercise to compute binomial coefficients, but
since these may become pretty large, we work over the type double right away. (525), the
largest binomial coefficient that may come up, is 430960344486, a number that would

require more than 32 bits but less than 53, so it will even exactly fit into a double).

1 // Prog: panini.cpp

2 // computes the ezpected number of 5-sticker packages that need
3 // to be purchased in order to have all n stickers in the collection
4

b #include<iostream>

6

7 // POST: computes binomial coefficient "n choose k"

8 double binomial (const unsigned int n, const unsigned int k)
9 {

10 if (n < k) return 0.0;

11 if (k == 0) return 1.0;

12 return n * binomial(n-1, k-1) / k;

13}

14

15 int main ()

16 {

17 // input

18 std::cout << "Collection size =7 ";

19 unsigned int n;

20 std::cin >> n;

21

22 // allocate the array...

23 double* const E = new doublel[n+1]; // E_O0,...,E_n

24

25 // ...and fill 4t

26 E[0] = 0;

27 for (unsigned int i = 1; i <= n; ++i) {

28 const double d = binomial(n, 5) - binomial(n-i, 5);

29 E[i]l] = ©binomial(n, 5) / 4d;

30 for (unsigned int k = 1; k < 6 && k <= i; ++k)

31 E[i] += binomial (i, k) * binomial(n-i, 5-k) / d * E[i-k];
32 }

33

34 // output

35 std::cout << "Average number of packages is " << E[n] << ".\n";
36

37 // clean up

38 delete[] E;

39

40 return O0;

41 }

According to this program, the expected number of packages for n = 555 is 763.213,
so up to rounding to integer, the newspaper was right.

Solution to Exercise [I25] Naturally, it’s hard to present a solution here. Instead, let us
just list the program corresponding to the production

F oo FF+F—F—F—[-F+F+F

given as an example in the challenge.

1 // Prog: bush.cpp
2 // Draw turtle graphics for the Lindenmayer system with

B.8. RECURSION 399

// production F -> FF+[+F-F-F]-[-F+F+F], initial word F
// and rotation angle 22 degrees

3

4

5

6 #include <iostream>

7 #include <IFM/turtle>
8

9 // POST: the word w_i"F 4is drawn
10 void f (const unsigned int i) {

11 if (i == 0)

12 ifm::forward(); // F
13 else {

14 f(i-1); // F
15 f(i-1); // F
16 ifm::left (22); /7 +
17 ifm::save(); /7 [
18 ifm::left (22); // o+
19 f(i-1); // F
20 ifm::right(22); // -
21 f(i-1); // F
22 ifm::right(22); // -
23 f(i-1); // F
24 ifm::restore(); //]
25 ifm::right (22); // -
26 ifm::save(); /7 [
27 ifm::right (22); // -
28 f(i-1); // F
29 ifm::left (22); /) o+
30 f(i-1); // F
31 ifm::left (22); // o+
32 f(i-1); // F
33 ifm::restore(); //]
34 }

35

36

37 int main () {

38 std::cout << "Number of iteratiomns =7 ";
39 unsigned int n;

40 std::cin >> n;

41

42 // draw w_n = w_n(F), vertically
43 ifm::1left (90);

44 f(n);

45

46 return O0;

