
410 APPENDIX B. SOLUTIONS

B.10 Reference Types

Solution to Exercise 135.

a) Since i is changed in the function body, S may only be one of int and int&. T

can be any of the three types int, int& and const int&, since values of all three
types can be initialized from the lvalue ++i of type int.

b) If S is int, then T may only be int, since otherwise, the function returns a reference
to a temporary object, namely the local copy of the formal parameter i. If S is
int&, T can as before be any of the three types.

c) Here are the postconditions.

// POST: return value is i+1

int foo (int i);

// POST: i has been incremented by 1;

// return value is the new value of i

int foo (int& i);

// POST: i has been incremented by 1 and

// is returned as an lvalue

int& foo (int& i);

// POST: i has been incremented by 1 and

// is returned as a non -modifiable lvalue

const int& foo (int& i);

Solution to Exercise 136.

1 #include <iostream >

2

3 // POST: the values of i and j are swapped

4 void swap (int& i, int& j)

5 {

6 const int h = i;

7 i = j;

8 j = h;

9 }

10

11 int main() {

12 // input

13 std::cout << "i =? ";

14 int i; std::cin >> i;

15

16 std::cout << "j =? ";

17 int j; std::cin >> j;

18

19 // function call

20 swap(i, j);

B.10. REFERENCE TYPES 411

21

22 // output

23 std::cout << "Values after swapping: i = " << i

24 << ", j = " << j << ".\n";

25

26 return 0;

27 }

Solution to Exercise 137. We implement the second version, the one that returns the
normalization of r. This one has the advantage that it works for rvalues.

The modi�cation of the function gcd is as easy as it can be: we only need to replace
the type unsigned int by int in the parameter and return types. Why does this still
work? Let us go back to the proof of Lemma 1. Going through it, we realize that we
never used nonnegativity of either a or b, so the statement extends to all pairs of integers
with b 6= 0. It remains to prove termination. For this, we show that |amodb| < |b|, so
we indeed make progress towards termination.

Recall that

amodb = a − (adiv b)b,

and that this equation also holds in C++. Furthermore, division may round up or down
(we don't know), but in either case, the rounding makes a mistake of strictly less than
1. This means that

a

b
− (adiv b)

has absolute value smaller than 1, and this implies (by multiplying with b) that

a − (adiv b)b = amodb

has absolute value smaller than |b|.

1 #include <iostream >

2

3 struct Rational {

4 int n;

5 int d; // INV: d != 0

6 };

7

8 // POST: a has been written to o

9 std:: ostream& operator << (std:: ostream& o, const Rational& a)

10 {

11 return o << a.n << "/" << a.d;

12 }

13

14 // POST: a has been read from i

15 // PRE: i starts with a rational number of the form "n/d"

16 std:: istream& operator >> (std:: istream& i, Rational& a)

17 {

18 char c; // separating character , e.g. ’/’

19 return i >> a.n >> c >> a.d;

20 }

21

412 APPENDIX B. SOLUTIONS

22 // POST: return value is the greatest common divisor of a and b

23 int gcd (const int a, const int b)

24 {

25 if (b == 0) return a;

26 return gcd(b, a % b); // b != 0

27 }

28

29 // POST: return value is the normalization of r

30 Rational normalize (const Rational& r)

31 {

32 const int g = gcd (r.n, r.d);

33 Rational result;

34 result.n = r.n / g;

35 result.d = r.d / g;

36 if (result.d < 0) {

37 result.n = -result.n;

38 result.d = -result.d;

39 }

40 return result;

41 }

42

43 int main ()

44 {

45 std::cout << "Rational number r =? ";

46 Rational r;

47 std::cin >> r;

48 std::cout << "Normalization is " << normalize(r) << ".\n";

49

50 return 0;

51 }

Solution to Exercise 138.

1 #include <iostream >

2

3 // POST: return value indicates whether the linear equation

4 // a * x + b = 0 has a real solution x ; if true is

5 // returned , the value s satisfies a * s + b = 0

6 bool solve (const double a, const double b, double& s)

7 {

8 // we have a solution if a is nonzero (s = -b/a),

9 // or if both a and b are zero (take s = 0 in this case)

10 if (a != 0.0) {

11 s = -b / a;

12 return true;

13 }

14 // now we have a == 0.0

15 if (b == 0.0) {

16 s = 0.0;

17 return true;

18 }

19 return false;

20 }

21

22 int main()

23 {

24 std::cout << "solve a * x + b = 0 for\n";

25 std::cout << "a =? ";

26 double a;

27 std::cin >> a;

28 std::cout << "b =? ";

29 double b;

30 std::cin >> b;

B.10. REFERENCE TYPES 413

31

32 double s;

33 if (solve (a, b, s))

34 std::cout << "Solution is " << s << ".\n";

35 else

36 std::cout << "Sorry , there is no solution .\n";

37

38 return 0;

39 }

Solution to Exercise 139.

a) Problem: Initialization of non-const reference from const object. (The variable i is
const-quali�ed and can, therefore, not be passed as a non-const reference argument
to the function foo.)

b) ok. (The variable j is a const reference and may, therefore, be initialized from a
temporary.)

c) Problem: Initialization of reference from temporary. (The return value of the function
foo is of type int and, therefore, the corresponding object has temporary lifetime.
Via the function bar that temporary is used to initialize the variable j.)

d) Problem: Initialization of non-const reference from const reference. (The function
bar returns a const reference that cannot be passed as a non-const reference to the
function foo.)

e) ok. (Remark: Does not violate the Single Modi�cation Rule because there is a se-
quence point after all function arguments have been evaluated.)

Solution to Exercise 140.

1 // Prog: solve_quadratic_equation .cpp

2 // computes both (possibly complex) solutions to a quadratic equation

3 #include <iostream >

4 #include <complex >

5

6 // POST: return value is the number of distinct complex solutions

7 // of the quadratic equation ax^2 + bx + c = 0. If there

8 // are infinitely many solutions (a=b=c=0), the return

9 // value is -1. Otherwise , the return value is a number n

10 // from {0,1,2}, and the solutions are written to s1 ,..,sn

11 int solve_quadratic_equation (const std::complex <double > a,

12 const std::complex <double > b,

13 const std::complex <double > c,

14 std::complex <double >& s1 ,

15 std::complex <double >& s2)

16 {

17 if (a == 0.0)

18 // linear case: bx + c = 0

19 if (b == 0.0)

20 // trivial case: c = 0

21 if (c == 0.0)

22 return -1; // => infinitely many solutions

414 APPENDIX B. SOLUTIONS

23 else

24 return 0; // => no solution

25 else {

26 // bx + c = 0, b != 0 => one solution

27 s1 = -c/b;

28 return 1;

29 }

30 else {

31 // ax^2 + bx + c = 0, a != 0 => two solutions

32 const std::complex <double > d = std::sqrt(b*b -4.0*a*c);

33 s1 = (-b + d) / (2.0*a);

34 s2 = (-b - d) / (2.0*a);

35 return 2;

36 }

37 }

38

39

40 int main()

41 {

42 // input

43 std::cout << "Solve quadratic equation ax^2 + bx + c = 0 for\n";

44 std::cout << "a =? ";

45 double a;

46 std::cin >> a;

47 std::cout << "b =? ";

48 double b;

49 std::cin >> b;

50 std::cout << "c =? ";

51 double c;

52 std::cin >> c;

53

54 // computation

55 std::complex <double > s1;

56 std::complex <double > s2;

57

58 const int n = solve_quadratic_equation (a, b, c, s1 , s2);

59

60 // output

61 std::cout << "Number of solutions: " << n << "\n";

62 std::cout << "Solutions :\n";

63 if (n > 0) std::cout << s1 << "\n";

64 if (n > 1) std::cout << s2 << "\n";

65

66 return 0;

67

68 }

Solution to Exercise 141. We want to �nd all complex solutions to the equation

Ax3 + Bx2 + Cx + D = 0, (B.3)

where A,B, C, D 2 C, and A 6= 0. The following method due to Scipione del Ferro
and Tartaglia was published by Gerolamo Cardano in 1545. The method transforms the
equation into an equivalent one that we can solve directly.

We �rst divide equation (B.3) by the leading coe�cient A to arrive at an equivalent
equation of the following form

x3 + bx2 + cx + d = 0, (B.4)

where b = B/A, c = C/A, and d = D/A are complex numbers.

B.10. REFERENCE TYPES 415

Let us substitute x = y− b
3
into equation (B.4). Then the quadratic term disappears,

and we get the equivalent equation

y3 + 3qy − 2r = 0, (B.5)

where

q =
3c − b2

9
, (B.6)

r =
9bc − 27d − 2b3

54
. (B.7)

You are, of course, invited to check that for yourself. The left-hand side of (B.5) is called
a depressed cubic. If q = 0, we are done already, since the solutions to y3 − 2r = 0 are
just the three complex third roots of of 2r.

Let us assume for the remainder that q 6= 0. Then we further massage equation
(B.5) by making the substitution y = z− q

z
and multiplying with z3 on both sides of the

equation. Then we arrive at

z6 − 2rz3 − q3 = 0, (B.8)

which can be viewed as a quadratic equation of the unknown variable z3,

(z3)2 − 2r(z3) − q3 = 0. (B.9)

We know how to solve (B.9) for z3 (and then also for z), but before doing this, let's
take a step back and see whether this really solves our problem: we know that x solves
(B.3) if and only if y = x + b

3
solves (B.5). Moreover, let y and z 6= 0 be such that

y = z − q
z
. Then y solves (B.5) if and only if z solves (B.9). This means, every solution

z 6= 0 to (B.9) gives us a solution y = z − q
z
to (B.5) and thus a solution x = y − b

3
to

(B.3). Vice versa, every solution x to (B.3) gives us a solution y = x + b
3
to (B.5) and

thus two nonzero solutions z = y
2
� 2

q
y2

4
+ q to (B.9), using q 6= 0.

Note: In writing k
p

c for a complex number c, we choose one of the k roots arbitrarily,
but at the same time we need to make sure that the choice does not matter. Indeed, the

set of two numbers � 2

q
y2

4
+ q does not depend on the particular choice of the square

root.

To summarize, our original problem is solved by �nding the (nonzero) solutions to
(B.9), so let's turn to this latter problem.

We use the solution formula for quadratic equations in order to obtain

z3 = r� 2
q

r2 + q3, (B.10)

z = B
3

r
r� 2

q
r2 + q3. (B.11)

416 APPENDIX B. SOLUTIONS

Here, Bc, for some number c, stands for one of the three numbers c = cξ0, cξ1, cξ2 where
the ξi's are the third roots of unity, i.e. the three complex solutions to the equation
u3 = 1:

ξ0 = 1, ξ1 = −
1

2
+

p
3

2
i, ξ2 = −

1

2
−

p
3

2
i.

Note that

ξiξj = ξi+j, (B.12)

where indices are taken modulo 3.
Equation (B.11) speci�es a set of 6 values. Fixing our particular choices of roots, we

can number them as

pi = ξi
3

r
r + 2

q
r2 + q3, i = 0, 1, 2, (B.13)

ni = ξi
3

r
r − 2

q
r2 + q3, i = 0, 1, 2. (B.14)

We want to argue that we only need to consider the three solutions z = pi in order
to get all the solutions y = z − q

z
to (B.5). For this, we �rst observe that the set

{pini | i = 0, 1, 2} is the set of third roots of −q3. Indeed, by

p3
i n

3
i = (r + 2

q
r2 + q3)(r − 2

q
r2 + q3) = −q3, i = 0, 1, 2 (B.15)

all three numbers have third power −q3, and using (B.12) on top of (B.13) and (B.14),
we can show that they are distinct:

pini = ξ2
i p0n0 = ξ2i p0n0, i = 0, 1, 2 (⇒ 2i = 0, 2, 1).

Consequently, there is an index t 2 {0, 1, 2} for which ptnt = −q, one of the third
roots of −q3. Having this, (B.13) and (B.14) together with (B.12) imply

ptnt = pt+1nt+2 = pt+2nt+1 = −q, (B.16)

with indices taken modulo 3 again.
This in turn yields

pt −
q

pt

, pt+1 −
q

pt+1

, pt+2 −
q

pt+2

!
=

nt −

q

nt

, nt+2 −
q

nt+2

, nt+1 −
q

nt+1

!
, (B.17)

meaning that in y = z − q
z
, it does not matter whether we use z = p1, p2, p3 or z =

n1, n2, n3.
That means we are done. We have found the three solutions

xi = pi −
q

pi

−
b

3
, i = 0, 1, 2

B.10. REFERENCE TYPES 417

to equation (B.3), where pi runs through the third roots of

r + 2
q

r2 + q3

for i = 0, 1, 2.
The method described above is exactly the method implemented in the C++ program

below.

1 // Prog: solve_cubic_equation .cpp

2 // computes the three complex solutions to a cubic equation

3 #include <iostream >

4 #include <complex >

5

6

7 // POST: return value is the number of distinct complex solutions

8 // of the quadratic equation ax^2 + bx + c = 0. If there

9 // are infinitely many solutions (a=b=c=0), the return

10 // value is -1. Otherwise , the return value is a number n

11 // from {0,1,2}, and the solutions are written to s1 ,..,sn

12 int solve_quadratic_equation (const std::complex <double > a,

13 const std::complex <double > b,

14 const std::complex <double > c,

15 std::complex <double >& s1 ,

16 std::complex <double >& s2)

17 {

18 if (a == 0.0)

19 // linear case: bx + c = 0

20 if (b == 0.0)

21 // trivial case: c = 0

22 if (c == 0.0)

23 return -1; // => infinitely many solutions

24 else

25 return 0; // => no solution

26 else {

27 // bx + c = 0, b != 0 => one solution

28 s1 = -c/b;

29 return 1;

30 }

31 else {

32 // ax^2 + bx + c = 0, a != 0 => two solutions

33 const std::complex <double > d = std::sqrt(b*b -4.0*a*c);

34 s1 = (-b + d) / (2.0*a);

35 s2 = (-b - d) / (2.0*a);

36 return 2;

37 }

38 }

39

40 // POST: return value is the number of distinct complex solutions

41 // of the cubic equation ax^3 + bx^2 + cx + d = 0. If there

42 // are infinitely many solutions (a=b=c=d=0), the return

43 // value is -1. Otherwise , the return value is a number n

44 // from {0,1,2,3}, and the solutions are written to s1 ,..,sn

45 int solve_cubic_equation (const std::complex <double > a,

46 const std::complex <double > b,

47 const std::complex <double > c,

48 const std::complex <double > d,

49 std::complex <double >& s1 ,

50 std::complex <double >& s2 ,

51 std::complex <double >& s3)

52 {

53 if (a == 0.0)

54 // if a == 0 we can use the preceding function to solve

418 APPENDIX B. SOLUTIONS

55 // quadratic equations .

56 return solve_quadratic_equation (b,c,d,s1 ,s2);

57 else {

58 // ax^3 + bx^2 + cx + d = 0, a != 0 => three solutions .

59 // Some of the solutions may be equal due to multiple roots.

60

61 // First we bring the equation into the following form

62 // x^3 + bn x^2 + cn x + dn = 0

63 const std::complex <double > bn = b/a;

64 const std::complex <double > cn = c/a;

65 const std::complex <double > dn = d/a;

66

67 // compute q and r

68 const std::complex <double > q = (3.0* cn - bn*bn) / 9.0;

69 const std::complex <double > r = (9.0* bn*cn - 27.0*dn - 2.0*bn*bn*bn) / 54.0;

70

71 // define non -real root of unity

72 const std::complex <double > rou(-0.5, std::sqrt (3.0)/2.0);

73 // the variable temp is used to convert solutions y to x

74 const std::complex <double > temp = bn/3.0;

75

76 // check for the special case q == 0

77 if (q == 0.0) {

78 // compute y, as in y^3 = 2r

79 // substitution : x = y - b/3

80 std::complex <double > y = std::pow (2.0*r, 1.0/3.0);

81

82 // compute solutions for x

83 s1 = y - temp;

84 y *= rou; // rotate complex number y by -120 degrees

85 s2 = y - temp;

86 y *= rou; // rotate y by another -120 degrees

87 s3 = y - temp;

88 }

89 else {

90 // compute z, as in z^3 = r + sqrt(r^2 + q^3),

91 // substitution 2: x = z - q/z - b/3

92 std::complex <double > z = std::pow(r + std::sqrt(r*r + q*q*q), 1.0/3.0);

93

94 // compute solutions for x

95 s1 = z - q/z - temp;

96 z *= rou; // rotate complex number z by -120 degrees

97 s2 = z - q/z - temp;

98 z *= rou; // rotate z by another -120 degrees

99 s3 = z - q/z - temp;

100 }

101

102 return 3;

103 }

104 }

105

106

107 // POST: Returns the magnitude of the complex number

108 // as^3 + bs^2 + cs + d. If s is an exact solution

109 // to the equation ax^3 + bx^2 + cx + d = 0 then this

110 // magnitude should be 0.

111 double check_solution(const std::complex <double > a,

112 const std::complex <double > b,

113 const std::complex <double > c,

114 const std::complex <double > d,

115 const std::complex <double > s) {

116

117 // compute the ax^3 + bx^2 + cx + d and return its magnitude

118 return std::abs(a*std::pow(s ,3.0) + b*s*s + c*s + d);

119 }

B.10. REFERENCE TYPES 419

120

121

122 int main()

123 {

124 // input

125 std::cout << "Solve cubic equation ax^3 + bx^2 + cx + d = 0 for\n";

126 std::cout << "a =? ";

127 std::complex <double > a;

128 std::cin >> a;

129 std::cout << "b =? ";

130 std::complex <double > b;

131 std::cin >> b;

132 std::cout << "c =? ";

133 std::complex <double > c;

134 std::cin >> c;

135 std::cout << "d =? ";

136 std::complex <double > d;

137 std::cin >> d;

138

139 // computation

140 std::complex <double > s1;

141 std::complex <double > s2;

142 std::complex <double > s3;

143

144 const int n = solve_cubic_equation (a, b, c, d, s1, s2, s3);

145

146 // output

147 std::cout << "Number of solutions: " << n << "\n";

148 std::cout << "Solutions :\n";

149 if (n > 0) {

150 std::cout << s1 << ", ";

151 std::cout << "Error: " << check_solution(a,b,c,d,s1) << "\n";

152 }

153 if (n > 1){

154 std::cout << s2 << ", ";

155 std::cout << "Error: " << check_solution(a,b,c,d,s2) << "\n";

156 }

157 if (n > 2){

158 std::cout << s3 << ", ";

159 std::cout << "Error: " << check_solution(a,b,c,d,s3) << "\n";

160 }

161

162 return 0;

163

164 }

