
Appendix B

Solutions

B.1 A first C++ program

Solution to Exercise 1. (d) and (f) are not identi�ers, since they do not start with a letter.
(g) is not an identi�er, since it contains the character #. (b) is not allowed as a variable
name, but it is a valid identi�er.

Solution to Exercise 2. (c) is not an expression, since the �rst operand of the assignment
operator must be an lvalue, but 1 is a literal, hence an rvalue. (f) is not an expression,
since there is no closing parenthesis for the opening one. (h) is invalid, since (a*3) is an
rvalue, but the left operand of the assignment operator must be an lvalue.

Solution to Exercise 3. (a), (e), and (g) are rvalues by de�nition of the binary multipli-
cation operator. (b) and (d) are lvalues by de�nition of the assignment operator.

Solution to Exercise 4. (a) has value 6, obtained by multiplying the value of the primary
expression 1 with the value of the composite expression (2*3). The latter value is 6,
for the same reason. (b) has value 5, obtained by assigning value 5 to b �rst (right
assignment), and then to a (left assignment). (d) has value 1, by de�nition of the
assignment operator. (e) has value 35, since the operands (a=5) and (b=7) have values
5 and 7, respectively.

In case of (g), the value is unspeci�ed. If the right operand is evaluated �rst, we get
value 25, but if the left operand comes �rst, b may have some value other than 5, and
the left operand evaluates to this other value. The �nal result will not be 25, then.

Solution to Exercise 5. b) is incorrect, since std::cin >> a tries to change the value of
the constant a. c) is incorrect, since there is an uninitialized constant a. e) is incorrect,
since the assignment a = 6 tries to change the value of the constant a. Same thing with
f): although the value will not be changed, it is incorrect. The exact wording was that
it is impossible to store anything under the address of a constant, even if it is the same

301



302 APPENDIX B. SOLUTIONS

value as before. The correct programs are thus a), d), g). Among them, only d) violates
the Const Guideline, since c's value never changes, but yet c is not de�ned as a constant.

Solution to Exercise 6. The least common multiple of 2, ..., n is the product of allmaximal
prime powers less or equal to n. For n = 10, for example, we get 23 � 32 � 5 � 7 = 2520.
For n = 20, we get

24 � 32 � 5 � 7 � 11 � 13 � 17 � 19 = 232792560,

and for n = 30

24 � 33 � 52 � 7 � 11 � 13 � 17 � 19 � 23 � 29 = 2329089562800.

The following program computes these numbers. Interestingly, declaring lcm of type
int leads to an incorrect value for n = 30 on a 32-bit system, due to over
ow. But using
ifm::integer, our arbitrary-precision integers also mentioned in Challenge 11, yields
the correct results.

1 // Prog: lcm.cpp (least common multiple)

2 // computes the least common multiple of 10, 20, and 30

3

4 #include <iostream >

5 #include <IFM/integer.h>

6

7 int main()

8 {

9 // the least common multiple of the number 2,...,n is the product

10 // of all maximal prime powers that are less or equal to n.

11 // Example: the least common multiple of 2 ,... ,10 is 2^3 * 3^2 * 5 * 7

12

13 std::cout << "Least common multiple of 2 up to...\n";

14 // 10: 2^3 * 3^2 * 5 * 7

15 ifm:: integer lcm = 2*2*2 * 3*3 * 5 * 7;

16 std::cout << 10 << ": " << lcm << "\n";

17

18 // 20: 2^4 * 3^2 * 5 * 7 * 11 * 13 * 17 * 19

19 lcm = lcm * 2 * 11 * 13 * 17 * 19;

20 std::cout << 20 << ": " << lcm << "\n";

21

22 // 30: 2^4 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19 * 23 * 29

23 lcm = lcm * 3 * 5 *23 * 29;

24 std::cout << 30 << ": " << lcm << "\n";

25

26 return 0;

27

28 }

Solution to Exercise 7.

1 // Program: multhree.cpp

2 // Compute the product of three numbers.

3

4 #include <iostream >

5

6 int main()



B.1. A FIRST C++ PROGRAM 303

7 {

8 // input of a, b and c

9 std::cout << "Compute a * b * c for a =? ";

10 int a;

11 std::cin >> a;

12

13 std::cout << "... and b =? ";

14 int b;

15 std::cin >> b;

16

17 std::cout << "... and c =? ";

18 int c;

19 std::cin >> c;

20

21 // output a * b * c,

22 std::cout << a << " * " << b << " * " << c << " = "

23 << a * b * c << ".\n";

24 return 0;

25 }

Solution to Exercise 8.

1 // Program: power20.cpp

2 // Raise a number to the power twenty.

3

4 #include <iostream >

5

6 int main()

7 {

8 // input

9 std::cout << "Compute a^20 for a =? ";

10 int a;

11 std::cin >> a;

12

13 // computation

14 const int b = a * a; // b = a^2

15 const int c = b * b; // c = a^4

16 const int d = c * c; // d = a^8

17 const int e = d * d; // e = a^16

18

19 // output e * c, i.e. a^20

20 std::cout << a << "^20 = " << e * c << ".\n";

21 return 0;

22 }

Solution to Exercise 9. Here is the well-formatted program, complete with informative
output and sensible comments. We have also �xed the two errors (main() instead of
main[], and std::cin >> b instead of cin >> b). This solves parts a), b), d), and e).

1 // SquareProduct .cpp

2 // Reads in two numbers a and b and outputs (a*b)^2,

3 // the square of their product

4 #include <iostream >

5

6 int main() {

7

8 // input

9 std::cout << "a =? ";

10 int a;



304 APPENDIX B. SOLUTIONS

11 std::cin >> a;

12

13 std::cout << "b =? ";

14 int b;

15 std::cin >> b;

16

17 // computation and output

18 const int c = a * b;

19 std::cout << "(a*b)^2 = ";

20 std::cout << c * c << ".\n";

21

22 return 0;

23 }

For part c), here is the list of composite expressions from the original (�xed) program,
along with their status.

� std::cin >> a (lvalue)

� std::cin >> b (lvalue)

� a * b (rvalue)

� c = a * b (lvalue)

� c * c (rvalue)

� std::cout << c * c (lvalue)

Solution to Exercise 10.

1 // Prog: age_verification .cpp

2 // outputs the age group that is not allowed to buy alcohol

3

4 #include <iostream >

5

6 int main()

7 {

8 const int year = 2009;

9 std::cout << "No alcohol to people born in the years "

10 << year -17 << " - " << year << "!\n";

11 std::cout << "For people born in " << year -18

12 << ", check the id!\n";

13

14 return 0;

15 }

Solution to Exercise 11. Here are the two programs:

1 // Program: power8_slow .cpp

2 // Raise a number to the eighth power ,

3 // using integers of arbitrary size

4 // and with seven multiplications

5

6 #include <iostream >

7 #include <IFM/integer.h>



B.1. A FIRST C++ PROGRAM 305

8

9 int main()

10 {

11 // input (no prompt , as we intend to read from file)

12 ifm:: integer a;

13 std::cin >> a;

14

15 // computation

16 ifm:: integer b = a * a; // b = a^2

17 b = b * a; // b = a^3

18 b = b * a; // b = a^4

19 b = b * a; // b = a^5

20 b = b * a; // b = a^6

21 b = b * a; // b = a^7

22 b = b * a; // b = a^8

23

24 // no output , as we are interested in computation time

25 return 0;

26 }

1 // Program: power8_fast .cpp

2 // Raise a number to the eighth power ,

3 // using integers of arbitrary size

4 // and with three multiplications

5

6 #include <iostream >

7 #include <IFM/integer.h>

8

9 int main()

10 {

11 // input (no prompt , as we intend to read from file)

12 ifm:: integer a;

13 std::cin >> a;

14

15 // computation

16 ifm:: integer b = a * a; // b = a^2

17 b = b * b; // b = a^4

18 b = b * b; // b = a^8

19

20 // no output , as we are interested in computation time

21 return 0;

22 }

Running them on inputs up to 100, 000 decimal digits, you will see that power8_fast.cpp
is indeed faster. But while the number of multiplications performed by power8_fast.cpp

is only 42% of the corresponding number for power8_slow.cpp (3 vs. 7), this does not
directly translate to the runtimes. Instead, you will observe that power8_fast.cpp needs
around 75% of the time required by power8_slow.cpp (and this remains stable as the
inputs get larger). Thus the speedup is much less than you might have expected from
just counting multiplications. Why is this so?

In order to really answer this, you would have to know how the type ifm::integer

is implemented; but for our discussion, it is enough to know that multiplication of two
ifm::integers works according to the school method. Do you remember how this is
done? When you multiply two numbers on a piece of paper, you multiply the �rst
number with each individual digit of the second number and write down all the results
(properly aligned). Then you just add them up (see Page 11 for an example of the school



306 APPENDIX B. SOLUTIONS

method).

If the two numbers have m and n digits, respectively, you have n intermediate results,
with m or m+1 digits each, meaning that in total, you will write down roughly mn digits.
This is also what the computer does, and the time to do it will be roughly proportional
to mn. Let us cheat a little and assume that the time is really mn (it could in reality
be around 10mn, or any other factor times mn, but the speedup of power8_fast.cpp
compared to power8_slow.cpp does not depend on this).

With this knowledge at hand, we can already understand the 75% from above. Let's
look at power8_slow.cpp �rst, and let us assume that the input number a has m digits.
Then the �rst multiplication (a * a) needs time m2 and results in the number b with
(roughly) 2m digits. The next multiplication b * a features numbers with 2m and m

digits and therefore takes time 2m2. The result has (roughly) 3m digits. Then we
multiply numbers with 3m and m digits, in time 3m2, and the result has (roughly) 4m

digits. Continuing in this way, we see that the time to perform all multiplications is
(roughly) (1 + 2 + � � �+ 7)m2 = 28m2.

Now comes power8_fast.cpp. The �rst multiplication again takes time m2, but since
the second one features two numbers with (roughly) 2m digits, the time for the second
multiplication is 4m2 and results in a number with (roughly) 4m digits. In the third
multiplication, we therefore multiply two 4m-digit numbers, in time 16m2. In total, this
takes time (1+ 4+ 16)m2 = 21m2. And since 21 is 75% of 28, this calculation is a pretty
good explanation of the experimental observations.

Solution to Exercise 12. For the lower bound in a), we argue by induction that ai � a2i

for all i (we can't do more than double the number in each step). In order to get at = n,
we therefore must have

a2t � at = an,

or 2t � n. It follows that

t � lgn � blgnc = λ(n).

For the upper bound, we have to come up with a computation for an that needs at
most λ(n)+ν(n)− 1 steps. This is simple (and called the binary method). By doubling
a λ(n) times, we can compute in λ(n) steps all powers of the form a2i

that are less or
equal to an. For example, in λ(20) = 4 steps, we can get the values a, a2, a4, a8, a16.
Since n is the sum of exactly ν(n) of these 2i, an is the product of exactly ν(n) of these
a2i

(this is a simple consequence of the formula an+m = an � am). It follows that we can
obtain an by simply multiplying these ν(n) values together, and since we already have
them, this can be done in ν(n) − 1 further multiplications.

For b), we give an example where the upper bound is not tight. Consider n = 15

(1111 in binary). We have λ(15) = 3 and ν(15) = 4, so the binary method would need 6

multiplications. But we can do it with �ve multiplications, as follows:



B.1. A FIRST C++ PROGRAM 307

a1 = a0 * a0 // a^2

a2 = a1 * a0 // a^3

a3 = a2 * a2 // a^6

a4 = a3 * a3 // a^12

a5 = a4 * a2 // a^15

In general, no exact formula for `(n) is known.


