
B.3. BOOLEANS 317

B.3 Booleans

Solution to Exercise 27. A Boolean function has 2n possible n-tuples of arguments, and
the function is speci�ed by assigning the value 0 or 1 to each of them. It follows that
there are 22n

possibilities, and this is also the number of Boolean functions.

Solution to Exercise 28. This can be done by going through the truth tables.

a) XOR is associative.

x y z (x� y) � z x � (y� z)

0 0 0 0 � 0 = 0 0 � 0 = 0

0 0 1 0 � 1 = 1 0 � 1 = 1

0 1 0 1 � 0 = 1 0 � 1 = 1

0 1 1 1 � 1 = 0 0 � 0 = 0

1 0 0 1 � 0 = 1 1 � 0 = 1

1 0 1 1 � 1 = 0 1 � 1 = 0

1 1 0 0 � 0 = 0 1 � 1 = 0

1 1 1 0 � 1 = 1 1 � 0 = 1

b) (AND,OR) is distributive.

x y z (x ∧ y) ∨ z (x ∨ z) ∧ (y ∨ z)

0 0 0 0 ∨ 0 = 0 0 ∧ 0 = 0

0 0 1 0 ∨ 1 = 1 1 ∧ 1 = 1

0 1 0 0 ∨ 0 = 0 0 ∧ 1 = 0

0 1 1 0 ∨ 1 = 1 1 ∧ 1 = 1

1 0 0 0 ∨ 0 = 0 1 ∧ 0 = 0

1 0 1 0 ∨ 1 = 1 1 ∧ 1 = 1

1 1 0 1 ∨ 0 = 1 1 ∧ 1 = 1

1 1 1 1 ∨ 1 = 1 1 ∧ 1 = 1

c) (OR,AND) is distributive.

x y z (x ∨ y) ∧ z (x ∧ z) ∨ (y ∧ z)

0 0 0 0 ∧ 0 = 0 0 ∨ 0 = 0

0 0 1 0 ∧ 1 = 0 0 ∨ 0 = 0

0 1 0 1 ∧ 0 = 0 0 ∨ 0 = 0

0 1 1 1 ∧ 1 = 1 0 ∨ 1 = 1

1 0 0 1 ∧ 0 = 0 0 ∨ 0 = 0

1 0 1 1 ∧ 1 = 1 1 ∨ 0 = 1

1 1 0 1 ∧ 0 = 0 0 ∨ 0 = 0

1 1 1 1 ∧ 1 = 1 1 ∨ 1 = 1

318 APPENDIX B. SOLUTIONS

d) NAND is not associative, since for example (0 ↑ 0) ↑ 1 = 1 ↑ 1 = 0, but 0 ↑ (0 ↑
1) = 0 ↑ 1 = 1.

Solution to Exercise 29. x1 � x2 � � � � � xn is true if and only if an odd number of the xi

are 1.

Solution to Exercise 30.

a) We only need to show that {AND,NOT} generates OR, and then use the complete-
ness of {AND,OR,NOT}. This is simply DeMorgan's Law: we have

OR(x, y) = NOT(AND(NOT(x),NOT(y))).

b) This is similar; we only need to express AND using DeMorgan's Law:

AND(x, y) = NOT(OR(NOT(x),NOT(y))).

c) If we can generate NOT from NAND, we are done, since NOT and NAND can
obviously generate AND, and then we use a). Indeed,

NOT(x) = NAND(x, x).

d) As in c), we are done once we can generate NOT from NOR, since we can then get
OR and use b). Indeed,

NOT(x) = NOR(x, x).

e) Once we are able to generate NOT, we are done, since we can use a). But this is
easy:

NOT(x) = XOR(x, 1).

Solution to Exercise 31. Values that work are −1 for a, 0 for b and 1 for c. Since
a < b < c is parenthesized as (a < b) < c and a< b evaluates to true, the latter value
is implicitly converted to the integer value 1. The comparison 1 < 1 then yields value
false. The expression a < b && b < c, on the other hand, yields value true.

Solution to Exercise 32.

a) (x != (3 < 2)) || (y && ((-3) <= (4 - (2 * 3))))

b) ((z > 1) && (((! x) != (2 - 2)) == 1)) && y

c) ((3 * z) > z) || (((1 / x) != 0) && ((3 + 4) >= 7))

B.3. BOOLEANS 319

Solution to Exercise 33.

a) (x != (3 < 2)) || (y && ((-3) <= (4 - (2 * 3)))) →
(0 != (3 < 2)) || (y && ((-3) <= (4 - (2 * 3)))) →
(0 != false) || (y && ((-3) <= (4 - (2 * 3)))) →
(0 != 0) || (y && ((-3) <= (4 - (2 * 3)))) →
false || (y && ((-3) <= (4 - (2 * 3)))) →
false || (true && ((-3) <= (4 - (2 * 3)))) →
false || (true && (−3 <= (4 - (2 * 3)))) →
false || (true && (−3 <= (4 - 6))) →
false || (true && (−3 <= −2)) →
false || (true && true) →
false || true →
true

b) ((z > 1) && (((! x) != (2 - 2)) == 1)) && y →
((2 > 1) && (((! x) != (2 - 2)) == 1)) && y →
(true && (((! x) != (2 - 2)) == 1)) && y →
(true && (((! 0) != (2 - 2)) == 1)) && y →
(true && ((1 != (2 - 2)) == 1)) && y →
(true && ((1 != 0) == 1)) && y →
(true && (true == 1)) && y →
(true && (1 == 1)) && y →
(true && true) && y →
(true && true) && 1 →
(true && true) && true →
true && true →
true

c) ((3 * z) > z) || (((1 / x) != 0) && ((3 + 4) >= 7)) →
((3 * 2) > 2) || (((1 / x) != 0) && ((3 + 4) >= 7)) →
(6 > 2) || (((1 / x) != 0) && ((3 + 4) >= 7)) →
true || (((1 / x) != 0) && ((3 + 4) >= 7)) →
true

Solution to Exercise 34. The output from line 6 is 1 (true) if and only if the input number
n that is read in line 5 is less than 3. The expression !b is by de Morgan equivalent to

a * 3 <= a + 4 || a >= 5

which in turn is equivalent to a <= 2 || a >= 5. Observe that the variable a is incre-
mented by one in line 6; therefore the expression !b in line 8 is true, unless n 2 {2, 3}.
Furthermore, for n = 3 the expression ++a > 4 in line 8 evaluates to 5>4, that is, true.
Thus, the output from line 8 is 1 (true) if and only if n 6= 2.

Solution to Exercise 35. Here are the logical parentheses:

320 APPENDIX B. SOLUTIONS

b /= (2 + (b / 2))

(a < 1) || ((b != 0) && (((2 * a) / (a - 1)) > 2))

Note that 2 + bdiv 2 > b/2, so b will be replaced by 1 at most. In fact, it is almost
always replaced by 1, except for a <= 2. The �rst output is therefore 0 if a <= 2 and 1,
otherwise.

The second expression is de�nitely true for a == 0. For a >= 1, the value of the
expression is determined by

(b != 0) && (((2 * a) / (a - 1)) > 2)

For a <= 2, we have b == 0, meaning that the value is false, and short circuit evaluation
ensures that we don't divide by a non-positive number in this case.

For a > 2, we have b == 1, and the value of the expression is determined by

((2 * a) / (a - 1)) > 2

This yields true exactly for a <= 3. To summarize, the second output is 1 if and only if
a has value 0 or 3.

Solution to Exercise 36. We can model the sequence s for example by a variable of type
unsigned int. The binary representation of its value then yields the sequence of bits.
To append a bit in the end, we simply multiply by two and add the bit. To remove bits
in the end, we (repeatedly) divide by two. The last bit can at any stage be obtained
through the modulus operator. To realize the replacement of bits in s, we use these
mechanisms, along with the implicit conversions from bool to unsigned int and vice
versa.

The empty sequence can be represented by value 0, but if you think about it, this
value also represents any sequence of zeros. This means that the following programs
can't issue an error message if the sequence of operands is too short for the current
operator: logically, the sequence is �lled up with zeros until \−∞".

We could alternatively say that we only use unsigned int values whose binary rep-
resentation starts with a 1 (and then value 1 would correspond to the empty sequence).
However, at this stage we have no way of testing in a C++ program whether a number
equals 1, so we can't issue an error message anyway.

Here are the six required programs.

1 // Program: and.cpp

2 // Replace last two bits in a sequence of bits by their AND

3

4 #include <iostream >

5

6 int main()

7 {

8 // input sequence: the binary representation of s

9 unsigned int s;

10 std::cin >> s;

11

12 const bool x = s / 2 % 2; // second -to -last bit

13 const bool y = s % 2; // last bit

B.3. BOOLEANS 321

14 std::cout << 2 * (s / 4) + (x && y); // x, y -> AND(x,y)

15 return 0;

16 }

1 // Program: or.cpp

2 // Replace last two bits in a sequence of bits by their OR

3

4 #include <iostream >

5

6 int main()

7 {

8 // input sequence: the binary representation of s

9 unsigned int s;

10 std::cin >> s;

11

12 const bool x = s / 2 % 2; // second -to -last bit

13 const bool y = s % 2; // last bit

14 std::cout << 2 * (s / 4) + (x || y); // x, y -> OR(x,y)

15 return 0;

16 }

1 // Program: not.cpp

2 // Flip last bit in a sequence of bits

3

4 #include <iostream >

5

6 int main()

7 {

8 // input sequence: the binary representation of s

9 unsigned int s;

10 std::cin >> s;

11

12 const bool x = s % 2; // last bit

13 std::cout << 2 * (s / 2) + !x; // x -> NOT(x)

14 return 0;

15 }

1 // Program: zero.cpp

2 // Append 0 to a sequence of bits

3

4 #include <iostream >

5

6 int main()

7 {

8 // input sequence: the binary representation of s

9 unsigned int s;

10 std::cin >> s;

11

12 std::cout << 2 * s; // append 0

13 return 0;

14 }

1 // Program: one.cpp

2 // Append 1 to a sequence of bits

3

4 #include <iostream >

5

6 int main()

322 APPENDIX B. SOLUTIONS

7 {

8 // input sequence: the binary representation of s

9 unsigned int s;

10 std::cin >> s;

11

12 std::cout << 2 * s + 1; // append 1

13 return 0;

14 }

1 // Program: eval.cpp

2 // Output an empty sequence of bits

3

4 #include <iostream >

5

6 int main()

7 {

8 // behaves like an infinite sequence of 0’s

9 std::cout << 0;

10 return 0;

11 }

