
B.4. CONTROL STATEMENTS 323

B.4 Control statements

Solution to Exercise 37. This program contains four errors.

� line 1: iostraem −→ iostream

� line 4: unsinged −→ unsigned

� line 6: semicolon missing after condition of for-statement

� line 6: super
uous opening curly brace {

Things that are ok are in particular the following.

� The +1 in line 4 is a valid expression of type int (and value 1), constructed from
the unary addition operator and the literal operand 1. In the assignment, this
value is converted to the type unsigned int.

� { std::cin >> x; } The variable x here is the one de�ned in line 4, even though
we have put the input statement into an extra scope.

� The init-statement of the for-loop is ok, since we may assign an unsigned int

value to an int variable.

The �xed program looks like this.

1 #include <iostream >
2

3 int main()
4 {
5 unsigned int x = +1;
6 { std::cin >> x; }
7 for (int y=0u; y < x;)
8 std::cout << ++y;
9 return 0;
10 }

It outputs the sequence of positive natural numbers smaller or equal to the input
number (without any blanks, this will be di�cult to read, though).

Solution to Exercise 38. There are two problems in the code. First, the declarative region
of the declaration of i in line 3 is the body of the loop only. Therefore, the expression
++i < 10 in line 5 is unde�ned. Moreover, even if the declaration would extend up to
line 5, the loop would be in�nite because i is initialized with 1 in every iteration. Thus,
the condition ++i < 10 will never be ful�lled. This problem can be �xed by moving the
declaration of i out of the loop.

Second, as the variable s is initialized with 0, none of the multiplications in the loop
changes the value of s. This problem can be �xed by initializing s with 1. The corrected
program then looks as shown below.

324 APPENDIX B. SOLUTIONS

1 unsigned int s = 1;
2 int i = 1;
3 do {
4 if (i % 2 == 1) s *= i;
5 } while (++i < 10);

This computes the product of the odd numbers 1, 3, . . . , 9.

Solution to Exercise 39.

declaration in line declarative region scope
4 3{20 4{11, 15{20
6 5{17 6{17
10 8{14 10{14
12 8{14 12{14
15 5{17 15{17
18 3{20 18{20

The output of the program is 4. There is only one iteration of the loop, and that one
sets the s relevant in line 16 to 2.

Solution to Exercise 40.

� For input −1: no iteration, output is 0.

� For input 1:

begin of iteration s x i

1 0 1 0

2 0 1 1

No second iteration, output is 0.

� For input 2:

begin of iteration s x i

1 0 2 0

2 0 2 1

3 1 2 2

No third iteration, output is 1.

� For input 3:

B.4. CONTROL STATEMENTS 325

begin of iteration s x i

1 0 3 0

2 0 3 1

3 1 3 2

4 3 4 3

5 6 7 4

We see that x grows faster than i, so the condition i < x will mathematically never
be satis�ed. Due to over
ow, it might eventually be satis�ed in practice, but the
output is unde�ned.

Solution to Exercise 41. Here are the problems.

� line 5: x is undeclared, because the x in line 4 is local to the block in line 4.

� line 5: it should be std::cin >> x and not std::cin << x.

� line 7: this is an in�nite loop: since y is of type unsigned int, its value will always
be nonnegative. The condition y >= 0 is therefore always satis�ed, regardless of
the way y is changed in the loop.

� line 9: s appears outside of its scope (lines 7-8), so it is unde�ned here.

Solution to Exercise 42. Let x and y be the values of x and y. For x = 0, we get an
in�nite loop, since y is initialized with 1 but never changes. For x � 1, y is initialized
with x + 1 and decreased by x in the subsequent iterations. Unless x = 1, y therefore
becomes \negative" in the second iteration, leading to a not well-de�ned positive value
of y. For x = 1, the loop terminates after two iterations and outputs value 2 + 1 = 3.

To summarize, the behavior is well-de�ned exactly for the following input/output
pair.

input output
1 3

Solution to Exercise 43. Let's analyze what the code does. In the do-statement, k is
incremented (starting from 0), until it reaches the value n of n. After this, e is set to
false, and the loop terminates. Therefore, k increases n times, meaning that x (initially
of value 1) is multiplied by 2n.

The output is therefore 2n, for input n. Here is a more readable version of this code.

1 unsigned int n;
2 std::cin >> n;
3

4 unsigned int x = 1;
5 for (int k = 0; k < n; ++k)

326 APPENDIX B. SOLUTIONS

6 x *= 2;
7

8 std::cout << x;

Solution to Exercise 44. Let's �rst see what the inner for-loop does. For given value
i of i, j starts from 1 and gets incremented by 1 during the if-statement's condition.
The inner loop terminates with break if the value before the increment reaches i. This
means, s += j - 1 is executed for j running from 2 through i. The inner loop therefore
increments s by

i−1∑
k=1

k =
i(i − 1)

2
, i � 2.

The other do-loop increments i (starting from −10) by 1, as long as the incremented
i is smaller or equal to x. The inner loop is therefore executed for the values i =

−10, −9, . . . , x, and we get

s =

x∑
i=2

i(i − 1)

2
.

A more readable version is therefore

1 #include <iostream >
2 int main()
3 {
4 int x;
5 std::cin >> x;
6 int s = 0;
7 for (int i = 2; i <= x; ++i)
8 s += i * (i-1) / 2;
9 std::cout << s << "\n";
10 return 0;
11 }

Solution to Exercise 45. For n = 0, the condition n % d != 0 is never satis�ed (0 is
divisible by any positive integer). It follows that the for statement performs no iteration,
meaning that d has value 2 after the for statement. The output is therefore (incorrectly)

0 is prime.

For n = 1, the program enters an in�nite loop: Since 1 is not divisible by any number
bigger than 1, the condition n % d != 0 will never be satis�ed, and the for statement
will not terminate.

The most transparent solution is to handle these two special cases separately, as
follows:

B.4. CONTROL STATEMENTS 327

1 // Program: prime_all.cpp

2 // Test if a given natural number is prime.

3

4 #include <iostream >

5

6 int main ()

7 {

8 // Input

9 unsigned int n;

10 std::cout << "Test if n>=0 is prime for n =? ";

11 std::cin >> n;

12

13 // deal with 0,1

14 if (n < 2) {

15 std::cout << n << " is not prime .\n";

16 return 0;

17 }

18

19 // Computation : test possible divisors d

20 unsigned int d;

21 for (d = 2; n % d != 0; ++d);

22

23 // Output

24 if (d < n)

25 // d is a divisor of n in {2,...,n -1}

26 std::cout << n << " = " << d << " * " << n / d << ".\n";

27 else

28 // no proper divisor found

29 std::cout << n << " is prime .\n";

30

31 return 0;

32 }

Solution to Exercise 46.

1 // Prog: fak -1. cpp

2 // compute the n!

3

4 #include <iostream >

5

6 int main ()

7 {

8 std::cout << "Factorial of n =? ";

9 int n;

10 std::cin >> n;

11

12 // computation

13 unsigned int fak = 1;

14 for (unsigned int i = 2; i <= n; ++i) fak *= i;

15

16 // output

17 std::cout << "Factorial of " << n << " is " << fak << ".\n";

18

19 return 0;

20 }

Solution to Exercise 47.

1 // Program: dec2bin.cpp

328 APPENDIX B. SOLUTIONS

2 // Output reverse binary representation of a number n

3

4 #include <iostream >

5

6 int main()

7 {

8 // input

9 std::cout << "Number n =? ";

10 unsigned int n;

11 std::cin >> n;

12

13 // computation and output

14 std::cout << "Reverse binary representation is: ";

15 do { // a while loop cannot correctly handle n == 0

16 std::cout << n % 2;

17 n /= 2;

18 } while (n > 0);

19 std::cout << "\n";

20

21 return 0;

22 }

Solution to Exercise 48.

1 // Prog: cross_sum .cpp

2 // compute the cross sum of a natural number

3

4 #include <iostream >

5

6 int main ()

7 {

8 std::cout << "Cross sum of n =? ";

9 unsigned int n;

10 std::cin >> n;

11

12 // computation

13 unsigned int cross = 0;

14 for (unsigned int m = n; m > 0; m /= 10) cross += m % 10;

15

16 // output

17 std::cout << "Cross sum of " << n << " is "

18 << cross << ".\n";

19

20 return 0;

21 }

Solution to Exercise 49.

1 // Program: perfect.cpp

2 // Find all perfect numbers up to an input number n

3

4 #include <iostream >

5

6 int main()

7 {

8 // input

9 std::cout << "Find perfect numbers up to n =? ";

10 unsigned int n;

11 std::cin >> n;

12

B.4. CONTROL STATEMENTS 329

13 // computation and output

14 std::cout << "The following numbers are perfect .\n";

15 for (unsigned int i = 1; i <= n ; ++i) {

16 // check whether i is perfect

17 unsigned int sum = 0;

18 for (unsigned int d = 1; d < i; ++d)

19 if (i % d == 0) sum += d;

20 if (sum == i)

21 std::cout << i << " ";

22 }

23 std::cout << "\n";

24

25 return 0;

26 }

The program output looks as follows.

Find perfect numbers from 1 to n =? 50000
The following numbers are perfect.
6 28 496 8128

Solution to Exercise 50. We start as in Exercise 47, but instead of outputting the digits
(which would then appear in reverse order), we use them to build up a number m whose
binary representation is the reverse of the binary representation of n. Then we proceed
again as in Exercise 47, but this time starting with m. We have to be careful not to lose
leading zeros in the binary representation of m, since we want to output them as well.
Therefore we also need to count the number of binary digits in n.

1 // Program: dec2bin2.cpp

2 // Output binary representation of a number n

3

4 #include <iostream >

5

6 int main()

7 {

8 // input

9 std::cout << "Number n =? ";

10 unsigned int n;

11 std::cin >> n;

12

13 // compute / count digits and build up number m with

14 // reverse representation

15 unsigned int digits = 0;

16 unsigned int m = 0;

17 do { // a while loop cannot correctly handle n == 0

18 ++ digits;

19 m = m * 2 + n % 2;

20 n /= 2;

21 } while (n > 0);

22

23 // now process m as in dec2bin.cpp

24 std::cout << "Binary representation is: ";

25 for (int d = 0; d < digits; ++d) {

26 std::cout << m % 2;

27 m /= 2;

28 }

29 std::cout << "\n";

30

31 return 0;

330 APPENDIX B. SOLUTIONS

32 }

Some people suggested that the problem can be solved with just one loop, as follows:

unsigned int s = 0;
for (unsigned int k=1; n>0; n/=2){

s += k * (n % 2);
k *= 10;

}
std::cout << s;

This performs the following \hack": it builds up a decimal number s whose digits are
just 0's and 1's. These digits are in fact exactly the digits of n's binary representation:
the digits of n are computed in reverse order and are successively prepended to s. This
means that in s, they appear in the right order.

The hack is that we can save the output loop as in dec2bin2.cpp above, by misusing
standard integer output to do it for us. This is a very nice solution, but it has one
drawback: the number s is substantially larger than n: where n needs k binary digits,
s needs k decimal digits. This implies that (on a 32-bit system) only numbers n up to
roughly 210 = 1024 can be processed, since beyond that, we get an over
ow in s.

Solution to Exercise 51.

1 // Prog: dice.cpp

2 // Pete rolls three four -sided dice , and Colin rolls 2 six -sided dice.

3 // What is the probability that Pete / Colin / nobody has the higher

4 // total number of points?

5 #include <iostream >

6 #include <cassert >

7

8 int main()

9 {

10 const unsigned int pete_throws = 4*4*4; // number of possibilities for Pete

11 const unsigned int colin_throws = 6*6; // number of possibilities for Colin

12 const unsigned int pairs_of_throws = pete_throws * colin_throws;

13

14 unsigned int pete_wins = 0; // pairs of throws won by Pete

15 unsigned int colin_wins = 0; // pairs of throws won by Colin

16 unsigned int draws = 0; // pairs of throws that are a draw

17

18 // now do the following: for each possible pair of throws

19 // (all of them have the same probability of occurring),

20 // compute the scores of both players and determine the

21 // winner (or that the throw is a draw)

22 for (unsigned int pete =0; pete < pete_throws; ++pete) {

23 // compute score of Pete , interpreting pete as a throw , i.e.

24 // a base -4 number with three digits

25 // (digit value i encodes i+1 points , i=0,1,2,3)

26 unsigned int pete_score = 0;

27 unsigned int p = pete;

28 for (int i=0; i<3; ++i) {

29 pete_score += p % 4 + 1;

30 p /= 4;

31 }

32 for (unsigned int colin =0; colin < colin_throws; ++ colin) {

33 // compute score of Colin , interpreting colin as a throw , i.e.

B.4. CONTROL STATEMENTS 331

34 // base -6 number with two digits

35 // (digit value i encodes i+1 points , i=0,1,2,3,4,5)

36 unsigned int colin_score = 0;

37 unsigned int c = colin;

38 for (int i=0; i<2; ++i) {

39 colin_score += c % 6 + 1;

40 c /= 6;

41 }

42 // who wins in this pair of throws?

43 if (pete_score > colin_score) ++ pete_wins;

44 if (pete_score < colin_score) ++ colin_wins;

45 if (pete_score == colin_score) ++ draws;

46 }

47 }

48 // compute the probabilities

49 std::cout << "Pete wins with probability "

50 << pete_wins << "/" << pairs_of_throws << ".\n";

51 std::cout << "Colin wins with probability "

52 << colin_wins << "/" << pairs_of_throws << ".\n";

53 std::cout << "Draw occurs with probability "

54 << draws << "/" << pairs_of_throws << ".\n";

55

56 return 0;

57 }

The output is

Pete wins with probability 1152/2304.
Colin wins with probability 870/2304.
Draw occurs with probability 282/2304.

After cancellation, these numbers are 1/2, 145/384, and 47/384. The game is therefore
not fair, since Pete is much better o�.

Solution to Exercise 52.

1 // Program: cole.cpp

2 // computes a nontrivial factor of 2^67 -1

3

4 #include <iostream >

5 #include <IFM/integer.h>

6

7 int main()

8 {

9 // build up 2^67 -1

10 ifm:: integer p = 1;

11 for (int i=0; i<67; ++i) p *= 2;

12 --p;

13

14 std::cout << "Factoring 2^67 -1 = " << p << "...\n";

15

16 // now try all potential divisors (odd numbers)

17 for (ifm:: integer d = 3; d < p; d += 2)

18 if (p % d == 0) {

19 std::cout << p << " = " << d << " * " << p / d << ".\n";

20 break;

21 }

22

23 return 0;

24 }

332 APPENDIX B. SOLUTIONS

Solution to Exercise 53.

1 // Prog: ulam_spiral .cpp

2 // draws the Ulam spiral

3

4 #include <iostream >

5 #include <IFM/window >

6

7 int main()

8 {

9 // read in spiral length

10 std::cout << "Draw Ulam spiral of length n =? (3 <= n <= 250000)\n";

11 unsigned int n;

12 std::cin >> n;

13

14 // open display window of appropriate size

15 ifm:: Wstream w (500, 500, "The Ulam spiral"); // fits all spirals

16

17 int x = 250; int y = 250; // start in the middle

18

19 // handle 2, 3 (they are prime)

20 w << ifm:: Point (x, y);

21 w << ifm:: Point (x, ++y);

22

23 // drawing direction , initially left

24 int dx = -1;

25 int dy = 0;

26

27 // how many pixels into this direction ?

28 int sidelength = 2; // for 4, 5

29

30 // main drawing loop (completes the spiral arm containing n)

31 for (unsigned int k = 4; k <= n;) {

32 for (int i = 0; i < sidelength; ++i) {

33 x += dx; y += dy;

34 // is k prime ?

35 unsigned int d;

36 for (d = 2; k % d != 0; ++d);

37 if (d == k)

38 w << ifm:: Point (x, y); // draw pixel

39 ++k;

40 }

41 // change direction

42 const int h = dx; dx = -dy; dy = h;

43 // sidelength grows before going right/left

44 if (dy == 0) ++ sidelength;

45 }

46

47 // wait for right mouse click

48 w.wait_for_mouse_click (3);

49

50 return 0;

51 }

Solution to Exercise 54. Here is the idea: we build up the placements columnwise,
where we represent a partial placement in the �rst column columns by a column-digit
number placement in base n; digit i encodes the position of the queen in column i

(from 0 (bottommost) to n − 1 (topmost)).
In fact, we represent placement by a value of type unsigned int; the digits in base

n can be accessed through repeated modulus and integral division operations with sec-

B.4. CONTROL STATEMENTS 333

ond operand n. The algorithm iteratively enumerates all threat-free partial placements.
Whenever the partial placement is full, we increase a solution counter.

In the beginning of each iteration, we are given a partial placement placement up to
column column, along with the information whether it is threat-free (in the beginning
(column = 0), the partial placement is empty (placement = 0) and obviously threat-
free). Moreover, we will maintain the invariant that placement restricted to columns
{1, . . . , c}, c < column is threat-free.

If the whole placement is threat-free, we extend it to the next column, where we
start with the queen in the bottommost position. The invariant still holds in this case.
The extension is done through a multiplication of placement by n. In the case where
we have a threat in placement, we switch to the next possible partial placement within
our current set of columns. This can simply be done by adding one to placement; the
least signi�cant base-n digits that have become 0 now correspond to columns where all
possible queen positions 0 through n − 1 have been tried already. Therefore we remove
these columns from our partial placement and continue with a shorter partial placement
up to the last column where not everything has been tried yet. Since this new placement

agrees with the old one except in its last column, we know that our invariant also holds
in this case.

After updating placement that way, we now have a new partial placement for which
we have to check whether it's threat-free. By the invariant we know that the partial
placement excluding the last column is threat-free, so we only have to check for threats
with the queen in the last column of our partial placement. This gives us the information
whether the current placement is threat-free, and we start all over again with the next
iteration. Here is the program.

1 // Program: n_queens.cpp

2 // compute number of solutions to the n-queens puzzle

3 // for given input number n (for 32-bit systems , this

4 // works up to n = 9 only); using the nonstandard g++

5 // type "unsigned long long" instead of "unsigned int"

6 // everywhere , the program works for larger values (but

7 // becomes very slow around n=14)

8

9 #include <iostream >

10

11 int main ()

12 {

13 // input

14 std::cout << "Solve n-queens puzzle for n =? ";

15 unsigned int n;

16 std::cin >> n;

17

18 unsigned int solutions = 0; // number of solutions

19 unsigned int placement = 0; // partial placement (base n)...

20 unsigned int column = 0; // ... up to this column

21 bool threat_free = true; // is the placement threat -free?

22

23 for (;;) {

24 if (threat_free && column < n) {

25 // extend placement to next column

26 placement *= n;

27 ++ column;

334 APPENDIX B. SOLUTIONS

28 } else {

29 if (threat_free) ++ solutions; // n == column

30 // try next placement up to this column

31 placement += 1;

32 while (placement % n == 0) {

33 // column exhausted , remove from placement

34 placement /= n;

35 --column;

36 }

37 if (column == 0) break; // everything tried , stop

38 }

39 // check whether placement is threat -free

40 threat_free = false; // we don ’t know yet

41 const unsigned int q_column = placement % n; // queen in column

42 unsigned int c = column -1; // column to the left

43 unsigned int p_c = placement / n; // placement up to c

44 while (c > 0) {

45 unsigned int q_c = p_c % n; // queen in c

46 // is q_column threatened by q_c?

47 if (q_c == q_column) break; // horizontal threat

48 if (q_c - q_column == column - c) break; // diagonal threat 1

49 if (q_column - q_c == column - c) break; // diagonal threat 2

50 --c; p_c /= n; // go one column left

51 }

52 if (c == 0) threat_free = true;

53 }

54

55 std::cout << solutions << " solutions\n";

56

57 return 0;

58 }

Solution to Exercise 55.

1 // Prog: famous_last_digits .cpp

2 // outputs the last 10 decimal digits of Mersenne prime 2^{43 ,112 ,609} -1

3

4 #include <iostream >

5 #include <IFM/integer.h>

6

7 int main()

8 {

9 // we compute 2^43112609 -1 modulo 10^10 = 10 ,000 ,000 ,000;

10 // this gives us the desired result. Since for all positive

11 // integers a, b, m

12 // (a+b) mod m = (a mod m + b mod m) mod m , and

13 // (a*b) mod m = (a mod m * b mod m) mod m,

14 // it follows that we can also compute all intermediate

15 // results modulo 10^10 , without making any mistake.

16 // We need long integers , though , since we don ’t have a

17 // sufficient number of digits otherwise

18

19 ifm:: integer m = 100000; // 10^5;

20 m = m * m; // 10^10;

21

22 // to compute 2^{43 ,112 ,609} quickly , we use "repeated squaring ":

23 // This works as follows: to compute n^p, we write p as 2q + r,

24 // where r is 0 or 1. Then n^p = (n^2)^q * n^r.

25 unsigned int p = 43112609;

26 ifm:: integer n = 2;

27 ifm:: integer result = 1;

28 while (p > 0) {

29 unsigned int r = p % 2;

B.4. CONTROL STATEMENTS 335

30 if (r > 0)

31 result = result * n % m; // *= n^r

32 p = p / 2; // q

33 n = n * n % m; // n^2

34 }

35

36 // now subtract 1 and output

37 std::cout << "Last 10 decimal digits: " << result - 1 << "\n";

38

39 return 0;

40 }

The output is 6697152511.

