
336 APPENDIX B. SOLUTIONS

B.5 Floating point numbers

Solution to Exercise 56.

type value lavlue/rvalue
a) bool true rvalue
b) int 5 rvalue
c) int 0 lvalue
d) double 0.5 rvalue
e) int 2 rvalue
f) int 2 lvalue

Solution to Exercise 57.

type value
(a) bool false

(b) double 0.5

(c) float 0.5

(d) bool true

(e) bool false

(f) int 11

(g) int 1

(h) bool false

(i) bool true

(j) double 5.5

Solution to Exercise 58.

a) 6 / 4 * 2.0f - 3 −→
1 * 2.0f - 3 −→
2.0f - 3 −→
-1.0f

b) 2 + 15.0e7f - 3 / 2.0 * 1.0e8 −→1.5�108>227

15.0e7f - 3 / 2.0 * 1.0e8 −→
15.0e7f - 1.5 * 1.0e8 −→
15.0e7f - 1.5e8 −→
0.0

c) 392593 * 2735.0f - 8192 * 131072 + 1.0 −→
binary: 1 0 . . . 0︸ ︷︷ ︸

23 times

0011111︸ ︷︷ ︸
get lost

f - 8192 * 131072 + 1.0 −→
1073741824.0f - 8192 * 131072 + 1.0 −→
1073741824.0f - 1073741824 + 1.0 −→

B.5. FLOATING POINT NUMBERS 337

0.0f + 1.0 −→
1.0

d) 16 * (0.2f + 262144 - 262144.0) −→
16 * (binary:1 0 . . . 0︸ ︷︷ ︸

18 times

.00110 0110︸︷︷︸
get lost

f - 262144.0) −→
16 * binary:0.0011 −→
3.0

Solution to Exercise 59.

a) This is easy and doesn't take any calculations: 0.25 = 1/4 = 1 � 2−2. As a binary
number, this is 0.01.

b) We employ the rules from Section 2.5.5.

1.52 → b0 = 1

2(1.52 − 1) = 2 � 0.52 = 1.04 → b−1 = 1

2(1.04 − 1) = 2 � 0.04 = 0.08 → b−2 = 0

2(0.08 − 0) = 2 � 0.08 = 0.16 → b−3 = 0

2(0.16 − 0) = 2 � 0.16 = 0.32 → b−4 = 0

2(0.32 − 0) = 2 � 0.32 = 0.64 → b−5 = 0

2(0.64 − 0) = 2 � 0.64 = 1.28 → b−6 = 1

2(1.28 − 1) = 2 � 0.28 = 0.56 → b−7 = 0

2(0.56 − 0) = 2 � 0.56 = 1.12 → b−8 = 1

2(1.12 − 1) = 2 � 0.12 = 0.24 → b−9 = 0

2(0.24 − 0) = 2 � 0.24 = 0.48 → b−10 = 0

2(0.48 − 0) = 2 � 0.48 = 0.96 → b−11 = 0

2(0.96 − 0) = 2 � 0.96 = 1.92 → b−12 = 1

2(1.92 − 1) = 2 � 0.92 = 1.84 → b−13 = 1

2(1.84 − 1) = 2 � 0.84 = 1.68 → b−14 = 1

2(1.68 − 1) = 2 � 0.68 = 1.36 → b−15 = 1

2(1.36 − 1) = 2 � 0.36 = 0.72 → b−16 = 0

2(0.72 − 0) = 2 � 0.72 = 1.44 → b−17 = 1

2(1.44 − 1) = 2 � 0.44 = 0.88 → b−18 = 0

2(0.88 − 0) = 2 � 0.88 = 1.76 → b−19 = 1

2(1.76 − 1) = 2 � 0.76 = 1.52 → b−20 = 1
...

Phew, �nally the sequence becomes periodic, and we get the binary expansion
1.10000101000111101011.

338 APPENDIX B. SOLUTIONS

c) We employ the rules from Section 2.5.5.

1.3 → b0 = 1

2(1.3 − 1) = 2 � 0.3 = 0.6 → b−1 = 0

2(0.6 − 0) = 2 � 0.6 = 1.2 → b−2 = 1

2(1.2 − 1) = 2 � 0.2 = 0.4 → b−3 = 0

2(0.4 − 0) = 2 � 0.4 = 0.8 → b−4 = 0

2(0.8 − 0) = 2 � 0.8 = 1.6 → b−5 = 1

2(1.6 − 1) = 2 � 0.6 = 1.2 → b−6 = 1
...

We see that the expansion is periodic and yields the binary number 1.01001.

d) We write 11.1 = 10 + 1.1 and add the binary expansion 1010.0 of 10 to the bi-
nary expansion 1.00011 of 1.1 derived in Section 2.5.5. The resulting expansion is
1011.00011.

Solution to Exercise 60.

a) 0.25 has normalized binary oating point representation 1.0 � 2−2 and is therefore
smaller than any number in F�(2, 5,−1, 2). The nearest number is therefore the
smallest number in this system, namely 0.5 with normalized binary representation
1.0 � 2−1. In F(2, 5,−1, 2), we can represent 0.25 exactly as 0.1 � 2−1.

b) 1.52 has normalized binary oating point representation 1.10000101000111101011 �
20. To get the nearest number in F�(2, 5,−1, 2), we have to round to 5 signi�cant
digits. The result is 1.1000 � 20 = 1.5, obtained by rounding down, since 1.1001 �
20 = 1.5625, obtained by rounding up, is farther away. The nearest number in
F(2, 5,−1, 2) is the same, since this system has only extra numbers smaller than
any normalized number. Such numbers cannot be nearest to numbers larger than
some normalized number.

c) 1.3 has normalized binary oating point representation 1.01001. To get the nearest
number in F�(2, 5,−1, 2), we have to round to 5 signi�cant digits. The result is
1.0101 � 20 = 1.3125, obtained from rounding up, since 1.0100 � 20 = 1.25, obtained
from rounding down, is farther away. The nearest number in F(2, 5,−1, 2) is the
same.

d) 11.1 is larger than any number in the system F�(2, 5,−1, 2). Recall that the largest
number is 1.1111 � 22 = 4+ 2+ 1+ 1/2+ 1/4 = 7.75, and this is the nearest number
to 11.1, also in F(2, 5,−1, 2).

B.5. FLOATING POINT NUMBERS 339

Solution to Exercise 61. The smallest normalized number is always 2emin . In case of
single precision, this is 2−126, for double precision, it is 2−1022. Recall that the largest
normalized number is

1 −

1

β

!p!
βemax+1.

For single precision, this yields

0
@1 −

1

2

!24
1
A 2128 = 2128 − 2104.

For double precision, we get

0
@1 −

1

2

!53
1
A 21024 = 21024 − 2971.

Solution to Exercise 62. For each exponent, F�(β, p, emin, emax) has β − 1 possibili-
ties for the �rst digit, and β possibilities for the remaining p − 1 digits. The size of
F�(β, p, emin, emax) is therefore

2(emax − emin + 1)(β − 1)βp−1,

if we take the two possible signs into account.
F(β, p, emin, emax) has extra nonnegative numbers of the form

0.d1 . . . dp−12
emin,

and there are βp−1 of them. Adding the non-positive ones and subtracting 1 for counting
0 twice, we get

2βp−1 − 1

extra numbers.

Solution to Exercise 63. The binary expansion of 0.1 is 0.00011, obtained from the
representation of 1.1 by subtracting 1. This value has to be rounded to the nearest value
with 24 signi�cant digits. Let us write out the expansion so that we get the �rst 26

signi�cant digits of 0.00011:

0.00011001100110011001100110011.

It follows that we have to round up to 1 at digit 24 to get the nearest float value

1.10011001100110011001101 � 2−4.

340 APPENDIX B. SOLUTIONS

To see how this value di�ers from 0.1, let's convert it back into decimal representation.
Interestingly, this is always possible without any error, since 0.1 (binary) is 0.5 (decimal),
0.01 (binary) is 0.25 (decimal), and so on. The decimal value that we obtain is

0.100000001490116119384765625.

Solution to Exercise 64. We compare oating point numbers for equality in i != 1.0,
although one of them (namely the value of i) is the result of inexact computations, as-
suming a base-2 oating point number system. The inexactness comes from the rounding
of 0.1 to a oating point number, and from the subsequent addition of numbers. In prac-
tice, this leads to an in�nite loop, since i != 1.0 will always be satis�ed.

Solution to Exercise 65. The problem is that this is an in�nite loop. Here is why:
The literal 100000000.0f has as its value the nearest float value to 108. What is this
value? It is 108: the binary representation of 108 is 101111101011110000100000000 (as
you can for example see by running program dec2bin2.cpp, see Exercise 50). This has
19 signi�cant digits and therefore easily �ts into a float value. But the total number
of binary digits of 108 is 27. Now, the loop tries to run through all numbers up to 108.
This works as long as the numbers have 24 or less binary digits in total, since they are
exactly representable as float values in this case.

But at some point, the loop reaches the number 224 which is the �rst one with a
25-digit binary representation, namely 1000000000000000000000000. This value is still
representable over the type float, since the number of signi�cant digits is 1. The next
number is 224 + 1 with binary representation 1000000000000000000000001. This is still
a number with 25 binary digits, but now all of them are signi�cant. A float value can
accommodate only 24 signi�cant digits, and the value is therefore being rounded to the
next representable number. In this case, there are two such numbers, 224 and 224 + 2,
and by the round-to-even rule, 224 is chosen.

Thus, the loop does not make progress beyond 224 which means that it never termi-
nates. The following program checks for the �rst repetition in the value of i.

1 // demonstrates the effect of floating -point arithmetic on

2 // a simple loop

3

4 #include <iostream >

5

6 int main()

7 {

8 // we suspect that i does not grow beyond 2^24 ,

9 // so we check whether this is really the case

10 float old_i = -1.0f;

11 for (float i = 0.0f; i < 100000000.0f; ++i)

12 if (i == old_i) {

13 // infinite loop!

14 std::cout << "loop gets stuck with i = " << int(i) << ".\n";

15 break;

16 } else

17 old_i = i;

18 return 0;

19 }

B.5. FLOATING POINT NUMBERS 341

On the authors' platform, the �rst repeating value is indeed 224:

loop gets stuck with i = 16777216.

Solution to Exercise 66.

1 // Prog: dec2float .cpp

2 // compute the float representation of a number

3 // in the open interval (0 ,2)

4

5 #include <iostream >

6

7 int main ()

8 {

9 // input

10 std::cout << "Decimal number x (0 < x < 2) =? ";

11 float x;

12 std::cin >> x;

13

14 // x = w * 2^e

15 float w = x;

16 int e = 0;

17

18 // as long as w < 1, decrement e and double w

19 for (; w < 1.0f; w *= 2.0f) --e;

20

21 // Now we have 1 <= w < 2, apply rule from lecture

22 std::cout << "Significand: ";

23 for (; w != 0.0; w = 2.0f * (w - int(w)))

24 std::cout << int(w);

25

26 std::cout << "\nExponent: " << e << "\n";

27

28 return 0;

29 }

Solution to Exercise 67.

1 // Prog: double_integer .cpp

2 // tests whether a given double value is integer

3 //

4 #include <iostream >

5

6 int main()

7 {

8 // input

9 std::cout << "Decimal number =? ";

10 double d;

11 std::cin >> d;

12 const double abs_d = d > 0 ? d: -d; // |d|

13

14 // |d| can be written in the form m * 2^e, where m is a

15 // natural number whose last binary digit is 1. Then |d| is

16 // integer if and only if e >=0. Having m, we can therefore

17 // conclude that d is integer if and only if |d| >= m

18

19 // step 1: normalize such that number is in [1 ,2)

20 double e = abs_d;

21 while (e >=2) e/=2; // ensure e < 2;

22 while (e < 1) e*=2; // ensure e >=1;

342 APPENDIX B. SOLUTIONS

23

24 // step 2: compute binary expansion m like in the lecture notes

25 double m = 0;

26 while (e > 0) {

27 // move last binary digit of e into m

28 m *= 2;

29 if (e >= 1) {

30 m += 1;

31 e = 2*(e-1);

32 } else

33 e = 2*e;

34 }

35

36 // step 3: compare with abs_d

37 std::cout << d;

38 if (abs_d >= m)

39 std::cout << " is integer .\n";

40 else

41 std::cout << " is not integer .\n";

42

43 return 0;

44 }

Solution to Exercise 68. Here is the program based on the �rst formula.

1 // Prog: pi1.cpp

2 // approximate pi according to first n terms of the formula

3 // pi = 4 - 4/3 + 4/5 - 4/7 ...

4

5 #include <iostream >

6

7 int main ()

8 {

9 // input

10 std::cout << "Number of iterations =? ";

11 unsigned int n;

12 std::cin >> n;

13

14 // computation (forward sum)

15 double pif = 0.0;

16 for (int i = 1; i < 2*n; i += 2)

17 if (i % 4 == 1)

18 pif += 4.0 / i;

19 else

20 pif -= 4.0 / i;

21

22 // computation (backward sum)

23 double pib = 0.0;

24 for (int i = 2*n-1; i > 0; i -= 2)

25 if (i % 4 == 1)

26 pib += 4.0 / i;

27 else

28 pib -= 4.0 / i;

29

30 // output

31 std::cout << "Pi is approximately "

32 << pif << " (forward sum), or "

33 << pib << " (backward sum); the difference is "

34 << pif - pib << "\n";

35

36 return 0;

37 }

B.5. FLOATING POINT NUMBERS 343

When you run it for n = 10, 000, for example, it gives on our platform the approxi-
mation 3.14139 (still o� in the fourth digit after the decimal point). For n = 100, 000,
we get 3.14157 (still o� in the �fth digit after the decimal point). For n = 1, 000, 000,
�nally, the result is correct to �ve digits after the decimal point: 3.14159.

Here is the approximation based on the second formula.

1 // Prog: pi2.cpp

2 // approximate pi according to the first n terms of the formula

3 // pi = 2 + 2*1 / 3 + 2*1*2 / 3*5 + 2*1*2*3 / 3*5*7

4

5 #include <iostream >

6

7 int main ()

8 {

9 // input

10 std::cout << "Number of iterations =? ";

11 unsigned int n;

12 std::cin >> n;

13

14 // auxiliary variables

15 // initialized for first term of forward sum (i=0)

16 double numer = 2.0; // numerator i-th term

17 double denom = 1.0; // denominator i-th term

18

19 // forward sum

20 // pif: value after term i (i=0 initially , then i=1,2,...,n -1)

21 double pif = 2.0;

22 for (int i = 1; i < n; ++i)

23 pif += (numer *= i) / (denom *= (2*i + 1)); // update to term i

24 // now numer and denom are the ones for i=n-1

25

26 // backward sum

27 // pib: value after term i (i=n-1 initially , then i=n -2 ,... ,1 ,0)

28 double pib = numer / denom;

29 for (int i = n-1; i >= 1; --i) {

30 pib += (numer /= i) / (denom /= (2*i + 1)); // update to term i-1

31 }

32

33 // output

34 std::cout << "Pi is approximately "

35 << pif << " (forward sum), or "

36 << pib << " (backward sum); the difference is "

37 << pif - pib << "\n";

38

39 return 0;

40 }

This already gives the result 3.14159 for n = 17 on our platform, so this version is
obviously preferable.

Solution to Exercise 69.

1 // Program: babylonian .cpp

2 // Approximation of the square root of a positive real number

3

4 #include <iostream >

5

6 int main (){

7

8 // Read input

344 APPENDIX B. SOLUTIONS

9 double s; // input number

10 const double eps = 0.001; // the epsilon , i.e. max square error

11

12 std::cout << "Which number do you want to take the square root of?";

13 std::cout << "\n";

14 std::cin >> s;

15

16 // Compute square root

17 double x = s / 2.0; // initialize solution

18 unsigned int n = 0; // counter for number of iterations

19

20 while (x * x - s >= eps || s - x * x >= eps) {

21 ++n;

22 x = (x + s / x) / 2.0;

23 }

24

25 std::cout << "The square root of " << s << " is: " << x << std::endl;

26 std::cout << "The number of iterations done: " << n << std::endl;

27

28 return 0;

29 }

Solution to Exercise 70.

1 // Program: fpsys.cpp

2 // Provide a graphical representation of floating point numbers

3

4 #include <iostream >

5 #include <IFM/window >

6

7 int main()

8 {

9 // Input parameters of floating point system

10 std::cout << "Draw F*(2,p,e_min ,e_max).\np =? ";

11 unsigned int p;

12 std::cin >> p;

13 std::cout << "e_min =? ";

14 int emin;

15 std::cin >> emin;

16 std::cout << "e_max =? ";

17 int emax;

18 std::cin >> emax;

19

20 // We compute significands using integral arithmetic , that is ,

21 // scaled by 2^(p -1).

22

23 // compute the smallest normalized significand 2^(p -1)

24 unsigned int smin = 1;

25 for (unsigned int i = 1; i < p; ++i) smin *= 2;

26 // compute the largest normalized significand (2^p)-1

27 const unsigned int smax = 2 * smin - 1;

28 // compute 2^ emin

29 double pemin = 1;

30 for (int i = 0; i < emin; ++i) pemin *= 2;

31 for (int i = 0; i > emin; --i) pemin /= 2;

32 // compute 2^ emax

33 double pemax = 1;

34 for (int i = 0; i < emax; ++i) pemax *= 2;

35 for (int i = 0; i > emax; --i) pemax /= 2;

36

37 // For each positive number x of the system draw a circle

38 // with radius x around the window center

39

B.5. FLOATING POINT NUMBERS 345

40 // parameters to scale output

41 const int cx = (ifm::wio.xmax() - ifm::wio.xmin ()) / 2;

42 const int cy = (ifm::wio.ymax() - ifm::wio.ymin ()) / 2;

43 const double scale = cx / (pemax * smax);

44

45 // zero

46 ifm::wio << ifm:: Point(cx, cy);

47 // loop over all normalized significands

48 for (unsigned int i = smin; i <= smax; ++i)

49 // loop over all exponents

50 for (double m = pemin; m <= pemax; m *= 2)

51 ifm::wio << ifm:: Circle(cx , cy , int(m * i * scale));

52

53 ifm::wio.wait_for_mouse_click ();

54 return 0;

55 }

Solution to Exercise 71. Mr. Plestudent is wrong. When we use the algorithm for
constructing the hexadecimal representation, we see a periodic pattern, just as for β = 2.

0.1 → b0 = 0

16(0.1 − 0) = 16 � 0.1 = 1.6 → b−1 = 1

16(1.6 − 1) = 16 � 0.6 = 9.6 → b−2 = 9

16(9.6 − 9) = 16 � 0.6 = 9.6 → b−3 = 9
...

Somewhat less formally, we can also argue as follows: the hexadecimal representation is
obtained from the binary one by repeatedly grouping 4 consecutive binary digits in {0, 1}

into one hexadecimal digit in {0, 1, . . . , 9, A, B, . . . , F}. Then, if the binary expansion is
in�nite, so will be the hexadecimal one.

Again a bit more formal for the careful reader: Let's assume we have a representation

1

10
=

p∑
i=1

di16−i.

We can write each di as a four-digit binary number:

di = di32
3 + di22

2 + di12
1 + di02

0, di3, di2, di1, di0 2 {0, 1}.

We then get

1

10
=

p∑
i=1

di16−i =

p∑
i=1

di2
−4i =

p∑
i=1

(

3∑
j=0

dij2
j)2−4i =

p∑
i=1

3∑
j=0

dij2
j−4i,

and this is a �nite binary oating-point number, in contradiction to the known fact there
is no such number.

Solution to Exercise 71. Because of

2−i = 5i � 10−i,

346 APPENDIX B. SOLUTIONS

we have

b =

k∑
i=1

bi2
−i =

k∑
i=1

(bi5
i)10−i,

where all values bi5
i are natural numbers. Thus, b is a �nite sum of numbers of the

form 10−i that obviously have (very simple) �nite decimal representations. But then the
sum also has �nite representation (just add the numbers up, using elementary school
arithmetic).

Solution to Exercise 73. Here is the characterization. γ re�nes β if and only if all prime
factors of β are also prime factors of γ. For example, 10 re�nes 2, since 2 is also a prime
factor of 10. But 2 does not re�ne 10, since 5 is a prime factor of 10 but not of 2. Maybe
surprisingly, a smaller number may re�ne a larger number, for example, 2 re�nes 16.

To prove the characterization, we need to show two directions. Let us �rst assume
that all prime factors of β are also prime factors of γ. Now consider any number

r = s �
p−1∑
i=0

diβ
−i � βe 2 F(β, p, emin, emax),

i.e. s 2 {−1, 1}, di 2 {0, . . . , β − 1} for all i, and e 2 {emin, . . . , emax}. Since all prime
factors of β are also prime factors of γ, there is some integer power γM of γ that is a
multiple of β (choose M such that every prime factor of γM has at least the multiplicity
that it has in β). So we have an integer m with

β �m = γM,

which implies that

β−i � βe = βe−i =

{
βe−iγ0, if e − i � 0,

mi−eγM(e−i), if e − i < 0.

This means that r is a �nite sum of integer powers of γ. Adding up all these powers
as we do in elementary school shows that r 2 F(γ, q, fmin, fmax) for suitable q, fmin, fmax.
Since F(β, p, emin, emax) contains only �nitely many numbers, we can choose q, fmin, fmax

that work for all of them, and we are done.
For the other direction, let us now assume that there is a prime factor t of β that

is not a prime factor of γ. We will show that there is a number in F(β, 2, 0, 0) that is
not contained in any system of the form F(γ, q, fmin, fmax). This number is simply β−1.
Suppose for a contradiction that we could write β−1 in the form

β−1 =

q−1∑
i=0

diγ
−i � γf.

B.5. FLOATING POINT NUMBERS 347

Multiplying the equation with a su�ciently large power γM of γ makes the right-hand
side (and thus also the left-hand side) integer. Hence,

γM

β

is integer, so γM is a multiple of β. This, however, is a contradiction to γ not containing
prime factor t.

Solution to Exercise 74.

1 // Prog: mandelbrot .cpp

2 // draws (a part of) the Mandelbrot set and allows the user to

3 // zoom in by clicking with the mouse on the region to be enlarged

4 //

5 // The Mandelbrot set is defined as the set of all complex numbers

6 // c such that the complex iteration formula z := z^2 + c (starting

7 // with z=0) always yields values z of absolute value at most two.

8 // In the computations below , we perform a large but fixed number

9 // of steps of this iteration for a given c; if all computed values

10 // are at most two in absolute value , we consider c as part of the

11 // Mandelbrot set (and depict its corresponding pixel in black),

12 // otherwise we draw a white pixel.

13

14 #include <IFM/window >

15

16 int main()

17 {

18 // the currently considered subset of the complex plane , initially

19 // [-2, 1] x [-1, 1] (covers the so -called main cardioid of the

20 // Mandelbrot set)

21 double r_min = -2; double r_max = 1;

22 double i_min = -1; double i_max= 1;

23

24 // window scaling factor; change this for larger/smaller display

25 // window

26 double window_scale = 500;

27

28 // zoom factor from one iteration to the next

29 double zoom_factor = 10;

30

31 // the display window dimensions in pixels (window should be

32 // congruent to the current complex plane subset)

33 int x_size = int (window_scale * (r_max - r_min));

34 int y_size = int (window_scale * (i_max - i_min));

35

36 // open the display window

37 ifm:: Wstream w (x_size , y_size ,

38 "The Mandelbrot set (click to zoom in)");

39

40 // maximum number of iterations (the higher , the more accurate;

41 // the lower , the faster)

42 unsigned int max_iter = 500;

43

44 // main drawing loop; one iteration for every zoom scale

45 for (;;) {

46 // go through all pixels

47 for (int x=0; x<x_size; ++x)

48 for (int y=0; y<y_size; ++y) {

49

50 // compute corresponding point in complex plane

348 APPENDIX B. SOLUTIONS

51 const double r = r_min + x / window_scale;

52 const double i = i_min + y / window_scale;

53

54 // do the Mandelbrot iteration for that point

55 // interpreted as complex number c = (r,i)

56 double r_z = 0; // z (real part)

57 double i_z = 0; // z (imaginary part)

58 unsigned int iter = 0;

59 while (iter < max_iter && r_z * r_z + i_z * i_z <= 4) {

60 // |z| <= 2; replace z by z^2 + c

61 double h = r_z * r_z - i_z * i_z + r; // new z_r

62 i_z = 2 * r_z * i_z + i; // new z_i

63 r_z = h;

64 ++iter;

65 }

66 // coloring: max_iter -> black , other -> white

67 if (iter == max_iter)

68 w.set_color (w.number_of_colors () -2); // black

69 else

70 w.set_color (w.number_of_colors () -1); // white

71 w << ifm:: Point (x, y);

72 }

73

74 // zoom in; new center is mouse click position

75 int x_c; int y_c;

76 w.get_mouse_click (x_c , y_c);

77 const double r_c = r_min + x_c / window_scale;

78 const double i_c = i_min + y_c / window_scale;

79 const double r_span = r_max - r_min;

80 const double i_span = i_max - i_min;

81 r_min = r_c - 0.5 * r_span / zoom_factor;

82 r_max = r_c + 0.5 * r_span / zoom_factor;

83 i_min = i_c - 0.5 * i_span / zoom_factor;

84 i_max = i_c + 0.5 * i_span / zoom_factor;

85 window_scale *= zoom_factor;

86 w.clear ();

87 }

88

89 return 0;

90 }

Solution to Exercise 75. CGAL is the Computational Geometry Algorithms Library,
an open source C++ library of data structures and algorithms for solving geometric
problems. The CGAL homepage is www.cgal.org.

CGAL::orientation is a function that determines for three given points p, q, r 2 R2

whether r lies to the left, on, or to the right of the oriented line through p and q. The
resulting values (CGAL::LEFTTURN, CGAL::COLLINEAR, or CGAL::RIGHTTURN) de�ne the
orientation of the point triple {p, q, r}. CGAL::LEFTTURN means that p, q, r appear in
counterclockwise order around the triangle spanned by p, q, r, while CGAL::RIGHTTURN

signals clockwise order. CGAL::COLLINEAR means that all three points are on a common
line, so the triangle is \at".

The writer of the email is surprised since the orientation of a point triple should not
change when all point coordinates are multiplied with a �xed scalar (in this case 100).
But in reality, it does change, at least according to the function CGAL::orientation.

The reason is that the integer coordinates of the points (14, 22), (15, 21), (19, 17)

can be converted to float or double (we don't exactly know which of the two the

B.5. FLOATING POINT NUMBERS 349

writer of the email is using) without any error. In contrast, some of the coordinates of
(0.14, 0.22), (0.15, 0.21), (0.19, 0.17) don't have �nite binary representations, so in con-
verting them to float or double, errors are inevitable. Since the points are math-
ematically collinear (on the same line), it is clear that the tiniest error is enough to
destroy this property. That's why CGAL::orientation delivers a result di�erent from
CGAL::COLLINEAR.

Here is what you could answer the writer of the email.

Hi,

assuming that you use type float or double to represent the point

coordinates, the inconsistency that you reported is due to the

conversion of point coordinates from the decimal input format to the

internally used binary format. Decimal integers like 14, 22 etc. can be

represented exactly in binary format, and CGAL::orientation returns

the correct answer CGAL::COLLINEAR for the three points with integer

coordinates. But decimal fractions like 0.14, 0.22 etc. do not

necessarily have finite representations in binary format. This is like

trying to write the number 1/3 as a decimal fraction. The best you can

do is 0.33333... but wherever you stop, you make a small error.

Now, CGAL::orientation sees the points (0.14, 0.22), (0.15, 0.21) and

(0.19,0.17) only after the conversion to binary format, and this

conversion introduces some (tiny) errors. But since the points are

mathematically collinear, even the tiniest errors may have the effect

of destroying collinearity. This is exactly what you observed.

The problem is inevitable in working with floating-point numbers, since

you cannot circumvent the decimal-to-binary conversion. All you can do

is to only use point coordinates (integers, for example) for which the

conversion is exact.

