
350 APPENDIX B. SOLUTIONS

B.6 Arrays and pointers

Solution to Exercise 76.

a) The program outputs 5 4 1 6 0. The �rst array element is always the �rst one to
be output by std::cout << *p, because p is initialized with a, and due to array-
to-pointer conversion, p then points to the �rst element of a. The assignment
p = a + *p changes p into a pointer to the element of index *p in the array (see
the paragraph on adding an integer to a pointer). Since *p is initially 5, we get the
element of index 5 next, which is 4. The next element is the one of index 4 (1),
followed by the ones of index 1 (6) and index 6 (0). At this point, p points again to
the �rst element of the array, so the condition p!=a fails, and the loop terminates.

b) The general structure is this: Let it be the index of the array element pointed to
by p after t iterations. We have i0 = 0, and it = a[it−1] for t > 0. The program
terminates as soon as it = 0 again for some t > 0. We must prove that this always
happens.

Assume for contradiction that 0 does not appear for a second time, so that we have
an in�nite loop. Since there are only n possible index values, some index distinct
from 0 must appear twice in the in�nite sequence i0, i1, Let k be some value
such that ik 6= 0 already appears among i0, . . . , ik−1, and let 0 < ` < k be such that
i` = ik. By de�nition of the sequence, it follows that

a[ik−1] = ik = i` = a[i`−1],

where k − 1 6= ` − 1. But this gives the desired contradiction, since the array a was
initialized with a sequence of pairwise distinct numbers.

Solution to Exercise 77. In a), we use

int* p = a+i; // address of element of index i

Note that

int* p = &a[i]; // address of element of index i

also works, unless i = n, since n is an out-of-bound index. A past-the-end pointer can
therefore only be obtained from the �rst variant.

In b), we use pointer subtraction:

int i = p-a; // distance between *p and a[0] in the array

Solution to Exercise 78.
Problem 1:

The pointer b has been declared as a constant, but later it is incremented (*b++). This
won't compile. Fix: remove the const. Now the program at least compiles. . .

B.6. ARRAYS AND POINTERS 351

Problem 2:
In the �rst loop, the range that p points to is too large by one address. Fix: p <= a+7

should be p < a+7.
Problem 3

A similar problem also appears in the second loop. Inside the loop a and b are accessed
by one too many values for index i. Fix: i<=7 should be i<7.

Problem 4
The cross-check in the second loop goes wrong, because b doesn't point to the beginning
of the dynamically created array any more. Fix: copy the pointer b to a pointer d before
the �rst loop, and iterate over the pointer d in the second loop. Then, we can also
reintroduce the const for b.

Problem 5
The wrong type of delete-operator is used. Fix: delete should be delete[].

If all these �xed are applied, there is still one logical const missing for const-
correctness. The loop pointer p should have underlying type const int to reect the
fact that the loop does not change the array a that it loops over.

Here is the resulting correct program.

1 #include <iostream >

2

3 int main()

4 {

5 int a[7] = {0, 6, 5, 3, 2, 4, 1}; // static array

6 int* const b = new int [7];

7 int* d = b;

8

9 // copy a into b using pointers

10 for (const int* p = a; p < a+7; ++p)

11 *d++ = *p;

12

13 // cross -check with random access

14 for (int i = 0; i < 7; ++i)

15 if (a[i] != b[i])

16 std::cout << "Oops , copy error ...\n";

17

18 delete [] b;

19

20 return 0;

21 }

Solution to Exercise 79. We recycle the program eratosthenes2.cpp (Program 15);
instead of maintaining the information whether a number has been crossed out, we
maintain the information about the number of di�erent prime divisors.

1 // Program: k_composite .cpp

2 // Calculate k- composite numbers in {2 ,...,n -1} using

3 // a variant of Eratosthenes ’ sieve.

4

5 #include <iostream >

6

7 int main()

8 {

352 APPENDIX B. SOLUTIONS

9 // input of k

10 std::cout << "Compute k-composite numbers for k =? ";

11 unsigned int k;

12 std::cin >> k;

13

14 // input of n

15 std::cout << "Compute " << k

16 << "-composite numbers in {2,...,n-1} for n =? ";

17 unsigned int n;

18 std::cin >> n;

19

20 // definition and initialization : provides us with

21 // unsigned integers composition [0] ,... , composition [n -1]

22 unsigned int* const composition = new unsigned int [n];

23 for (unsigned int i = 0; i < n; ++i)

24 composition[i] = 0; // no information yet

25

26 // computation and output

27 std::cout << k << "-composite numbers in {2,...,"

28 << n-1 << "}:\n";

29 for (unsigned int i = 2; i < n; ++i) {

30 if (composition[i] == 0) {

31 // i is prime: add 1 to composition number of all

32 // multiples (including i)

33 for (unsigned int m = i; m < n; m += i)

34 ++ composition[m];

35 }

36 // now the composition number of i is up -to -date

37 if (composition[i] == k)

38 std:: cout << i << " ";

39 }

40 std::cout << "\n";

41

42 delete [] composition; // free dynamic memory

43

44 return 0;

45 }

The following are the 8 di�erent 7-composite numbers smaller than 1, 000, 000: 510510,
570570, 690690, 746130, 870870, 881790, 903210, 930930.

Solution to Exercise 80. One trick here is that computations with indices modulo 3 save
us the signs (−1)i+j.

1 // Prog: inverse_matrix .cpp

2 // read in a 3x3 matrix A, compute ins inverse A^{-1},

3 // and output it along with A x A^{ -1} as a crosscheck

4

5 #include <iostream >

6

7 int main()

8 {

9 // read in A (as a sequence of 9 numbers)

10 double a[3][3];

11 for (int i=0; i<3; ++i)

12 for (int j=0; j<3; ++j)

13 std::cin >> a[i][j];

14

15 // compute determinant of A via Sarrus ’ rule

16 double det = 0;

17 for (int i=0; i<3; ++i)

18 det += a[0][i] * a[1][(i+1)%3] * a[2][(i+2)%3]

B.6. ARRAYS AND POINTERS 353

19 - a[2][i] * a[1][(i+1)%3] * a[0][(i+2)%3];

20

21 // compute (and output) entries of A^{ -1} through Cramer ’s rule

22 std::cout << "A^-1 = \n";

23 double a_inv [3][3];

24 for (int i=0; i<3; ++i) {

25 for (int j=0; j<3; ++j)

26 std::cout

27 << (

28 a_inv[i][j] = ((a[(j+1)%3][(i+1)%3]*a[(j+2)%3][(i+2)%3]) -

29 (a[(j+1)%3][(i+2)%3]*a[(j+2)%3][(i+1)%3])) / det)

30 << " ";

31 std::cout << "\n";

32 }

33

34 // crosscheck

35 std::cout << "A * A^-1 = \n";

36 for (int i=0; i<3; ++i) {

37 for (int j=0; j<3; ++j)

38 // output (A x A^{ -1})_{ij}

39 std::cout <<

40 a[i][0]* a_inv [0][j]+

41 a[i][1]* a_inv [1][j]+

42 a[i][2]* a_inv [2][j] << " ";

43 std::cout << "\n";

44 }

45

46 return 0;

47

48 }

Solution to Exercise 81.

1 // Program: read_array .cpp

2 // read a sequence of n numbers into an array

3 #include <iostream >

4

5 int main()

6 {

7 // input of n

8 unsigned int n;

9 std::cin >> n;

10

11 // dynamically allocate array

12 int* const a = new int[n];

13

14 // read into the array

15 for (int i=0; i<n; ++i) std::cin >> a[i];

16

17 // output what we have

18 for (int i=0; i<n; ++i) std::cout << a[i] << " ";

19 std::cout << "\n";

20

21 // delete array

22 delete [] a;

23

24 return 0;

25

26 }

Solution to Exercise 82.

354 APPENDIX B. SOLUTIONS

1 // Program: sort_array .cpp

2 // read a sequence of n numbers into an array ,

3 // sort them , and output the sorted sequence

4 #include <iostream >

5

6 int main()

7 {

8 // input of n

9 unsigned int n;

10 std::cin >> n;

11

12 // dynamically allocate array

13 int* const a = new int[n];

14

15 // read into the array

16 for (int i=0; i<n; ++i) std::cin >> a[i];

17

18 // sort array: in round i=0 ,... ,n-2 we find

19 // the smallest element in a[i],...,a[n -1] and

20 // interchange it with a[i]

21 for (int i=0; i<n-1; ++i) {

22 // find minimum in a[i],...,a[n -1]

23 int i_min = n-1; // index of minimum

24 for (int j=i; j<n-1; ++j)

25 if (a[j] < a[i_min]) i_min = j;

26 // interchange a[i] with a[i_min]

27 const int h = a[i]; a[i] = a[i_min]; a[i_min] = h;

28 }

29

30 // output sorted sequence

31 for (int i=0; i<n; ++i) std::cout << a[i] << " ";

32 std::cout << "\n";

33

34 // delete array

35 delete [] a;

36

37 return 0;

38

39 }

Solution to Exercise 83.

1 // Program: cycles.cpp

2 // read a sequence of n numbers into an array; if the sequence

3 // encodes a permutation of {0,...,n-1}, output its cycle

4 // decomposition

5

6 #include <iostream >

7

8 int main()

9 {

10 // input of n

11 unsigned int n;

12 std::cin >> n;

13

14 // dynamically allocate array for the numbers , and a

15 // second array of booleans to keep track of which

16 // numbers are present

17 int* const a = new int[n];

18 bool* const present = new bool[n];

19

20 // initialize array present

B.6. ARRAYS AND POINTERS 355

21 for (bool* r=present; r<present+n; ++r) *r = false;

22

23 // read number into the array and remember that it was read

24 for (int* p=a; p<a+n; ++p) {

25 std::cin >> *p;

26 if (*p >= 0 && *p < n)

27 present [*p] = true;

28 }

29

30 // check whether we have read all numbers in {0,... ,n -1}

31 bool ok = true;

32 for (bool* r=present; r<present+n; ++r)

33 if (!*r) {

34 std::cout << "input sequence does not encode a permutation .\n";

35 ok = false;

36 break;

37 }

38

39 if (ok) {

40 // do the cycle decomposition . Here we reuse the array present

41 // and remove from it all numbers that we have already put into

42 // some cycle

43 std::cout << "cycle decomposition is ";

44 int next = 0; // next number not yet put into a cycle

45 while (next < n) {

46 // output cycle starting with next; we must come back to next

47 // below: assuming we would come back to some other element

48 // on the cycle , that element would have two preimages under

49 // pi , a contradiction

50 const int first = next;

51 std::cout << "(";

52 do {

53 std::cout << next << " ";

54 present[next] = false;

55 next = a[next]; // next -> pi(next)

56 } while (next != first);

57 std::cout << ") ";

58

59 // find start element of next cycle

60 while (! present[next]) ++next;

61 }

62 std::cout << "\n";

63 }

64 // delete arrays

65 delete [] present;

66 delete [] a;

67

68 return 0;

69

70 }

Solution to Exercise 84. Let s = a . . . ab (i.e. m − 1 a's followed by one b); let t = a . . . a

(i.e. n a's). Then the algorithm must always go through all m characters of any window
in order to �nd the mismatch with b at the last position. Since it in total processes
n − m + 1 windows {1, . . . ,m} up to {n − m + 1, . . . , n}, the number of comparisons is
m(n − m + 1).

Solution to Exercise 85.

1 // Program: threedim_array .cpp

356 APPENDIX B. SOLUTIONS

2 // iterate over a multidimensional array

3 #include <iostream >

4

5 int main()

6 {

7 int a[4][2][3] =

8 { // the 4 elements of a:

9 { // the 2 elements of a[0]:

10 {2, 4, 5}, // the three elements of a[0][0]

11 {4, 6, 7} // the three elements of a[0][1]

12 },

13 { // the 2 elements of a[1]:

14 {1, 5, 9}, // the three elements of a[1][0]

15 {4, 6, 1} // the three elements of a[1][1]

16 },

17 { // the 2 elements of a[2]:

18 {5, 9, 0}, // the three elements of a[2][0]

19 {1, 5, 3} // the three elements of a[2][1]

20 },

21 { // the 2 elements of a[3]:

22 {6, 7, 7}, // the three elements of a[3][0]

23 {7, 8, 5} // the three elements of a[3][1]

24 }

25 };

26

27 for (const int (*i)[2][3] = a; i < a + 4; ++i) {

28 // i (pointer to int [2][3]) points to a[0] ,... ,a[3]

29 // *i therefore assumes the values a[0] ,... ,a[3]

30 for (const int (*j)[3] = *i; j < *i + 2; ++j) {

31 // j (pointer to int [3]) points to a[i][0] ,... ,a[i][1]

32 // *j therefore assumes the values a[i][0] ,... ,a[i][1]

33 for (const int* k = *j; k < *j + 3; ++k)

34 // k (pointer to int) points to a[i][j][0] ,...a[i][j][2]

35 // *k therefore assumes the values a[i][j][0] ,...a[i][j][2]

36 std::cout << *k << " ";

37 std::cout << "\n";

38 }

39 std::cout << "\n";

40 }

41

42 return 0;

43

44 }

Some people might be tempted by the following kind of approach:

1 // Program: threedim_array .cpp

2 // (erroneously) iterate over a multidimensional array

3 #include <iostream >

4

5 int main()

6 {

7 int a[4][2][3] =

8 { // the 4 elements of a:

9 { // the 2 elements of a[0]:

10 {2, 4, 5}, // the three elements of a[0][0]

11 {4, 6, 7} // the three elements of a[0][1]

12 },

13 { // the 2 elements of a[1]:

14 {1, 5, 9}, // the three elements of a[1][0]

15 {4, 6, 1} // the three elements of a[1][1]

16 },

17 { // the 2 elements of a[2]:

B.6. ARRAYS AND POINTERS 357

18 {5, 9, 0}, // the three elements of a[2][0]

19 {1, 5, 3} // the three elements of a[2][1]

20 },

21 { // the 2 elements of a[3]:

22 {6, 7, 7}, // the three elements of a[3][0]

23 {7, 8, 5} // the three elements of a[3][1]

24 }

25 };

26

27 const int* p = a[0][0]; // pointer to a [0][0][0]

28 for (int i=0; i<24; ++i)

29 std::cout << *p++ << " ";

30

31 std::cout << "\n";

32

33 return 0;

34 }

This indeed does not contradict anything written in Section 2.6; in particular, any
operation ++p (which reduces to p+1 plus an assignment) has the property that both p

as well as p+1 point to elements (or past the end) of the same array. However, that
array changes during the increment. For the �rst three ++p's, it's the array a[0][0],
for the second three, it's a[0][1], and so on. But changing the array during pointer
increment is not allowed by the C++standard; in fact, the standard allows (by not
forbidding it) implementations of pointer arithmetic that perform bounds checking. Such
an implementation might give you a runtime error if you try to increment p further than
past the end of a[0][0], the array on which the pointer logically \lives".

Solution to Exercise 86. The trick is to use characters (which have integral values) directly
as array indices.

1 // Program: frequencies .cpp

2 // output frequencies of the letters in an input text

3

4 #include <iostream >

5

6 int main ()

7 {

8 // array for number of occurences of every ASCII character

9 int frequency [128];

10 for (int i=0; i <128; ++i) frequency[i] = 0;

11

12 // now scan the text

13 char c; // next character

14 unsigned int total = 0; // text length

15 while (std::cin >> c) {

16 ++ total;

17 ++ frequency[c];

18 }

19

20 // output

21 unsigned int letters = 0; // number of letters

22 std::cout << "Frequencies: \n";

23 for (char c = ’a’; c <= ’z’; ++c) {

24 const int f = frequency[c] + frequency[c -32]; // lower + upper case c

25 letters += f;

26 std::cout << c << ": " << f << " of " << total << "\n";

27 }

358 APPENDIX B. SOLUTIONS

28 std::cout << "Other: " << total -letters << " of " << total << "\n";

29

30 return 0;

31 }

Solution to Exercise 87. Here is a solution. We initially dynamically allocate an array
of length n = 1 (pointed to by a pointer a), and whenever the next sequence element
wouldn't �t anymore, we replace the array by a new one of length 2n. For this, we
�rst dynamically allocate a helper array, copy the contents of the current array into the
helper array, delete the current array and then let a point to the newly allocated helper
array.

1 // Program: read_array .cpp

2 // read a sequence of numbers into an array

3 #include <iostream >

4

5 int main()

6 {

7 int n = 1; // current array size

8 int k = 0; // number of elements read so far

9

10 // dynamically allocate array

11 int* a = new int[n]; // this time , a is NOT a constant

12

13 // read into the array

14 while (std::cin >> a[k]) {

15 if (++k == n) {

16 // next element wouldn ’t fit; replace the array a by

17 // a new one of twice the size

18 int* b = new int[n*=2]; // get pointer to new array

19 for (int i=0; i<k; ++i) // copy old array to new one

20 b[i] = a[i];

21 delete [] a; // delete old array

22 a = b; // let a point to new array

23 }

24 }

25

26 // output the first k elements

27 for (int i=0; i<k; ++i) std::cout << a[i] << " ";

28 std::cout << "\n";

29

30 // delete array

31 delete [] a;

32

33 return 0;

34

35 }

This is space and time e�cient. The constant of proportionality in (i) is 3: whenever
we grow the array (and these are the points in time where the ratio between memory
cells in use and k is largest), we allocate a new array of length 2n = 2k, in addition to
the one of length k that we already have. This means that we have 3k memory cells in
use at that time.

The constant of proportionality in (ii) is 3 as well. To see this, let us consider the
situation after an execution of the while loop, where k is the number of elements read so
far. There have been k assignments to array elements in the loop's condition, and some

B.6. ARRAYS AND POINTERS 359

additional assignments during the copying of old to new array. Such assignments took
place when the number of elements currently read was a power of two less or equal to k,
and the number of these additional assignments was exactly the power of two in question.
Since the sum of all powers of two less or equal to k is at most k + k/2 + k/4 + � � � � 2k,
the total number of assignments is bounded by k + 2k = 3k.

Solution to Exercise 88. Here is the faster program.

1 #include <iostream >

2 #include <cassert >

3

4 int main()

5 {

6 // read floor dimensions

7 int n; std::cin >> n; // number of rows

8 int m; std::cin >> m; // number of columns

9

10 // dynamically allocate twodimensional array of dimensions

11 // (n+2) x (m+2) to hold the floor plus extra walls around

12 int** const floor = new int*[n+2];

13 for (int r=0; r<n+2; ++r)

14 floor[r] = new int[m+2];

15

16 // we need another two arrays for storing row and column

17 // indices of already labeled cells;

18 int* const labeled_r = new int[n*m];

19 int* const labeled_c = new int[n*m];

20

21 // in order to search for new cells to be labeled , we

22 // always start from the first labeled cell whose neighbors

23 // have not been looked at yet;

24 int next_l = 0; // index of this cell

25

26 // whenever we label a cell , we append it to the list of

27 // labeled cells; that way , the cells are ordered by label

28 // in the list

29 int last_l = 0; // one plus index of last cell in this list

30

31 // target coordinates , set upon reading ’T’

32 int tr = 0;

33 int tc = 0;

34

35 // assign initial floor values from input:

36 // source: ’S’ -> 0 (source reached in 0 steps)

37 // target: ’T’ -> -1 (number of steps still unknown)

38 // wall: ’X’ -> -2

39 // empty cell: ’-’ -> -1 (number of steps still unknown)

40 for (int r=1; r<n+1; ++r)

41 for (int c=1; c<m+1; ++c) {

42 char entry = ’-’;

43 std::cin >> entry;

44 if (entry == ’S’) {

45 floor[r][c] = 0;

46 labeled_r[last_l] = r;

47 labeled_c[last_l] = c;

48 ++ last_l;

49 }

50 else if (entry == ’T’) floor[tr = r][tc = c] = -1;

51 else if (entry == ’X’) floor[r][c] = -2;

52 else if (entry == ’-’) floor[r][c] = -1;

53 }

360 APPENDIX B. SOLUTIONS

54

55 // add surrounding walls

56 for (int r=0; r<n+2; ++r)

57 floor[r][0] = floor[r][m+1] = -2;

58 for (int c=0; c<m+2; ++c)

59 floor [0][c] = floor[n+1][c] = -2;

60

61 // main loop: process next labeled cell until done

62 while (next_l != last_l) {

63 const int r = labeled_r[next_l];

64 const int c = labeled_c[next_l];

65 const int i = floor[r][c];

66 assert (i >= 0);

67 // label the unlabeled neighbors by i+1

68 for (int rr = r-1; rr <= r+1; ++rr)

69 for (int cc = c-1; cc <= c+1; ++cc)

70 if ((rr == r || cc == c) && floor[rr][cc] == -1) {

71 // we have a neighbor , and it’s not labeled yet

72 floor[rr][cc] = i+1;

73 labeled_r[last_l] = rr;

74 labeled_c[last_l] = cc;

75 ++ last_l;

76 }

77 ++ next_l;

78 }

79

80 // mark shortest path from source to target (if there is one)

81 int r = tr; int c = tc; // start from target

82 while (floor[r][c] > 0) {

83 const int d = floor[r][c] - 1; // distance one less

84 floor[r][c] = -3; // mark cell as being on shortest path

85 // go to some neighbor with distance d

86 if (floor[r-1][c] == d) --r;

87 else if (floor[r+1][c] == d) ++r;

88 else if (floor[r][c-1] == d) --c;

89 else ++c; // (floor[r][c+1] == d)

90 }

91

92 // print floor with shortest path

93 for (int r=1; r<n+1; ++r) {

94 for (int c=1; c<m+1; ++c)

95 if (floor[r][c] == 0) std::cout << ’S’;

96 else if (r == tr && c == tc) std::cout << ’T’;

97 else if (floor[r][c] == -3) std::cout << ’o’;

98 else if (floor[r][c] == -2) std::cout << ’X’;

99 else std::cout << ’-’;

100 std::cout << "\n";

101 }

102

103 // delete dynamically allocated arrays

104 delete [] labeled_c;

105 delete [] labeled_r;

106 for (int r=0; r<n+2; ++r)

107 delete [] floor[r];

108 delete [] floor;

109

110 return 0;

111 }

Solution to Exercise 89. The idea is to try all possible combinations of a, b, c within
prespeci�ed ranges. In order to make this fast, some tricks are needed, though. First of
all, we use Eratosthenes' Sieve in order to precompute the information whether a given

B.6. ARRAYS AND POINTERS 361

number that may arise as |an2 + bn + c| is prime. Then we use another array to mark
the primes that we have seen in a run of primes; the trick here is to delete the markers
again in an e�cient way. The following program discovers a quadratic polynomial of
Euler quality 45, namely

36n2 − 810n + 2753.

1 // Program: euler_prime .cpp

2 // Finds a,b,c within specified bounds such that

3 // the formula |an^2 + bn + c| produces the largest

4 // number of distinct consecutive primes , starting

5 // with n = 0

6

7 #include <iostream >

8 #include <cassert >

9

10 int main ()

11 {

12 // by multiplying with -1, if necessary , we may assume c >= 0

13 const int arange = 100; // a in {-arange +1,..., arange -1}

14 const int brange = 1000; // b in {-brange +1,..., brange -1}

15 const int crange = 10000; // c in {2,... , crange -1}

16

17 // first , compute all primes in the set {an^2 + bn + c} where a, b, c

18 // run through their ranges and n is smaller than 100 (we’re not

19 // searching for longer runs of primes here)

20 const int max_elem = arange * 10000 + brange * 100 + crange;

21

22 // run Eratosthenes ’ sieve

23 bool prime[max_elem];

24 for (int i = 2; i < max_elem; ++i)

25 prime[i] = true;

26 for (int i = 2; i < max_elem; ++i)

27 if (prime[i]) {

28 // cross out all proper multiples of i

29 for (int m = 2*i; m < max_elem; m += i)

30 prime[m] = false;

31 }

32

33 // now search for the best a, b, c

34 int best_run = 0;

35 int best_a = arange;

36 int best_b = brange;

37 int best_c = crange;

38

39 // array to keep track of primes we have already seen in a run

40 bool seen_before[max_elem];

41 for (int i = 2; i < max_elem; ++i)

42 seen_before[i] = false;

43

44 // loop over all candidate triples (a,b,c)

45 for (int c = 2; c < crange; ++c) {

46 if (!prime[c]) continue; // not even a prime for n = 0

47 for (int a = -arange +1; a < arange; ++a)

48 for (int b = -brange +1; b < brange; ++b) {

49 // evaluate elem = an^2 + bn + c for n=0 ,1 ,...

50 int n = 0;

51 int elem = c;

52 for (; n < 100; ++n) {

53 const int abs_elem = elem < 0 ? -elem: elem;

54 if (abs_elem < 2 || !prime[abs_elem]) break; // not a prime

362 APPENDIX B. SOLUTIONS

55 if (seen_before[abs_elem]) break; // repeated prime

56 seen_before[abs_elem] = true; // new prime

57 // update element

58 elem += a * (2*n + 1) + b;

59 }

60 // now we have seen a run of n primes (for 0,...,n -1)

61 if (n > best_run) {

62 best_run = n;

63 best_a = a;

64 best_b = b;

65 best_c = c;

66 }

67 // remove the " seen_before " markers for the next run

68 elem = c;

69 for (int k=0; k<n; ++k) {

70 const int abs_elem = elem < 0 ? -elem: elem;

71 seen_before[abs_elem] = false;

72 elem += a * (2*k + 1) + b;

73 }

74 }

75 }

76

77 std::cout << "Best a = " << best_a << ".\n";

78 std::cout << "Best b = " << best_b << ".\n";

79 std::cout << "Best c = " << best_c << ".\n";

80 std::cout << "Euler quality = " << best_run << ".\n";

81

82 return 0;

83 }

Solution to Exercise 90.

1 // Prog: xbm.cpp

2 // includes an xbm file and outputs the xbm -file that corresponds

3 // to the image rotated by 90 degrees

4

5 #include <iostream >

6 #include <cassert >

7 #include "original.xbm"

8 #define width original_width

9 #define height original_height

10 #define bits original_bits

11

12 int main()

13 {

14 // array for mapping from {0 ,... ,15} to {’0’,...,’f ’}

15 char hex[] = {’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

16 ’8’, ’9’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’};

17

18 // output header for rotated image

19 std::cout << "#define rotated_width " << height << "\n";

20 std::cout << "#define rotated_height " << width << "\n";

21 std::cout << "static unsigned char rotated_bits [] = {\n";

22

23 // go through the pixels columnwise (from right to left),

24 // and within each column , proceed from top to bottom

25 const unsigned int columns = (width +7)/8; // bytes in row (original)

26 const unsigned int rows = (height +7)/8; // bytes in column (rotated)

27 bool comma = false; // not before first byte

28 for (int c=columns -1; c>=0; --c) {

29 // go through columns from right to left

30 for (int d=128; d>0; d/=2) {

31 // for d = 2^j, we are in column c+j

B.6. ARRAYS AND POINTERS 363

32 for (int r=0; r<rows; ++r) {

33 // go through rows from top to bottom and build

34 // up one byte from any 8 pixels (least significant

35 // digit comes from pixel in first of these rows)

36 int byte = 0;

37 for (int i=7; i>=0; --i) {

38 // we are in row 8r+i

39 int pixel;

40 if (8*r+i >= height)

41 // non -existing row , fill up with zeros

42 pixel = 0;

43 else

44 // get pixel in row 8r+i and column c+j

45 pixel = (unsigned char)(bits [(8*r+i)* columns+c])/d%2;

46 byte = 2*byte+pixel;

47 }

48 if (comma) std::cout << ", "; comma = true;

49 std::cout << "0x" << hex[byte /16] << hex[byte %16];

50 }

51 }

52 std::cout <<"\n";

53 }

54 std::cout << "}\n;";

55

56 return 0;

57

58 }

