B. 7 A first $\mathrm{C}++$ function

Solution to Exercise 91.

a) // POST: return value is the maximum of i, j and k
b) // PRE: O not contained in \{i,..., j\}
// POST: return value is the sum $1 / i+1 /(i+1)+\ldots+1 / j$

Solution to Exercise 92.

a) If i is odd, the execution does not reach a return statement, and the function call expression is invalid. It seems that we want a function that returns true if and only if i is even. This can be done as follows.

```
bool is_even (int i)
{
    // POST: return value is true if and only if i is even
    return (i % 2 == 0);
}
```

b) If x has value 0 , result will never be set to a defined value. The corresponding function call expression has undefined value. To fix this, we can either make $\mathrm{x}!=0.0$ a precondition (but then we don't have to check it like the function does it), or we can invent some return value for the case where x has value 0 . In any case, we don't need the variable result. Here are the two variants.

```
double inverse (double x)
{
    // PRE: x != 0
    // POST: return value is 1/x
    return 1.0 / x;
}
double inverse (double x)
{
    // POST: return value is 1/x for x !=0, and O otherwise
    if (x != 0.0)
        return 1.0 / x;
    else
        return 0.0;
}
```

Solution to Exercise 93. The program outputs the 7 -th power of the input value i. The computation takes place in the function g that multiplies i with $f(i)\left(i^{2}\right)$ and $f(f(i))$ (i^{4}).

Solution to Exercise 94. Here are the three problems.
a) The call of $g(2.0 * x)$ in the function body of f is not in the scope of the function g , since that function is only declared later through its definition. Consequently, g cannot be used in f .
b) In the function g, the modulus operator is used with double operands, but for floating point number type operands, there is no modulus operator.
c) The function body of h is not in the scope of the variable result, since that variable is only declared later. Consequently, result cannot be used in h .

Solution to Exercise 95

```
// Program: fpsys2.cpp
// Provide a graphical representation of floating point numbers
#include <iostream>
#include <cmath>
#include <IFM/window>
int main()
{
    // Input parameters of floating point system
    std::cout << "Draw F(2,p,e_min, e_max).\np =? ";
    unsigned int p;
    std::cin >> p;
    std::cout << "e_min =? ";
    int emin;
    std::cin >> emin;
    std::cout << "e_max =? ";
    int emax;
    std::cin >> emax;
    // compute the smallest normalized significand 2^(p-1)
    const unsigned int smin = (unsigned int)(std::pow (2.0, double(p-1)));
    // compute the largest normalized significand (2^p)-1
    const unsigned int smax = 2 * smin - 1;
    // compute 2^emin
    const double pemin = std:: pow (2.0, double(emin));
    // compute 2^emax
    const double pemax = std::pow (2.0, double(emax));
    // For each positive number x of the system draw a circle
    // with radius x around the window center
    // parameters to scale output
    const int cx = (ifm::wio.xmax() - ifm::wio.xmin()) / 2;
    const int cy = (ifm::wio.ymax() - ifm::wio.ymin()) / 2;
    const double scale = cx / (pemax * smax);
    // zero
```

```
    ifm::wio << ifm::Point(cx, cy);
    // loop over all normalized significands
    for (unsigned int i = smin; i <= smax; ++i)
    // loop over all exponents
    for (double m = pemin; m <= pemax; m *= 2)
        ifm::wio << ifm::Circle(cx, cy, int(m * i * scale));
    ifm::wio.wait_for_mouse_click();
    return 0;
```

$\}$

Solution to Exercise 96 . The program still works if $s(x) \geq \sqrt{x}$, so we only have a potential problem if $s(x)<\sqrt{x}$. Because $|s(x)-\sqrt{x}|$ equals $\sqrt{x}-s(x)$ in this case, the relative error bound gives us $\sqrt{x}-s(x) \leq \varepsilon \sqrt{x}$, and this implies

$$
s(x) \geq(1-\varepsilon) \sqrt{x} \geq \frac{1}{2} \sqrt{x}
$$

It follows that

$$
2 s(x) \geq \sqrt{x}
$$

meaning that we can safely use $2 *$ std: :sqrt(n) instead of std: :sqrt(n) in Program 27. Note that $2 s(x)$ is indeed representable as a floating point number again, since we have assumed the system to be binary.

Solution to Exercise 97. The desired number of twin primes is 58980 as the following program shows that implements the approach of a). It turns out that we have to use the fast prime number test from Program 27 in order not to wait too long (we still have to wait pretty long).

```
// Program: twinprimes.cpp
// Count twin primes in 2,...,10000000
#include <iostream>
#include <cmath>
// POST: return value is true if and only if n is prime
bool is_prime (const unsigned int n)
{
    if (n < 2) return false; // 0 and 1 are not prime
    // Computation: test possible divisors d up to sqrt(n)
    const unsigned int bound = (unsigned int)(std::sqrt(n));
    unsigned int d;
    for (d = 2; d <= bound && n % d != 0; ++d);
    // Output
    return d > bound;
}
int main ()
{
    // keep primality info for odd i and i+2
    bool curr = false; // i = 1
```

```
    bool next = true; // i = 3
    int twins = 0; // number of twins
    for (int i = 3; i < 9999999; i += 2) {
    curr = next; // i
    next = is_prime(i+2); // i+2
    if (curr && next) ++twins;
}
std::cout << "Number of twin primes: " << twins << "\n";
return 0;
}
```

A much faster approach is based on Eratosthenes's sieve. We simply compute all prime numbers in the given range, and then use this information to select the twin primes:

```
// Program: twinprimes2.cpp
// Count twin primes in 2,...,10000000
#include <iostream>
#include <algorithm>
int main()
{
    // definition and initialization: provides us with
    // Booleans crossed_out[0],..., crossed_out[9999999]
    bool crossed_out[10000000];
    std::fill (crossed_out, crossed_out + 10000000, false);
    // computation of all prime numbers in the range
    for (unsigned int i = 2; i < 10000000; ++i)
        if (!crossed_out[i])
            // cross out all proper multiples of i
            for (unsigned int m = 2*i; m < 10000000; m += i)
                crossed_out[m] = true;
    // now count twin primes: (i-2, i) = (3,5) is first pair
    unsigned int twins = 0;
    for (unsigned int i = 5; i < 10000000; i+=2)
            if (!crossed_out[i-2] && !crossed_out[i])
        ++twins;
    // output
    std::cout << "Number of twin primes: " << twins << "\n";
    return 0;
}
```

This shows that the subdivision of the task into subtasks according to a) is not appropriate in this case.

Solution to Exercise 98.

```
double pow (double b, int e)
{
    // PRE: e >= 0 /| b != 0.0
    // POST: return value is b^e
    double result = 1.0;
    if (e < 0) {
```

```
        // b^e = (1/b)^(-e)
        b = 1.0/b;
        e = -e;
    }
    // maintain bpow = b^(2^i), initialized for i=0
    for (double bpow = b; e != 0; e /= 2) {
        if (e % 2 == 1) result *= bpow;
        bpow *= bpow; // square bpow to get b^(2^(i+1))
    }
    return result;
}
```


Solution to Exercise 99.

```
#include<iostream>
// PRE: i_ptr and j_ptr point to existing objects
// POST: the values of these two objects are swapped
void swap (int* i_ptr, int* j_ptr)
{
    const int h = *i_ptr;
    *i_ptr = *j_ptr;
    *j_ptr = h;
}
int main() {
    // input
    std::cout << "i =? ";
    int i; std::cin >> i;
    std::cout << "j =? ";
    int j; std::cin >> j;
    // function call
    swap(&i, &j);
    // output
    std::cout << "Values after swapping: i = " << i
            << ", j = " << j << ".\n";
    return 0;
}
```


Solution to Exercise 100

```
// Prog: unique. C
// implemements and tests a function that checks whether every element
// in a sorted sequence is unique
#include<iostream>
#include<cassert>
// PRE: [first, last) is a valid range and describes a sequence
// of elements that are sorted in nondecreasing order
// POST: the return value is true if and only if no element
// occurs twice in the sequence
```

```
bool unique (const int* first, const int* last)
{
    if (first == last)
        return true;
    --last;
    for (const int* p = first; p < last;) {
            const int curr = *p;
            const int next = *++p;
            assert (curr <= next);
            if (curr == next)
                return false;
    }
    return true;
}
int main()
{
    int a[5] = {1,2,2,3,4};
    int b[5] = {5,6,7,8,9};
    std::cout << unique (a, a+5) << "\n"
                << unique (b, b+5) << "\n";
    return 0;
}
```

Solution to Exercise 101. We simply take the sorting loop out of sort_array. cpp and put it into a function. At the same time, we move from iteration by index to iteration by pointers. A less elegant but also valid solution is to keep the original code with iteration by index, after computing n as last-first.

```
// Program: sort_array2.cpp
// read a sequence of n numbers into an array,
// sort them using a function, and output the
// sorted sequence
#include <iostream>
#include <algorithm>
// PRE: [first, last) is a valid range
// POST: the elements *p, p in [first, last) are
// in ascending order
void sort (int* first, int* last)
{
    // sort array: in round p=first,...,last-1 we find
    // the smallest element in the range described by
    // [p, last) and interchange it with *p
    for (int* p = first; p != last; ++p) {
        // find minimum in nonempty range described by [p, last)
        int* p_min = p; // pointer to current minimum
        int* q = p; // pointer to current element
        while (++q != last)
            if (*q < *p_min) p_min = q;
        // interchange *p with *p_min
        std::iter_swap (p, p_min);
    }
}
int main()
{
    // input of n
    unsigned int n;
    std::cin >> n;
```

```
    // dynamically allocate array
    int* const a = new int[n];
    // read into the array
    for (int i=0; i<n; ++i) std::cin >> a[i];
    // sort
    sort (a, a+n);
    // output sorted sequence
    for (int i=0; i<n; ++i) std::cout << a[i] << " ";
    std::cout << "\n";
    // delete array
    delete[] a;
    return 0;
}
```

Solution to Exercise 102. The postcondition is

```
// POST: The range [b,e) is copied in reverse order into the
// range [o, o+(e-b))
```

In b), the first call is invalid, since $[a+5, a+10)$ is not a valid range. The second call is ok, but the third one is again invalid, since the ranges $[a, a+3)$ and $[a+2, a+5)$ overlap (in one element). For c), we observe that the elements described by the source range $[b, e)$ are not modified. Thus, the pointers b and e should both have type const int*.

Solution to Exercise 103. The 5 values of $\mathrm{b}[0$] up to b [4] after the function call are ($1,4,6,4,1$). Incidentally, this is the fifth row of Pascal's triangle

where every entry is the sum of the two entries directly above it. And it is not hard to prove that this generalizes. If $e-b$ has value n, the n values $b[0]$ up to $b[n-1]$ form the n-th row of Pascal's triangle. We prove this by induction on n, where the case $n=1$ is easy ($b[0]==1$). Now let $n>1$ and assume that the statement holds for $n-1$. In going from $n-1$ to n, there is one more outer loop iteration (with $i=n$) that first sets $b[n-1]$ to 1 (as desired). The values $b[n-2], b[n-3], b[1]$ that by hypothesis form the ($n-1$)-st row of Pascal's triangle (without the first element) are updated as follows: to every such element, we add the one directly to the left of it. By definition of Pascal's triangle, this yields the correct elements in the n-th row.

We would like to remark that the k-th entry in the n-th row of Pascal's triangle is the binomial coefficient $\binom{n-1}{k-1}$; see also Exercise 113

Solution to Exercise 104. Given the input date, the main task is to count the number of days that have passed since January 1, 1900. Once we have that information, we can take the number modulo 7, and this determines the weekday.

Here is a list of the major subtasks (your list might be different).

1. find out whether the input date is legal;
2. count the number of days in all years preceding the input date;
3. count the number of days in all months preceding the input date (this has 2 as a subtask);
4. count the number of days preceding the input date (this has 3 as a subtask);
5. given this count, output the weekday.

Smaller subtasks needed by the above are the following.

1. find out whether a given year is a leap year;
2. find out how many days a given month has in a given year;
3. compute the weekday as a number in $\{0, \ldots, 6\}$;
4. transform the number of a weekday into its name.

Here is the program resulting from this subdivision into subtasks.

```
// Prog: perpetual_calendar
// compute the weekday for any given date >= 01.01.1900 (Monday)
#include<iostream>
#include<cassert>
// PRE: year >= 1900
// POST: return value is true iff year is a leap year
// -----------------------------------------------------
bool is_leap_year (const unsigned int year)
{
    assert (year >= 1900);
    return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// PRE: year >= 1900, 1 <= month <= 12
// POST: return value is the number of days in month.year
// ---------------------------------------------------------
unsigned int days_in_month (const unsigned int month,
{
    assert (year >= 1900);
    assert (1 <= month && month <= 12);
    unsigned int days[12] =
```

```
        {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    return days[month-1] + (month==2 && is_leap_year (year));
}
// POST: return value is true iff day.month.year is
// an existing date >= 01.01.1900
// ----------------------------------------------------
bool is_date (const unsigned int day, const unsigned int month,
                const unsigned int year)
{
    return
        year >= 1900 && 1 <= month && month <= 12 &&
        1 <= day && day <= days_in_month (month, year);
}
// PRE: year >= 1900
// POST: return value is the number of days in years [1900, ..., year)
// --------------------------------------------------------------------------
unsigned int days_up_to_year (const unsigned int year)
{
    assert (year >= 1900);
    unsigned int d = 0;
    // the following could be done more efficiently, but why?
    for (unsigned int y = 1900; y < year; ++y)
        d += 365 + is_leap_year (y);
    return d;
}
// PRE: year >= 1900, 1 <= month <= 12
// POST: return value is the number of days in
// months [01.1900, ..., month.year)
// ----------------------------------------------
unsigned int days_up_to_month (const unsigned int month,
                                    const unsigned int year)
{
    assert (year >= 1900);
    assert (1 <= month && month <= 12);
    unsigned int days = days_up_to_year (year); // before year
    for (unsigned int m = 1; m < month; ++m) // before month
        days += days_in_month (m, year);
    return days;
}
// PRE: is_date (day, month, year)
// POST: return value is the number of days in
// [01.01.1900, ..., day.month.year)
// -----------------------------------------
unsigned int days_up_to (const unsigned int day,
                    const unsigned int month,
                    const unsigned int year)
{
    assert (is_date (day, month, year));
    return days_up_to_month (month, year) + day - 1;
}
// PRE: is_date (day, month, year)
// POST: return value is weekday ( O = Monday,...,6 = Sunday)
// -------------------------------------------------------------
unsigned int weekday (const unsigned int day,
                                    const unsigned int month,
                                    const unsigned int year)
{
    assert (is_date (day, month, year));
    return days_up_to (day, month, year) % 7;
```

```
}
// PRE: weekday<7
// POST: writes the name of the weekda to standard output
// (0 = Monday,...,6 = Sunday)
// ---------------------------------
void print_weekday (const unsigned int weekday) {
    assert (weekday < 7);
    if (weekday == 0) std::cout << "Monday";
    else if (weekday == 1) std::cout << "Tuesday";
    else if (weekday == 2) std::cout << "Wednesday";
    else if (weekday == 3) std::cout << "Thursday";
    else if (weekday == 4) std::cout << "Friday";
    else if (weekday == 5) std::cout << "Saturday";
    else std::cout << "Sunday";
    std::cout << "\n";
}
int main()
{
    // input date
    std::cout << "Compute weekday of date (day/month/year) for\n";
    std::cout << "day =? ";
    unsigned int day; std::cin >> day;
    std::cout << "month =? ";
    unsigned int month; std::cin >> month;
    std::cout << "year =? ";
    unsigned int year; std::cin >> year;
    // check date
    if (!is_date (day, month, year)) {
        std::cout << "Illegal date.\n";
        return 1;
    }
    // output weekday
    print_weekday (weekday (day, month, year));
    return 0;
}
```

Solution to Exercise 105. Here we show how it is done under Unix-type platforms and the g++ compiler. Let's assume that your home directory is /home/myhome/. Under this directory, you now create a subdirectory named libifm, with two subdirectories include and lib. In the subdirectory include, you create another subdirectory IFM.

Now you copy math.h into the include/IFM subdirectory and math.cpp into the lib subdirectory.
(i) Build the object code. For this, go to the lib subdirectory and tell the compiler to generate the object code file math.o. For this, you type
g++ -I/home/myhome/libifm/include -c math.cpp

The directory after the -I is the one where the compiler will look for your include files. The path IFM/math.h in math. cpp is relative to that include directory. You can provide several include directories through several -I's.
(ii) Build the library from the o-files in the lib subdirectory. For this, you type

```
ar r libmath.a *.o
```

This tells the archive program ar to put all object files found in the current directory into a single library called libmath.a.
(iii) Build the executable from whatever directory you want, by typing

$$
\begin{aligned}
& \text { g++ -I/home/myhome/libifm/include -L/home/myhome/libifm/lib } \\
& \text { callpow4.cpp -lmath -o callpow4 }
\end{aligned}
$$

This tells g++ to compile (and link) the program callpow4.cpp, using the library libmath. a found in the directory that is specified after -L.

Solution to Exercise 106 ,

By the C++ standard, converting a floating point number to int cuts off the fractional part. Then we compute the error between the original number and its truncation. Under the IEEE standard 754, this difference has one significant digit less than and is therefore exactly representable as a double value, unless the input value is negative and has largest possible exponent. But in this case, the truncation is also out of range, and we don't care. Now we can exactly test whether the error is at most 0.5 (in which case we return the truncation), or more (in which case we return the next integer, going away from zero).

```
#include <iostream>
// POST: return value is the integer nearest to x; if there are
// two nearest integers, the one closer to O is chosen
int round (const double x)
{
    const int trunc = int(x); // rounds towards O by standard
    const double error = x - trunc; // note: result is exact!
    if (error > 0.5)
        // x was positive, and trunc + 1 is nearer
        return trunc + 1;
    if (error < -0.5)
        // x was negative, and trunc - 1 is nearer
        return trunc - 1;
    // lerrorl <= 0.5, trunc is closest integer
    return trunc;
}
int main ()
{
    for (double d = -2; d <= 2; d += 0.25)
        std::cout << "closest integer to " << d << " is "
                << round (d) << "\n";
    return 0;
}
```

As far as the integration into the library is concerned, please follow the procedure in the solution to Exercise 105 above.

Solution to Exercise 107. We apply a slightly tuned brute-force solution (but maybe you found something better). We in fact compute all possible powers, and for each one compute the cross sum. We use the type ifm::integer in order to have sufficient precision. The only slight improvement is that we compute the cross sum not by the straightforward method (going through the number digit by digit), but by breaking the number up into larger chunks through using a divisor larger than 10. On the platform of the authors, the divisor in the program below gives the fastest program. Its output is

```
Best a = 99
Best b = 95
```

The program below is too slow for $a, b<1000$, so we don't know the answer for this case.

```
// Prog: power_cross_sums.cpp
// find the values a and b smaller than 100 such that
// a^b has maximum cross sum
#include <iostream>
#include <IFM/integer.h>
// POST: returns sum of decimal digits of n
ifm::integer cross_sum (ifm::integer n)
{
    // the straightforward method
    ifm::integer cross = 0;
    for (; n > 0; n /= 10) {
        cross += n % 10;
    }
    return cross;
}
// POST: returns sum of decimal digits of n
ifm::integer cross_sum_big (ifm::integer n)
{
    // a faster method; use a larger divisor
    // d to reduce n to n /d, and apply the
    // straightforward method to n % d
    const ifm::integer d = 10000000;
    ifm::integer cross = 0;
    while (n > 0) {
        ifm::integer k = n / d;
        cross += cross_sum (n - k * d); // n % d
        n = k;
    }
    return cross;
}
int main()
{
    const int range = 100;
    ifm::integer max_cross_sum = 0;
    unsigned int best_a = 0;
    unsigned int best_b = 0;
    for (int a=1; a<range; ++a) {
```

```
    ifm::integer power = 1; // a^0
    for (int b=1; b<range; ++b) {
        // update to a `b
        power *= a;
        // count sum of digits
        ifm::integer s = cross_sum_big (power);
        if (s >= max_cross_sum) {
            max_cross_sum = s;
            best_a = a;
            best_b = b;
        }
    }
}
// output
std::cout << "Best a = " << best_a << "\n";
std::cout << "Best b = " << best_b << "\n";
```

\}

Solution to Exercise 108 ,

a) The idea is simple: we need to keep track of the parity (even or odd) of the number of zeros and ones processed so far. There are four possible parity combinations, and we have one state for each of them (ee, oe, eo, oo, where the first letter is for the parity of the zeros, the second for the parity of ones). When we are in state eo, for example, and we process the symbol 1 , we move to state ee, because the parity of the number of ones changes. We accept if and only if we are in state ee which is also the starting state.
b) While we are processing w, we keep track of the value $w^{\prime} \bmod 5$, where w^{\prime} is the prefix of w processed so far. Initially, w^{\prime} is empty and $w^{\prime} \bmod =0$. When we process the next symbol, it may be 0 and we have $w^{\prime}:=2 w^{\prime}$, or it is 1 in which case we get $w^{\prime}:=2 w^{\prime}+1$. In all cases, we can say how $w^{\prime} \bmod 5$ changes; here is the table.

$w^{\prime} \bmod 5$	$2 w^{\prime} \bmod 5$	$\left(2 w^{\prime}+1\right) \bmod 5$
0	0	1
1	2	3
2	4	0
3	1	2
4	3	4

We therefore need states $0,1,2,3,4$ corresponding to $w^{\prime} \bmod 5$, connected by transitions as given in the above table, and we accept if and only if we are in state 0 in the end.
c) This language cannot be the language of any DFA. The intuitive reason is that an automaton can only "count up to some finite number", because it has only finitely many states. But in order to be able to decide whether a word contains more zeros than ones, it would have to count zeros and ones in arbitrarily long words.

But we van also prove formally that there cannot be a DFA for this language L . Assume for a contradiction that there is a DFA whose language is L, and assume that it has n states. The DFA surely accepts the word

$$
\underbrace{0 \ldots .0}_{n+1} \underbrace{1 \ldots .1}_{n},
$$

since it has more zeros than ones. Let s_{i} be the state the DFA is in after processing the i-th one, $i=1, \ldots, n$. s_{0} is the state before processing the first one. In total, these are $n+1$ states, and since there are only n distinct states, at least one state must occur twice in the sequence $s_{0}, s_{1}, \ldots, s_{n}$. So let $0 \leq j<k \leq n$ be indices such that $s_{j}=s_{k}$. This means that if the automaton is in state s_{j} and then processes $\mathrm{k}-\mathrm{j}$ ones, it gets back to state $\mathrm{s}_{\mathrm{j}}=\mathrm{s}_{\mathrm{k}}$: a loop. But then it would also get back to state \mathfrak{j} after $2(\mathrm{k}-\mathrm{j})$ ones. Consequently, the DFA also accepts the word

$$
\underbrace{0 \ldots}_{n+1} \underbrace{1 \ldots .1}_{n+k-j}
$$

resulting from w by inserting $k-j$ additional ones after the k-th one. But this is a contradiction, since the latter word does not contain more zeros than ones.

This proof is actually an incarnation of the pumping lemma, a tool to prove that a language cannot be the language of a DFA. The class of languages L for which a DFA with language L exists is well-understood; it is called the class of regular languages.
d) Here we use the finite counting ability of DFA: we keep track of the longest run of ones that ends in the current symbol. Runs longer than two don't need to be counted, since we already know then that we will reject the word.

Solution to Exercise 109, The code is subdivided into several functions. The most important function deducible tries to make one Sherlock-Holmes-type deduction for given r, c and n. It is repeatedly called by the function fill_cell for all values of r, c, and n; if a deduction is found, fill_cell accordingly updates the board, a 3-dimensional array that maintains the information which numbers are candidates for which cells.

The function deduce tries the Sherlock-Holmes-type deductions in turn, where it distinguishes between deduction from row, column, or box in case 2 .

```
// Prog: sudoku.cpp
// solves sudokus according to simple deduction heuristic (may fail)
#include<cassert>
#include<iostream>
// Here is the algorithm: given a partial filling of the 81 cells,
// we try to find a row r, a column c, and a number n such that n is
// the unique candidate to be filled into the empty cell (r,c) in row
// r and column c. There are two situations in which this is easy:
// 1. all numbers distinct from n already appear in the row, column,
```

```
// or 3x3 box containing the cell (r,c)
// 2. we already know that n cannot appear in the other cells of the
// row, column, or box containing (r,c)
// To check this, we maintain for every triple (r,c,n) the information
// whether n is still a candidate for cell (r,c). Whenever a cell is filled,
// we remove the filled number from the candidate list of all other cells
// in the same row, column, or box.
// the grid: a 3x3x3 array of boolean values, one for each triple (r,c,n)
// grid[r][c][0] == true iff cell (r,c) not filled yet
// grid[r][c][n] == true for n>0 iff n is still a candidate for cell (r,c)
bool grid[9][9][10];
// PRE: cell (r,c) is empty, and n>0 is a candidate for (r,c)
// POST: puts n into (r,c); removes n as candidate from all other cells
// of the row, the column, and the box of (r,c); removes all
// numbers distinct from n as candidates from (r,c)
void update_grid (const unsigned int r, const unsigned int c,
                const unsigned int n)
{
    // assert precondition
    assert (grid[r][c][0] && n > 0 && grid[r][c][n]);
    // go through row of ( }r,c\mathrm{ )
    for (unsigned int j=0; j<9; ++j)
        grid[r][j][n] = false;
    // go through column of (r,c)
    for (unsigned int i=0; i<9; ++i)
        grid[i][c][n] = false;
    // go through box of (r,c)
    const unsigned int lr = r-r%3; // (lr, lc) is the lower left cell of
    const unsigned int lc = c-c%3; // this box
    for (unsigned int i=lr; i<lr+3; ++i)
        for (unsigned int j=lc; j<lc+3; ++j)
            grid[i][j][n] = false;
    // go through numbers
    for (unsigned int m=0; m<10; ++m)
        grid[r][c][m] = false;
    // fill cell
    grid[r][c][n] = true;
}
// POST: returns n > O if n is the unique candidate for cell (r,c) and
// O otherwise
int unique_number (const unsigned int r, const unsigned int c)
{
    int n = 0;
    bool found = false;
    for (unsigned int m = 1; m<10; ++m)
        if (grid[r][c][m]) {
            if (found) return 0; // we've already seen a candidate
            n = m; // this is the first candidate
            found = true;
        }
    return n;
}
// PRE: cell (r,c) is empty, and n>0 is a candidate for (r,c)
// POST: returns true if and only if n is not a candidate for any
// cell distinct from (r,c) within the same row
bool deducible_from_row (const unsigned int r, const unsigned int c,
                                    const unsigned int n)
{
    // assert preconditions
    assert (grid[r][c][0] && n > 0 && grid[r][c][n]);
    // go through the columns
```

```
    for (int j=0; j<9; ++j)
    if (j != c && grid[r][j][n]) return false; // candidate somewhere else
    return true;
}
// PRE: cell (r,c) is empty, and n>0 is a candidate for (r,c)
// POST: returns true if and only if n is not a candidate for any
// cell distinct from (r,c) within the same column
bool deducible_from_column (const unsigned int r, const unsigned int c,
    const unsigned int n)
{
    // assert preconditions
    assert (grid[r][c][0] && n > 0 && grid[r][c][n]);
    // go through the rows
    for (int i=0; i<9; ++i)
        if (i != r && grid[i][c][n]) return false; // candidate somewhere else
    return true;
}
// PRE: cell (r,c) is empty, and n>0 is a candidate for (r,c)
// POST: returns true if and only if n is not a candidate for any
// cell distinct from (r,c) within the same box
bool deducible_from_box (const unsigned int r, const unsigned int c,
                                    const unsigned int n)
{
    // assert preconditions
    assert (grid[r][c][0] && n > 0 && grid[r][c][n]);
    const unsigned int lr = r-r%3; // (lr, lc) is the lower left cell of
    const unsigned int lc = c-c%%; // this box
    // go through the box
    for (int i=lr; i<lr+3; ++i)
        for (int j=lc; j<lc+3; ++j)
            if ( (i != r || j != c) && grid[i][j][n])
                    return false; // candidate somewhere else
    return true;
}
// POST: returns true iff (r,c) is empty, n>0 is a candidate for (r,c), and
// - n is the unique candidate for the cell ( }r,c\mathrm{ ), or
// - n is deducible as the unique candidate from the row,
// column, or box of (r,c)
bool deducible (const unsigned int r, const unsigned int c,
                    const unsigned int n)
{
    if (grid[r][c][0] && n > 0 && grid[r][c][n])
        return
            (n == unique_number (r,c)) || // unique candidate for (r,c) ?
            deducible_from_row (r, c, n) ||
            deducible_from_column (r, c, n) ||
            deducible_from_box (r, c, n);
    return false;
}
// POST: returns true if and only if there is an empty cell (r,c) and a
// number n>0 such that n can be deduced to be the number to be
// put into (r,c); if the return value is true, the grid is updated
// by filling an empty cell with an accordingly deduced number
bool fill_cell()
{
    for (unsigned int r=0; r<9; ++r)
        for (unsigned int c=0; c<9; ++c)
            for (unsigned int n=1; n<10; ++n)
                if (deducible (r, c, n)) {
                update_grid (r, c, n);
                return true;
```

```
            }
    return false;
}
int main()
{
    // set up empty grid
    for (int r=0; r<9; ++r)
        for (int c=0; c<9; ++c) {
            for (int n=0; n<10; ++n)
                grid[r][c][n] = true;
        }
    // input: 9 x 9 numbers in {0,..,9} rowwise (0 means no number)
    unsigned int filled_cells = 0; // total number of filled cells
    for (int r=0; r<9; ++r)
            for (int c=0; c<9; ++c) {
            int n;
            std::cin >> n;
            if (n > 0) {
                update_grid (r, c, n);
                ++filled_cells;
            }
        }
    // main loop
    while (fill_cell()) ++filled_cells;
    // sudoku is solved if all cells could be filled
    if (filled_cells == 81)
        std::cout << "Sudoku is solved:\n";
    else
            std::cout << "Could only fill " << filled_cells << " cells:\n";
        // output solution in 3 x 3 blocks (O means no number deduced);
    for (unsigned int lr=0; lr<9; lr+=3) {
            for (unsigned int r=lr; r<lr+3; ++r) {
            for (unsigned int lc=0; lc<9; lc+=3) {
                for (unsigned int c=lc; c<lc+3; ++c)
                    std::cout << unique_number (r, c) << " "; // blank after number
                std::cout << " "; // extra blank after every three columns
            }
            std::cout << "\n"; // extra line break after every third row
            }
            std::cout << "\n"; // line break after row
    }
}
```

