
364 APPENDIX B. SOLUTIONS

B.7 A first C++ function

Solution to Exercise 91.

a) // POST: return value is the maximum of i,j and k

b) // PRE: 0 not contained in {i,...,j}

// POST: return value is the sum 1/i + 1/(i+1) + ... + 1/j

Solution to Exercise 92.

a) If i is odd, the execution does not reach a return statement, and the function call
expression is invalid. It seems that we want a function that returns true if and
only if i is even. This can be done as follows.

bool is_even (int i)
{

// POST: return value is true if and only if i is even

return (i % 2 == 0);
}

b) If x has value 0, result will never be set to a de�ned value. The correspond-
ing function call expression has unde�ned value. To �x this, we can either make
x != 0.0 a precondition (but then we don't have to check it like the function does
it), or we can invent some return value for the case where x has value 0. In any
case, we don't need the variable result. Here are the two variants.

double inverse (double x)
{

// PRE: x != 0

// POST: return value is 1/x

return 1.0 / x;
}

double inverse (double x)
{

// POST: return value is 1/x for x !=0, and 0 otherwise

if (x != 0.0)
return 1.0 / x;

else
return 0.0;

}



B.7. A FIRST C++ FUNCTION 365

Solution to Exercise 93. The program outputs the 7-th power of the input value i. The
computation takes place in the function g that multiplies i with f(i) (i2) and f(f(i))

(i4).

Solution to Exercise 94. Here are the three problems.

a) The call of g(2.0 * x) in the function body of f is not in the scope of the function
g, since that function is only declared later through its de�nition. Consequently, g
cannot be used in f.

b) In the function g, the modulus operator is used with double operands, but for
oating point number type operands, there is no modulus operator.

c) The function body of h is not in the scope of the variable result, since that variable
is only declared later. Consequently, result cannot be used in h.

Solution to Exercise 95.

1 // Program: fpsys2.cpp

2 // Provide a graphical representation of floating point numbers

3

4 #include <iostream >

5 #include <cmath >

6 #include <IFM/window >

7

8

9 int main()

10 {

11 // Input parameters of floating point system

12 std::cout << "Draw F(2,p,e_min ,e_max ).\np =? ";

13 unsigned int p;

14 std::cin >> p;

15 std::cout << "e_min =? ";

16 int emin;

17 std::cin >> emin;

18 std::cout << "e_max =? ";

19 int emax;

20 std::cin >> emax;

21

22 // compute the smallest normalized significand 2^(p -1)

23 const unsigned int smin = (unsigned int)(std::pow (2.0, double(p -1)));

24 // compute the largest normalized significand (2^p)-1

25 const unsigned int smax = 2 * smin - 1;

26 // compute 2^ emin

27 const double pemin = std::pow (2.0, double(emin ));

28 // compute 2^ emax

29 const double pemax = std::pow (2.0, double(emax ));

30

31 // For each positive number x of the system draw a circle

32 // with radius x around the window center

33

34 // parameters to scale output

35 const int cx = (ifm::wio.xmax() - ifm::wio.xmin ()) / 2;

36 const int cy = (ifm::wio.ymax() - ifm::wio.ymin ()) / 2;

37 const double scale = cx / (pemax * smax);

38

39 // zero



366 APPENDIX B. SOLUTIONS

40 ifm::wio << ifm:: Point(cx, cy);

41 // loop over all normalized significands

42 for (unsigned int i = smin; i <= smax; ++i)

43 // loop over all exponents

44 for (double m = pemin; m <= pemax; m *= 2)

45 ifm::wio << ifm:: Circle(cx , cy , int(m * i * scale ));

46

47 ifm::wio.wait_for_mouse_click ();

48 return 0;

49 }

Solution to Exercise 96. The program still works if s(x) � p
x, so we only have a potential

problem if s(x) <
p

x. Because |s(x) −
p

x| equals
p

x − s(x) in this case, the relative
error bound gives us

p
x − s(x) � ε

p
x, and this implies

s(x) � (1 − ε)
p

x � 1

2

p
x.

It follows that

2s(x) � p
x,

meaning that we can safely use 2*std::sqrt(n) instead of std::sqrt(n) in Program 27.
Note that 2s(x) is indeed representable as a oating point number again, since we have
assumed the system to be binary.

Solution to Exercise 97. The desired number of twin primes is 58980 as the following
program shows that implements the approach of a). It turns out that we have to use the
fast prime number test from Program 27 in order not to wait too long (we still have to
wait pretty long).

1 // Program: twinprimes .cpp

2 // Count twin primes in 2 ,... ,10000000

3

4 #include <iostream >

5 #include <cmath >

6

7 // POST: return value is true if and only if n is prime

8 bool is_prime (const unsigned int n)

9 {

10 if (n < 2) return false; // 0 and 1 are not prime

11

12 // Computation : test possible divisors d up to sqrt(n)

13 const unsigned int bound = (unsigned int)(std::sqrt(n));

14 unsigned int d;

15 for (d = 2; d <= bound && n % d != 0; ++d);

16

17 // Output

18 return d > bound;

19 }

20

21 int main ()

22 {

23 // keep primality info for odd i and i+2

24 bool curr = false; // i = 1



B.7. A FIRST C++ FUNCTION 367

25 bool next = true; // i = 3

26 int twins = 0; // number of twins

27 for (int i = 3; i < 9999999; i += 2) {

28 curr = next; // i

29 next = is_prime(i+2); // i+2

30 if (curr && next) ++ twins;

31 }

32 std::cout << "Number of twin primes: " << twins << "\n";

33

34 return 0;

35 }

A much faster approach is based on Eratosthenes's sieve. We simply compute all
prime numbers in the given range, and then use this information to select the twin
primes:

1 // Program: twinprimes2 .cpp

2 // Count twin primes in 2 ,... ,10000000

3

4 #include <iostream >

5 #include <algorithm >

6

7 int main()

8 {

9 // definition and initialization : provides us with

10 // Booleans crossed_out [0] ,... , crossed_out [9999999]

11 bool crossed_out [10000000];

12 std::fill (crossed_out , crossed_out + 10000000 , false);

13

14 // computation of all prime numbers in the range

15 for (unsigned int i = 2; i < 10000000; ++i)

16 if (! crossed_out[i])

17 // cross out all proper multiples of i

18 for (unsigned int m = 2*i; m < 10000000; m += i)

19 crossed_out[m] = true;

20

21 // now count twin primes: (i-2, i) = (3 ,5) is first pair

22 unsigned int twins = 0;

23 for (unsigned int i = 5; i < 10000000; i+=2)

24 if (! crossed_out[i-2] && !crossed_out[i])

25 ++ twins;

26

27 // output

28 std::cout << "Number of twin primes: " << twins << "\n";

29

30 return 0;

31 }

This shows that the subdivision of the task into subtasks according to a) is not
appropriate in this case.

Solution to Exercise 98.

double pow (double b, int e)
{

// PRE: e >= 0 || b != 0.0

// POST: return value is b^e

double result = 1.0;
if (e < 0) {



368 APPENDIX B. SOLUTIONS

// b^e = (1/b)^(-e)

b = 1.0/b;
e = -e;

}
// maintain bpow = b^(2^i), initialized for i=0

for (double bpow = b; e != 0; e /= 2) {
if (e % 2 == 1) result *= bpow;
bpow *= bpow; // square bpow to get b^(2^(i+1))

}
return result;

}

Solution to Exercise 99.

1 #include <iostream >

2

3 // PRE: i_ptr and j_ptr point to existing objects

4 // POST: the values of these two objects are swapped

5 void swap (int* i_ptr , int* j_ptr)

6 {

7 const int h = *i_ptr;

8 *i_ptr = *j_ptr;

9 *j_ptr = h;

10 }

11

12 int main() {

13 // input

14 std::cout << "i =? ";

15 int i; std::cin >> i;

16

17 std::cout << "j =? ";

18 int j; std::cin >> j;

19

20 // function call

21 swap(&i, &j);

22

23 // output

24 std::cout << "Values after swapping: i = " << i

25 << ", j = " << j << ".\n";

26

27 return 0;

28 }

Solution to Exercise 100.

1 // Prog: unique. C

2 // implemements and tests a function that checks whether every element

3 // in a sorted sequence is unique

4

5 #include <iostream >

6 #include <cassert >

7

8 // PRE: [first , last) is a valid range and describes a sequence

9 // of elements that are sorted in nondecreasing order

10 // POST: the return value is true if and only if no element

11 // occurs twice in the sequence



B.7. A FIRST C++ FUNCTION 369

12 bool unique (const int* first , const int* last)

13 {

14 if (first == last)

15 return true;

16 --last;

17 for (const int* p = first; p < last;) {

18 const int curr = *p;

19 const int next = *++p;

20 assert (curr <= next);

21 if (curr == next)

22 return false;

23 }

24 return true;

25 }

26

27 int main()

28 {

29 int a[5] = {1,2,2,3,4};

30 int b[5] = {5,6,7,8,9};

31 std::cout << unique (a, a+5) << "\n"

32 << unique (b, b+5) << "\n";

33

34 return 0;

35 }

Solution to Exercise 101. We simply take the sorting loop out of sort_array.cpp and put
it into a function. At the same time, we move from iteration by index to iteration by
pointers. A less elegant but also valid solution is to keep the original code with iteration
by index, after computing n as last-first.

1 // Program: sort_array2 .cpp

2 // read a sequence of n numbers into an array ,

3 // sort them using a function , and output the

4 // sorted sequence

5 #include <iostream >

6 #include <algorithm >

7

8 // PRE: [first , last) is a valid range

9 // POST: the elements *p, p in [first , last) are

10 // in ascending order

11 void sort (int* first , int* last)

12 {

13 // sort array: in round p=first ,... ,last -1 we find

14 // the smallest element in the range described by

15 // [p, last) and interchange it with *p

16 for (int* p = first; p != last; ++p) {

17 // find minimum in nonempty range described by [p, last)

18 int* p_min = p; // pointer to current minimum

19 int* q = p; // pointer to current element

20 while (++q != last)

21 if (*q < *p_min) p_min = q;

22 // interchange *p with *p_min

23 std:: iter_swap (p, p_min);

24 }

25 }

26

27 int main()

28 {

29 // input of n

30 unsigned int n;

31 std::cin >> n;



370 APPENDIX B. SOLUTIONS

32

33 // dynamically allocate array

34 int* const a = new int[n];

35

36 // read into the array

37 for (int i=0; i<n; ++i) std::cin >> a[i];

38

39 // sort

40 sort (a, a+n);

41

42 // output sorted sequence

43 for (int i=0; i<n; ++i) std::cout << a[i] << " ";

44 std::cout << "\n";

45

46 // delete array

47 delete [] a;

48

49 return 0;

50

51 }

Solution to Exercise 102. The postcondition is

// POST: The range [b,e) is copied in reverse order into the

// range [o, o+(e-b))

In b), the �rst call is invalid, since [a+5,a+10) is not a valid range. The second call is
ok, but the third one is again invalid, since the ranges [a,a+3) and [a+2,a+5) overlap
(in one element). For c), we observe that the elements described by the source range
[b,e) are not modi�ed. Thus, the pointers b and e should both have type const int*.

Solution to Exercise 103. The 5 values of b[0] up to b[4] after the function call are
(1, 4, 6, 4, 1). Incidentally, this is the �fth row of Pascal's triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
...

where every entry is the sum of the two entries directly above it. And it is not hard to
prove that this generalizes. If e - b has value n, the n values b[0] up to b[n-1] form
the n-th row of Pascal's triangle. We prove this by induction on n, where the case n = 1

is easy (b[0]==1). Now let n > 1 and assume that the statement holds for n − 1. In
going from n − 1 to n, there is one more outer loop iteration (with i = n) that �rst sets
b[n-1] to 1 (as desired). The values b[n-2], b[n-3], b[1] that by hypothesis form the
(n − 1)-st row of Pascal's triangle (without the �rst element) are updated as follows: to
every such element, we add the one directly to the left of it. By de�nition of Pascal's
triangle, this yields the correct elements in the n-th row.



B.7. A FIRST C++ FUNCTION 371

We would like to remark that the k-th entry in the n-th row of Pascal's triangle is
the binomial coe�cient

�
n−1
k−1

�
; see also Exercise 113.

Solution to Exercise 104. Given the input date, the main task is to count the number of
days that have passed since January 1, 1900. Once we have that information, we can
take the number modulo 7, and this determines the weekday.

Here is a list of the major subtasks (your list might be di�erent).

1. �nd out whether the input date is legal;

2. count the number of days in all years preceding the input date;

3. count the number of days in all months preceding the input date (this has 2 as a
subtask);

4. count the number of days preceding the input date (this has 3 as a subtask);

5. given this count, output the weekday.

Smaller subtasks needed by the above are the following.

1. �nd out whether a given year is a leap year;

2. �nd out how many days a given month has in a given year;

3. compute the weekday as a number in {0, . . . , 6};

4. transform the number of a weekday into its name.

Here is the program resulting from this subdivision into subtasks.

1 // Prog: perpetual_calendar

2 // compute the weekday for any given date >= 01.01.1900 (Monday)

3

4 #include <iostream >

5 #include <cassert >

6

7 // PRE: year >= 1900

8 // POST: return value is true iff year is a leap year

9 // --------------------------------------------------

10 bool is_leap_year (const unsigned int year)

11 {

12 assert (year >= 1900);

13 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);

14 }

15

16 // PRE: year >= 1900 , 1 <= month <= 12

17 // POST: return value is the number of days in month.year

18 // ------------------------------------------------------

19 unsigned int days_in_month (const unsigned int month ,

20 const unsigned int year)

21 {

22 assert (year >= 1900);

23 assert (1 <= month && month <= 12);

24 unsigned int days [12] =



372 APPENDIX B. SOLUTIONS

25 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

26 return days[month -1] + (month ==2 && is_leap_year (year ));

27 }

28

29 // POST: return value is true iff day.month.year is

30 // an existing date >= 01.01.1900

31 // ------------------------------------------------

32 bool is_date (const unsigned int day , const unsigned int month ,

33 const unsigned int year)

34 {

35 return

36 year >= 1900 && 1 <= month && month <= 12 &&

37 1 <= day && day <= days_in_month (month , year);

38 }

39

40

41 // PRE: year >= 1900

42 // POST: return value is the number of days in years [1900 , ..., year)

43 // -------------------------------------------------------------------

44 unsigned int days_up_to_year (const unsigned int year)

45 {

46 assert (year >= 1900);

47 unsigned int d = 0;

48 // the following could be done more efficiently , but why?

49 for (unsigned int y = 1900; y < year; ++y)

50 d += 365 + is_leap_year (y);

51 return d;

52 }

53

54 // PRE: year >= 1900 , 1 <= month <= 12

55 // POST: return value is the number of days in

56 // months [01.1900 , ..., month.year)

57 // -------------------------------------------

58 unsigned int days_up_to_month (const unsigned int month ,

59 const unsigned int year)

60 {

61 assert (year >= 1900);

62 assert (1 <= month && month <= 12);

63 unsigned int days = days_up_to_year (year); // before year

64 for (unsigned int m = 1; m < month; ++m) // before month

65 days += days_in_month (m, year);

66 return days;

67 }

68

69 // PRE: is_date (day , month , year)

70 // POST: return value is the number of days in

71 // [01.01.1900 , ..., day.month.year)

72 // ---------------------------------------

73 unsigned int days_up_to (const unsigned int day ,

74 const unsigned int month ,

75 const unsigned int year)

76 {

77 assert (is_date (day , month , year ));

78 return days_up_to_month (month , year) + day - 1;

79 }

80

81 // PRE: is_date (day , month , year)

82 // POST: return value is weekday (0 = Monday ,... ,6 = Sunday)

83 // ---------------------------------------------------------

84 unsigned int weekday (const unsigned int day ,

85 const unsigned int month ,

86 const unsigned int year)

87 {

88 assert (is_date (day , month , year ));

89 return days_up_to (day , month , year) % 7;



B.7. A FIRST C++ FUNCTION 373

90 }

91

92 // PRE: weekday < 7

93 // POST: writes the name of the weekda to standard output

94 // (0 = Monday ,... ,6 = Sunday)

95 // ---------------------------------

96 void print_weekday (const unsigned int weekday) {

97 assert (weekday < 7);

98 if (weekday == 0) std::cout << "Monday";

99 else if (weekday == 1) std::cout << "Tuesday";

100 else if (weekday == 2) std::cout << "Wednesday";

101 else if (weekday == 3) std::cout << "Thursday";

102 else if (weekday == 4) std::cout << "Friday";

103 else if (weekday == 5) std::cout << "Saturday";

104 else std::cout << "Sunday";

105 std::cout << "\n";

106 }

107

108 int main()

109 {

110 // input date

111 std::cout << "Compute weekday of date (day/month/year) for\n";

112 std::cout << "day =? ";

113 unsigned int day; std::cin >> day;

114 std::cout << "month =? ";

115 unsigned int month; std::cin >> month;

116 std::cout << "year =? ";

117 unsigned int year; std::cin >> year;

118

119 // check date

120 if (! is_date (day , month , year)) {

121 std::cout << "Illegal date.\n";

122 return 1;

123 }

124

125 // output weekday

126 print_weekday (weekday (day , month , year ));

127

128 return 0;

129 }

Solution to Exercise 105. Here we show how it is done under Unix-type platforms and
the g++ compiler. Let's assume that your home directory is /home/myhome/. Under this
directory, you now create a subdirectory named libifm, with two subdirectories include
and lib. In the subdirectory include, you create another subdirectory IFM.

Now you copy math.h into the include/IFM subdirectory and math.cpp into the lib
subdirectory.

(i) Build the object code. For this, go to the lib subdirectory and tell the compiler
to generate the object code �le math.o. For this, you type

g++ -I/home/myhome/libifm/include -c math.cpp

The directory after the -I is the one where the compiler will look for your include
�les. The path IFM/math.h in math.cpp is relative to that include directory. You
can provide several include directories through several -I's.



374 APPENDIX B. SOLUTIONS

(ii) Build the library from the o-�les in the lib subdirectory. For this, you type

ar r libmath.a *.o

This tells the archive program ar to put all object �les found in the current directory
into a single library called libmath.a.

(iii) Build the executable from whatever directory you want, by typing

g++ -I/home/myhome/libifm/include -L/home/myhome/libifm/lib

callpow4.cpp -lmath -o callpow4

This tells g++ to compile (and link) the program callpow4.cpp, using the library
libmath.a found in the directory that is speci�ed after -L.

Solution to Exercise 106.
By the C++ standard, converting a oating point number to int cuts o� the frac-

tional part. Then we compute the error between the original number and its truncation.
Under the IEEE standard 754, this di�erence has one signi�cant digit less than and is
therefore exactly representable as a double value, unless the input value is negative and
has largest possible exponent. But in this case, the truncation is also out of range, and
we don't care. Now we can exactly test whether the error is at most 0.5 (in which case
we return the truncation), or more (in which case we return the next integer, going away
from zero).

1 #include <iostream >

2

3 // POST: return value is the integer nearest to x; if there are

4 // two nearest integers , the one closer to 0 is chosen

5 int round (const double x)

6 {

7 const int trunc = int(x); // rounds towards 0 by standard

8 const double error = x - trunc; // note: result is exact!

9 if (error > 0.5)

10 // x was positive , and trunc + 1 is nearer

11 return trunc + 1;

12 if (error < -0.5)

13 // x was negative , and trunc - 1 is nearer

14 return trunc - 1;

15 // |error| <= 0.5, trunc is closest integer

16 return trunc;

17 }

18

19 int main ()

20 {

21 for (double d = -2; d <= 2; d += 0.25)

22 std::cout << "closest integer to " << d << " is "

23 << round (d) << "\n";

24

25 return 0;

26 }



B.7. A FIRST C++ FUNCTION 375

As far as the integration into the library is concerned, please follow the procedure in
the solution to Exercise 105 above.

Solution to Exercise 107. We apply a slightly tuned brute-force solution (but maybe
you found something better). We in fact compute all possible powers, and for each
one compute the cross sum. We use the type ifm::integer in order to have su�cient
precision. The only slight improvement is that we compute the cross sum not by the
straightforward method (going through the number digit by digit), but by breaking the
number up into larger chunks through using a divisor larger than 10. On the platform
of the authors, the divisor in the program below gives the fastest program. Its output is

Best a = 99
Best b = 95

The program below is too slow for a, b < 1000, so we don't know the answer for this
case.

1 // Prog: power_cross_sums .cpp

2 // find the values a and b smaller than 100 such that

3 // a^b has maximum cross sum

4

5 #include <iostream >

6 #include <IFM/integer.h>

7

8 // POST: returns sum of decimal digits of n

9 ifm:: integer cross_sum (ifm:: integer n)

10 {

11 // the straightforward method

12 ifm:: integer cross = 0;

13 for (; n > 0; n /= 10) {

14 cross += n % 10;

15 }

16 return cross;

17 }

18

19 // POST: returns sum of decimal digits of n

20 ifm:: integer cross_sum_big (ifm:: integer n)

21 {

22 // a faster method; use a larger divisor

23 // d to reduce n to n /d, and apply the

24 // straightforward method to n % d

25 const ifm:: integer d = 10000000;

26 ifm:: integer cross = 0;

27 while (n > 0) {

28 ifm:: integer k = n / d;

29 cross += cross_sum (n - k * d); // n % d

30 n = k;

31 }

32 return cross;

33 }

34

35 int main()

36 {

37 const int range = 100;

38

39 ifm:: integer max_cross_sum = 0;

40 unsigned int best_a = 0;

41 unsigned int best_b = 0;

42 for (int a=1; a<range; ++a) {



376 APPENDIX B. SOLUTIONS

43 ifm:: integer power = 1; // a^0

44 for (int b=1; b<range; ++b) {

45 // update to a^b

46 power *= a;

47 // count sum of digits

48 ifm:: integer s = cross_sum_big (power);

49 if (s >= max_cross_sum) {

50 max_cross_sum = s;

51 best_a = a;

52 best_b = b;

53 }

54 }

55 }

56

57 // output

58 std::cout << "Best a = " << best_a << "\n";

59 std::cout << "Best b = " << best_b << "\n";

60 }

Solution to Exercise 108.

a) The idea is simple: we need to keep track of the parity (even or odd) of the number
of zeros and ones processed so far. There are four possible parity combinations,
and we have one state for each of them (ee, oe, eo, oo, where the �rst letter is for
the parity of the zeros, the second for the parity of ones). When we are in state
eo, for example, and we process the symbol 1, we move to state ee, because the
parity of the number of ones changes. We accept if and only if we are in state ee

which is also the starting state.

b) While we are processing w, we keep track of the value w 0mod 5, where w 0 is the
pre�x of w processed so far. Initially, w 0 is empty and w 0mod = 0. When we
process the next symbol, it may be 0 and we have w 0 := 2w 0, or it is 1 in which
case we get w 0 := 2w 0 + 1. In all cases, we can say how w 0mod 5 changes; here is
the table.

w 0mod 5 2w 0mod 5 (2w 0 + 1)mod 5

0 0 1

1 2 3

2 4 0

3 1 2

4 3 4

We therefore need states 0, 1, 2, 3, 4 corresponding to w 0mod 5, connected by tran-
sitions as given in the above table, and we accept if and only if we are in state 0 in
the end.

c) This language cannot be the language of any DFA. The intuitive reason is that an
automaton can only \count up to some �nite number", because it has only �nitely
many states. But in order to be able to decide whether a word contains more zeros
than ones, it would have to count zeros and ones in arbitrarily long words.



B.7. A FIRST C++ FUNCTION 377

But we van also prove formally that there cannot be a DFA for this language L.
Assume for a contradiction that there is a DFA whose language is L, and assume
that it has n states. The DFA surely accepts the word

0....0︸ ︷︷ ︸
n+1

1....1︸ ︷︷ ︸
n

,

since it has more zeros than ones. Let si be the state the DFA is in after processing
the i-th one, i = 1, . . . , n. s0 is the state before processing the �rst one. In total,
these are n + 1 states, and since there are only n distinct states, at least one state
must occur twice in the sequence s0, s1, . . . , sn. So let 0 � j < k � n be indices such
that sj = sk. This means that if the automaton is in state sj and then processes
k − j ones, it gets back to state sj = sk: a loop. But then it would also get back to
state j after 2(k − j) ones. Consequently, the DFA also accepts the word

0....0︸ ︷︷ ︸
n+1

1....1︸ ︷︷ ︸
n+k−j

resulting from w by inserting k − j additional ones after the k-th one. But this is
a contradiction, since the latter word does not contain more zeros than ones.

This proof is actually an incarnation of the pumping lemma, a tool to prove that
a language cannot be the language of a DFA. The class of languages L for which
a DFA with language L exists is well-understood; it is called the class of regular
languages.

d) Here we use the �nite counting ability of DFA: we keep track of the longest run
of ones that ends in the current symbol. Runs longer than two don't need to be
counted, since we already know then that we will reject the word.

Solution to Exercise 109. The code is subdivided into several functions. The most
important function deducible tries to make one Sherlock-Holmes-type deduction for
given r, c and n. It is repeatedly called by the function fill_cell for all values of r, c,
and n; if a deduction is found, fill_cell accordingly updates the board, a 3-dimensional
array that maintains the information which numbers are candidates for which cells.

The function deduce tries the Sherlock-Holmes-type deductions in turn, where it
distinguishes between deduction from row, column, or box in case 2.

1 // Prog: sudoku.cpp

2 // solves sudokus according to simple deduction heuristic (may fail)

3 #include <cassert >

4 #include <iostream >

5

6 // Here is the algorithm : given a partial filling of the 81 cells ,

7 // we try to find a row r, a column c, and a number n such that n is

8 // the unique candidate to be filled into the empty cell (r,c) in row

9 // r and column c. There are two situations in which this is easy:

10 // 1. all numbers distinct from n already appear in the row , column ,



378 APPENDIX B. SOLUTIONS

11 // or 3x3 box containing the cell (r,c)

12 // 2. we already know that n cannot appear in the other cells of the

13 // row , column , or box containing (r,c)

14 // To check this , we maintain for every triple (r,c,n) the information

15 // whether n is still a candidate for cell (r,c). Whenever a cell is filled ,

16 // we remove the filled number from the candidate list of all other cells

17 // in the same row , column , or box.

18

19 // the grid: a 3x3x3 array of boolean values , one for each triple (r,c,n)

20 // grid[r][c][0] == true iff cell (r,c) not filled yet

21 // grid[r][c][n] == true for n>0 iff n is still a candidate for cell (r,c)

22 bool grid [9][9][10];

23

24 // PRE: cell (r,c) is empty , and n>0 is a candidate for (r,c)

25 // POST: puts n into (r,c); removes n as candidate from all other cells

26 // of the row , the column , and the box of (r,c); removes all

27 // numbers distinct from n as candidates from (r,c)

28 void update_grid (const unsigned int r, const unsigned int c,

29 const unsigned int n)

30 {

31 // assert precondition

32 assert (grid[r][c][0] && n > 0 && grid[r][c][n]);

33 // go through row of (r,c)

34 for (unsigned int j=0; j<9; ++j)

35 grid[r][j][n] = false;

36 // go through column of (r,c)

37 for (unsigned int i=0; i<9; ++i)

38 grid[i][c][n] = false;

39 // go through box of (r,c)

40 const unsigned int lr = r-r%3; // (lr , lc) is the lower left cell of

41 const unsigned int lc = c-c%3; // this box

42 for (unsigned int i=lr; i<lr+3; ++i)

43 for (unsigned int j=lc; j<lc+3; ++j)

44 grid[i][j][n] = false;

45 // go through numbers

46 for (unsigned int m=0; m<10; ++m)

47 grid[r][c][m] = false;

48 // fill cell

49 grid[r][c][n] = true;

50 }

51

52 // POST: returns n > 0 if n is the unique candidate for cell (r,c) and

53 // 0 otherwise

54 int unique_number (const unsigned int r, const unsigned int c)

55 {

56 int n = 0;

57 bool found = false;

58 for (unsigned int m = 1; m<10; ++m)

59 if (grid[r][c][m]) {

60 if (found) return 0; // we’ve already seen a candidate

61 n = m; // this is the first candidate

62 found = true;

63 }

64 return n;

65 }

66

67 // PRE: cell (r,c) is empty , and n>0 is a candidate for (r,c)

68 // POST: returns true if and only if n is not a candidate for any

69 // cell distinct from (r,c) within the same row

70 bool deducible_from_row (const unsigned int r, const unsigned int c,

71 const unsigned int n)

72 {

73 // assert preconditions

74 assert (grid[r][c][0] && n > 0 && grid[r][c][n]);

75 // go through the columns



B.7. A FIRST C++ FUNCTION 379

76 for (int j=0; j<9; ++j)

77 if (j != c && grid[r][j][n]) return false; // candidate somewhere else

78 return true;

79 }

80

81 // PRE: cell (r,c) is empty , and n>0 is a candidate for (r,c)

82 // POST: returns true if and only if n is not a candidate for any

83 // cell distinct from (r,c) within the same column

84 bool deducible_from_column (const unsigned int r, const unsigned int c,

85 const unsigned int n)

86 {

87 // assert preconditions

88 assert (grid[r][c][0] && n > 0 && grid[r][c][n]);

89 // go through the rows

90 for (int i=0; i<9; ++i)

91 if (i != r && grid[i][c][n]) return false; // candidate somewhere else

92 return true;

93 }

94

95 // PRE: cell (r,c) is empty , and n>0 is a candidate for (r,c)

96 // POST: returns true if and only if n is not a candidate for any

97 // cell distinct from (r,c) within the same box

98 bool deducible_from_box (const unsigned int r, const unsigned int c,

99 const unsigned int n)

100 {

101 // assert preconditions

102 assert (grid[r][c][0] && n > 0 && grid[r][c][n]);

103 const unsigned int lr = r-r%3; // (lr , lc) is the lower left cell of

104 const unsigned int lc = c-c%3; // this box

105 // go through the box

106 for (int i=lr; i<lr+3; ++i)

107 for (int j=lc; j<lc+3; ++j)

108 if ( (i != r || j != c) && grid[i][j][n])

109 return false; // candidate somewhere else

110 return true;

111 }

112

113 // POST: returns true iff (r,c) is empty , n>0 is a candidate for (r,c), and

114 // - n is the unique candidate for the cell (r,c), or

115 // - n is deducible as the unique candidate from the row ,

116 // column , or box of (r,c)

117 bool deducible (const unsigned int r, const unsigned int c,

118 const unsigned int n)

119 {

120 if (grid[r][c][0] && n > 0 && grid[r][c][n])

121 return

122 (n == unique_number (r,c)) || // unique candidate for (r,c) ?

123 deducible_from_row (r, c, n) ||

124 deducible_from_column (r, c, n) ||

125 deducible_from_box (r, c, n);

126 return false;

127 }

128

129 // POST: returns true if and only if there is an empty cell (r,c) and a

130 // number n>0 such that n can be deduced to be the number to be

131 // put into (r,c); if the return value is true , the grid is updated

132 // by filling an empty cell with an accordingly deduced number

133 bool fill_cell ()

134 {

135 for (unsigned int r=0; r<9; ++r)

136 for (unsigned int c=0; c<9; ++c)

137 for (unsigned int n=1; n<10; ++n)

138 if (deducible (r, c, n)) {

139 update_grid (r, c, n);

140 return true;



380 APPENDIX B. SOLUTIONS

141 }

142 return false;

143 }

144

145 int main()

146 {

147 // set up empty grid

148 for (int r=0; r<9; ++r)

149 for (int c=0; c<9; ++c) {

150 for (int n=0; n<10; ++n)

151 grid[r][c][n] = true;

152 }

153

154 // input: 9 x 9 numbers in {0 ,.. ,9} rowwise (0 means no number)

155 unsigned int filled_cells = 0; // total number of filled cells

156 for (int r=0; r<9; ++r)

157 for (int c=0; c<9; ++c) {

158 int n;

159 std::cin >> n;

160 if (n > 0) {

161 update_grid (r, c, n);

162 ++ filled_cells;

163 }

164 }

165

166 // main loop

167 while (fill_cell ()) ++ filled_cells;

168

169 // sudoku is solved if all cells could be filled

170 if (filled_cells == 81)

171 std::cout << "Sudoku is solved :\n";

172 else

173 std::cout << "Could only fill " << filled_cells << " cells :\n";

174 // output solution in 3 x 3 blocks (0 means no number deduced );

175 for (unsigned int lr=0; lr <9; lr+=3) {

176 for (unsigned int r=lr; r<lr+3; ++r) {

177 for (unsigned int lc=0; lc <9; lc+=3) {

178 for (unsigned int c=lc; c<lc+3; ++c)

179 std::cout << unique_number (r, c) << " "; // blank after number

180 std::cout << " "; // extra blank after every three columns

181 }

182 std::cout << "\n"; // extra line break after every third row

183 }

184 std::cout << "\n"; // line break after row

185 }

186 }


