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10 CHAPTER 1. INTRODUCTION

1.1 Why learn programming?

You can tell I'm educated, I studied at the Sorbonne
Doctored in mathematics, I could have been a don
I can program a computer, choose the perfect time
If you've got the inclination, I have got the crime

Pet Shop Boys, Opportunities (1986)

This section explains what a computer program is, and why it is im-
portant for you not only to use computer programs, but also to write
them.

When people apply for a job these days, their resume typically contains a section
called computer skills. Items listed there might include Lotus Notes, Excel, or Photo-
Shop. These are the names of application programs, programs that have been written
by certain people (in the above cases, at Microsoft corporation) to be used by other
people (for example, a sales representative).

The computer skills section might also list items like HTML, Java, or C++. These
are the names of programming languages, languages used to instruct, or program, a
computer. Using a programming language, you can write the programs that will subse-
quently be used by others, or by yourself.

A computer program is a list of instructions to be automatically processed by a
computer. The computer itself is stupid|all the intelligence comes from the program.
In this sense, a program for the computer is like a cookbook recipe for someone who
cannot cook: even with very limited skills, impressive results can be obtained, through
a step-by-step instruction.

Most people simply use programs, just like they use cookbooks. A sales representa-
tive, for example, needs application programs as tools for his work. The fact that you
are reading this lets us believe that you potentially belong to the category of people who
also need to write programs.

There are many reasons for writing programs. Some employer might pay for it, some
bachelor course might require it, but ultimately, there is a deeper reason behind it that
we plan to explain next. The upshot is that nowadays, you cannot be a serious engineer,
let alone a serious scientist, without at least some basic programming skills. Even in less
serious contexts, we can recommend to learn programming, because it can bring about
a lot of fun and satisfaction.

In the twentieth century, computers have revolutionized the way science and engi-
neering are done. To be more concrete, we will underpin this with an example from
mathematics. You probably don't expect math to be mentioned �rst in connection with
computers; indeed, many mathematicians still use paper and pencil on a daily basis.
But what they write down has changed. Before computers were available, it was often
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necessary to write down actual numbers, and to perform calculations with them by hand.
This happened not so much in writing proofs for new theorems, but in the process of
�nding these theorems. This process often requires to go over many concrete examples,
or counterexamples, in order to see certain patterns, or to discover that some statement
is false. The computer has tremendously accelerated this process by taking over the
routine work. When you look at a mathematician's notepad today, you still �nd greek
letters and all kinds of strange symbols, but most likely no numbers larger than ten.

There is one topic that nicely illustrates the situation, and this is the search for
Mersenne primes. In 1644, the French monk and mathematician Marin Mersenne es-
tablished the following claim.

Mersenne’s Conjecture. The numbers of the form 2n − 1 are prime
numbers for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257, but for no other num-
ber n < 257.

Mersenne corresponded with many of the leading mathematicians at that time, so
his conjecture became widely known. Up to n = 7, you can verify it while you read this,
and in 1644, the conjecture was already veri�ed up to n = 19.

It took more than hundred years until the next exponent on Mersenne's list could
be veri�ed. In a letter to Bernoulli published in 1772, Leonhard Euler proved that
231 − 1 = 2147483647 is a prime number. But in 1876, another hundred years later,
Mersenne posthumously received a heavy blow. Edouard Lucas proved that 267 − 1 =

147573952589676412927 is not a prime number (Lucas showed his passion for large num-
bers also when he invented the Tower of Hanoi puzzle). Lucas's proof does not work the
way you would expect: it does not exhibit a prime factor of 267 −1 (the most direct way
of proving that a number is not prime), but it uses a clever indirect argument invented
by Lucas in the same year. The factorization of 267 − 1 remained unknown for another
25 years.

In 1903, Frank Nelson Cole was scheduled to give a lecture to the American Mathe-
matical Society, whose title was `On the Factorization of Large Numbers'. Cole went to
the blackboard, and without saying a single word, he �rst wrote down a calculation to
obtain 267 − 1 by repeated multiplication with two. He �nally had the number

147573952589676412927

on the blackboard. Then he wrote down another (much more interesting) calculation for
the product of two numbers.

761838257287 x 193707721

------------------------

761838257287

6856544315583

2285514771861

5332867801009
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5332867801009

5332867801009

1523676514574

761838257287

---------------------

147573952589676412927

Cole had proved that 267 − 1 = 761838257287 � 193707721, making the result of Lucas
believable to everybody: 267 − 1 is not a prime number! He received standing ovations
for this accomplishment and later admitted that he had worked on �nding these factors
every Sunday for the last three years.

Today, you can start a computer algebra program on your computer (a popular one
is Maple), type in

ifactor(2^67-1);

and within less than a second get the output

(761838257287)(193707721)

To summarize: hundred years ago, a brilliant mathematician needed three years to
come up with a result that much less brilliant people (we are not talking about you)
could get in less than a second today, using a computer and the right program. This
seems disturbing at �rst sight, and thinking about the precious time of his life Cole
devoted to the problem, you may even feel sorry for him. You shouldn't; rather, the
story has three important lessons in store.

Tool skills. Lesson one is that Cole's calculations were extremely di�cult, given the tools
he had (paper, pencil, and probably very good mental arithmetic). Given the tools you
have (the computer and a computer algebra program called Maple), Cole's calculations
are easy routine. We are sure that Cole would feel sorry for anyone using these new
tools only to reproduce some hundred-year old calculation. Useful new tools lead to new
possibilities and challenges. On the one hand, this allows you to do more than you could
do before; on the other hand it also forces you to do more if you want to keep up with
the developments. Whatever you do, nowadays you must acquire and maintain at least
some basic knowledge of computers and application programs.

Problem skills. Lesson two is that tool skills alone would not have helped Cole to factor
267 − 1. Cole also was a good mathematician who knew a lot of theory he could use to
save calculations. This is the reason why he \only" needed three years.

Even nowadays, computers and application programs are not everything. Factoring
267 − 1 is easy because this is a small number by today's standards. But factoring
large numbers (21000 is considered large today; in a couple of years, it might be 22000)
is still a very di�cult problem for which no e�cient solutions are known. The problem



1.1. WHY LEARN PROGRAMMING? 13

of factoring large numbers is the most prominent problem for which most people must
actually hope that no e�cient solution will ever be found. The reason is that many
cryptosystems that are in use (think of secure internet banking) are purely based on the
practical impossibility of factoring large numbers. Therefore, the worst scenario would
be that the \bad guys" discover �rst how to factor large numbers e�ciently.

There are many other problems that are as far from a solution as they were in pre-
computer days. Coming back to Mersenne, we still cannot characterize the exponents
n for which the number 2n − 1 is a prime number. We don't even know whether there
are in�nitely many such Mersenne primes. If you plan to make a contribution here, you
should not buy a faster computer with the latest version of Maple, but study math. Even
in the case of problems for which computers can really contribute to (or actually �nd)
the solution, you typically need to have a deep understanding of the problem in order
to know how to use the computer. If you want to become an engineer or a scientist,
you must acquire and maintain a profound knowledge about the problems you will be
dealing with. This fact was true hundred years ago, and it is still true|computers have
not yet learned to solve interesting problems by themselves.

Programming Skills. Lesson three is one that Cole did not live to see: nowadays, problem-
speci�c knowledge can be turned into problem-speci�c computer programs. That way,
the state of the art concerning Mersenne primes has advanced quite far. It turned out
that Mersenne had made �ve mistakes: n = 67 and n = 257 in Mersenne's list do not
lead to prime numbers; on the other hand, Mersenne had \forgotten" the exponents
n = 61, 89 and 107.

As of September 2009, we know 47 Mersenne primes, the largest of which has an
exponent of n = 43, 112, 609 (see the GIMPS project at www.mersenne.org). But don't
believe that this one was found with o�-the-shelf programs.

Problems occurring in the daily life of an engineer or a scientist are often not easy
to solve, even with a computer and standard software at hand. In order to attack them,
you need tool skills for the routine calculations, and problem skills to understand and
extract the aspects of the problem that can in principal be solved by a computer. But
in the end, you need programming skills to actually do it.

The art of computer programming. To conclude this section, let us be honest: for many
people (including the authors of this book), the process of writing programs has some
very non-utilitarian aspects as well. We have mentioned two of them before: fun and
satisfaction. We could add mathematical beauty and ego boost. In one way or another,
every passionate programmer feels at least a little bit like an artist.

The prime advocator of this view on programming is Donald E. Knuth. He is the
author of a monumental and seminal series of seven books entitled The Art of Computer
Programming. Starting with Volume I in 1968, three of the seven volumes are published
by now. Drafts of Volume IV circulate since 2005, and the planned release date of Volume
V is 2015 (it should be added that Knuth was born in 1938, and on his webpage http:
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//www-cs-faculty.stanford.edu/~knuth/taocp.html, he at least implicitly mentions
the possibility that Volumes VI and VII will not be written anymore).

Let Knuth have the �nal say here (a quote from the beginning of Volume I):

The process of preparing programs for a digital computer is especially
attractive, not only because it can be economically and scienti�cally re-
warding, but also because it can be an aesthetic experience much like
composing poetry or music.
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1.2 How to run a program

In Paris they just simply opened their eyes and
stared when we spoke to them in French! We never
did succeed in making those idiots understand their
own language.

Mark Twain, The Innocents Abroad (1869)

This section explains what it really means to \write a program", and how
you enable the computer to run it. For this, we describe the ingredients
involved in the process: the editor, the compiler, the computer itself, and
the operating system. Computer, compiler and operating system together
form the platform on which you are writing programs.

1.2.1 Editor

Writing a program is not so di�erent from writing a letter. One composes a text, that is,
a (hopefully) meaningful sequence of characters. Usually, there are certain conventions
on how such a text is structured, and the purpose of the text is to transport information.

What has been said so far applies to both letters and programs. But when writing a
program, there is another aspect that has to be taken into account: A program has to be
\read" by a computer, meaning that it must be available to the computer in electronic
form. In the future, we might be able to orally dictate the program to the computer,
but nowadays, the common way is to use a keyboard and simply type it in. An editor is
an application program that allows you to display, modify, and electronically store such
typed-in text. The use of editors is not restricted to programming, of course. With some
still existing romantic exceptions, even letters are composed using editors such asWord.

1.2.2 Compiler

Making a program available to the computer in electronic form is usually not enough.
The machine language a computer can understand directly is very primitive and quite
di�erent from natural languages.

Writing the programs in machine language is no viable alternative, since that would
require to break the program into a large number of primitive instructions that the
computer can understand. This is like telling your friend to come over for dinner by
telling her which muscles to move in order to get to your place.

Moreover, machine languages vary considerably between di�erent computers. That
is, in order to use a program written for one speci�c computer A on a di�erent com-
puter B, one �rst has to translate the program from the machine language of A to the
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 // Program: power8.C
 // Raise a number to the power eight.

 #include <iostream> 

 int main()
 {
   // input
   std::cout << "Compute a^8 for a =? ";
   int a;          
   std::cin >> a;

   // computation
   int b = a * a;
   b = b * b; 

   // Output b * b, i.e., a^8
   std::cout << a << "^8 = "  
             << b * b << "\n";
   return 0; 
 }

Sourcecode Executable
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Compiler

Figure 1: A compiler translates the sourcecode into an executable program.

machine language of B. This process, called porting, can be very cumbersome if the
machine languages of A and B are substantially di�erent. Also, porting can only be
done with a detailed knowledge of the peculiarities of the involved computers. But this
type of knowledge is not generally worthwhile to acquire, as it is tied to one very speci�c
computer. As soon as this computer is replaced by another one, major parts of such
computer-speci�c knowledge become worthless and have to be rebuilt from scratch.

To reduce this undesirable entanglement of computers and programs, and to allow
us to write programs in less primitive language, (high-level) programming languages
have been developed. These are standardized languages that form a kind of compromise
between natural languages and machine language. Indeed, the use of the word \compro-
mise" is justi�ed because there are two conicting goals: On the one hand, we would like
to write programs in a language that is as close to natural language as possible. On the
other hand, we have to make the computers understand the programming language as
well; this task is obviously much easier if the programming language is close to machine
language.

What does it mean \to make the computers understand the programming language"?
In the end, any program has to be translated into machine language. The process of this
translation is called compilation. Now you will probably ask: \Where is the bene�t of
this whole programming language concept? In order to do the translation I still have to
know all these computer-speci�c details, don't I?" Right. If you would have to translate
the program yourself. The key is: You are not supposed to translate it yourself. Instead,
let a program do it for you. Such a program is referred to as a compiler ; it translates a
given program in a programming language, the sourcecode, into a program in machine
language, the executable. See Figure 1 for an illustration. The picture of the executable
is somewhat inappropriate, since it does not show what the computer gets to see after
compilation, but rather what you might see when you (accidentally) load the executable
into the editor. The main point that we are trying to make here is that the executable
is not human-readable.
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In summary: The big bene�t of (high-level) programming languages is that they
abstract from the capabilities of speci�c computers. Programs written in a high-level
language can be run on all kinds of computers, as long as a compiler for the language is
available on the particular computer.

1.2.3 Computer

If you are not interested in writing compilers, it is not necessary to understand in de-
tail how a computer works. But there are some basic principles behind the design of
most computers that are important to understand. These principles form the von Neu-
mann architecture, and they are important, since almost all programming languages
are tailored to the von Neumann architecture.

Every computer with von Neumann architecture has a random access memory
(RAM, or simply main memory), and a central processing unit (CPU, or simply pro-
cessor). The main memory stores the program to be run, but also data that the program
requires as input, and data that the program produces as output. The processor is
the \brain" of the computer: it executes the program, meaning that it carries out the
sequence of instructions prescribed by the program in machine language.

Main memory. You can think of the computer's main memory as a long row of switches,
each of them being either on or o�. During program execution, switches are ipped.
At any time, the memory content|the current positions of all switches|de�nes the
program state. The program state completely determines what happens next. Concep-
tually, we also consider user input and program output as part of the program state,
even though the corresponding \switches" might be in the user's brain, or on printed
paper.

Since modern computers are capable of ipping several switches at the same time,
consecutive switches are grouped into memory cells. The positions of all switches in
the cell de�ne the content of the cell; in more abstract terms, the switches are called bits,
each of them capable of storing one of the numbers {0, 1}. The memory cells are usually
called bytes and represent the smallest segments of memory that can individually be
manipulated. In this sense, you can interpret the content of a memory cell as a binary
number with, for example, 8 digits.

The computer may be able to manipulate more than 8 bits simultaneously; a typical
value is 32 bits, or 4 bytes. We also say that we have a 32-bit machine, or a 32-bit
system.

Each memory cell is uniquely identi�ed by its address. You can think of the address
simply as the position of the memory cell in the list of all memory cells.

To look up bit values, or to ip bits within a speci�c memory cell, the cell has to be
accessed through its address. Think of a robot arm with 8 �ngers that you can tell to
move to memory cell number 17.

The term random access refers to a physical property of the computer's memory:
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the time it takes to access a cell (to \move to its bits") is the same for all cells; in
particular, it does not depend on the address of the cell. When you think in terms of
the robot arm analogy, it becomes clear that random access cannot be taken for granted.
It is not necessary to discuss the physical means by which random access is realized; the
important point here is that random access frees us from thinking about where to store
a data item in order to access it e�ciently.

Processor. You can think of the computer's processor as a box that is able to load and
then execute the machine language instructions of a program in order. The processor
has some memory cells of its own, called registers, and it can transfer data from the
computer's main memory to its registers, and vice versa. The register contents are also
part of the program state. Most importantly, the processor can perform a �xed set of
simple operations (like adding or subtracting register contents), directly corresponding to
the machine language instructions. This is where the functionality of the whole program
comes from in the end. Even very complicated and useful programs can be put together
from a simple set of machine language instructions.

A single instruction acts like a mathematical function: given the current program
state, a valid instruction generates a new and well-de�ned next program state. This
implies that every sequence of instructions, and in particular the whole program has a
determined behavior, depending on the initial program state.

1.2.4 Operating system

We have seen that in order to write a program and run it, you �rst have to start an
editor, type in the program, then call the compiler to translate the program into machine
language, and �nally tell the computer to execute it. In all this \starting", \calling" and
\telling", you rely on the computer's operating system (OS), a program so basic that
you may not even perceive it as a program. Popular operating systems are Windows,
Unix, Linux, and Mac OS.

For example, you may start the editor by clicking on some icon, or by using a com-
mand shell (a text window for typing in commands; under Unix and Linux, this is
still the default working mode).In both cases, the operating system makes sure that the
editor program is loaded into the main memory, and that the processor starts executing
it. Similarly, when you store your written program, the operating system allocates space
for it on the hard disk and associates it with the �le name you have provided.

A computer without operating system is like a car without tires, and most computers
you can buy come with a pre-installed operating system. It is important to understand,
though, that the operating system is not inextricably tied to the computer: you can take
your \Windows PC" and reinstall it under Linux.
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1.2.5 Platform

The computer, its operating system and the compiler are together referred to as the
platform on which you are writing your programs. The editor is not part of the platform,
since it does not inuence the behavior of the program.

In an ideal world, there is no need for you to know the platform when you are writing
programs in a high-level programming language. Recall that the plan is to delegate the
platform-speci�c aspects to the compiler. A typical such platform-speci�c aspect is the
number of bits that can be manipulated together. This is mostly 32 these days, but for
some computers it is 64, and for very primitive computers (like they are used in smart
cards, say), it can be less than 32.

When you are using or relying on machine-oriented features of the programming
language, platform-speci�c behavior might be the result. Many high-level programming
languages have such low-level features to facilitate the translation into e�cient machine
language.

Your goal should always be to write platform-independent code, since otherwise, it
may be very di�cult to get your program to run on another computer, even if you have
a compiler for that computer. This implies that certain features should be avoided, even
though it might seem advantageous to use them on a speci�c platform.

1.2.6 Details

Von Neumann's idea of a common memory for the program and the data seems obvious
from today's point of view, but the earliest computers like Konrad Zuse's Z3 didn't
work that way. In the Z3, for example, the memory for the program was a punch tape,
decoupled from the input and output device, and from the main memory.

An interesting feature of the von Neumann architecture is that it allows self-modifying
programs. These are popular among the designers of computer viruses, for example.

The von Neumann architecture with its two levels of memory (main memory and
processor registers) is an idealized model, and we are implicitly working under this
model throughout the course.

The reality looks more complicated. Modern computers also have a cache, logically
belonging to the main memory, but allowing much faster access to memory cells (at the
price of a more elaborate and expensive design). The idea is that frequently needed data
are stored in the cache to speed up the program.

While caching is certainly a good thing, it makes the life of a programmer more
di�cult: you can no longer rely on the fact that access time to data is independent from
where they are stored. In fact, to get the full performance bene�t that caching can o�er,
the programmer has to make sure that data are accessed in a cache-coherent way. Doing
this, however, requires some computer-speci�c knowledge about the cache, knowledge we
were originally trying to avoid by using high-level programming languages. Luckily, we
can often ignore this issue and (successfully) rely on the automatic cache management
being o�ered. There is also a theoretical model for so-called cache-oblivious algorithms,
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in which the algorithm does not know the parameters of the cache. Algorithms which
are e�cient under this model, are (in a certain sense) e�cient for every concrete cache
size.

In real-life applications, we also observe the phenomenon that the data to be pro-
cessed are too large to �t into the computer's main memory. Operating systems can
automatically deal with this by logically extending the main memory to the hard disk.
However, the swapping that takes place when hard disk data to be accessed are trans-
ferred to the main memory incurs a severe performance penalty, much worse than poor
cache usage. In this situation, it is often useless to rely on the automatic mechanisms
provided by the operating systems, and the programmer is challenged to come up with
input/output e�cient programs.

Even when we extend the von Neumann architecture to include several layers of mem-
ory, there are computers that don't �t in. Most notably, there are parallel computers
with more than one processor. In fact, even consumer PCs have more than one processor
these days. Writing e�cient programs for such a computer is a task entirely di�erent
from programming for the von Neumann architecture. To take full advantage of the
parallelism, programs have to be decomposed into independent parts, each of which is
then run by one of the processors. In many cases, this is not at all a straightforward
task, and specialized programming languages have to be used.

A recent successful alternative to parallel computers are networks of single-processor
computers. You can even call this a computer architecture. Finally, there are quantum
computers that are based on completely di�erent physical principles than the von Neu-
mann architecture. \Real" quantum computers cannot be built yet, but as a theoretical
model, quantum computers exist, and algorithms are already being developed in this
promising model of computation.
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2.1 A first C++ program

The basic tool for the manipulation of reality is the manipu-
lation of words. If you can control the meaning of words, you
can control the people who must use the words.

Philip K. Dick, How to Build a Universe That
Doesn't Fall Apart Two Days Later (1978)

This section presents a �rst complete C++ program and introduces the
syntactical and semantical terms necessary to understand all its parts.

Here is our �rst C++ program. It asks for a number a as input and outputs its
eighth power a8. If you have never seen a C++ program before, even this short one
might look scary, since it contains a lot of strange-looking symbols and words that are
not found in natural language. On the other hand, this is good news: as short as it is,
this program already contains many important features of the C++ language. Once we
have gone through them in this section, this program (and even other, bigger programs)
won't look scary anymore.

1 // Program: power8.cpp

2 // Raise a number to the eighth power.

3

4 #include <iostream >
5

6 int main()
7 {
8 // input

9 std::cout << "Compute a^8 for a =? ";
10 int a;
11 std::cin >> a;
12

13 // computation

14 int b = a * a; // b = a^2

15 b = b * b; // b = a^4

16

17 // output b * b, i.e., a^8

18 std::cout << a << "^8 = " << b * b << ".\n";
19 return 0;
20 }

Program 1: progs/lecture/power8.cpp
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If you compile this program on your computer and then run the executable �le pro-
duced by the compiler, you �nd the following line on the standard output. Typically,
the standard output is attached to some window on your computer screen.

Compute a^8 for a =?

You can now enter an integer, e.g. 2, using the keyboard. After pressing ENTER,
the output on your screen reads as follows.

Compute a^8 for a =? 2
2^8 = 256.

Before discussing the program power8.cpp in detail, let us go over it once quickly. The
lines starting with two slashes // are comments ; they document the program such that
it can easily be understood by a (human) reader. Line 4 contains an include-directive ;
in this case, it indicates that the program uses the input/output library iostream. The
main function which is the heart of every C++ program spans lines 6{20. This function
is called by the operating system when the program is started; it ends with a return
statement in line 19. The value 0 is returned to the operating system, which by con-
vention signals that the program terminated successfully.

The main function is divided into three parts. First, in lines 8{11 the input number
is read. Line 9 outputs a message to the user that tells her which kind of input the
program expects. In line 10 a variable a is declared that acts as a placeholder to store
the input number. The keyword int indicates that a is an integer. In line 11, �nally,
the variable a receives its value from the input.

Then in lines 13{15 the actual computation takes place. In line 14, a new variable
b is declared which acts as a placeholder to store the result of the computation. The
variable b is initialized to the product a * a. Line 15 computes the product b * b, that
is, a4 and stores this result again in b.

The third part in lines 17{18 provides the program output. Part of it is the compu-
tation of the product b * b, that is, a8.

2.1.1 Syntax and semantics.

In order to understand the program power8.cpp in detail, and more importantly, to write
programs yourself later, you need to know the rules according to which programs are
written. These rules form the syntax of C++. You further need to know how to interpret
a program (\what does the program do?"), and this is determined by the semantics of
C++. Even a program that is well-formed according to the C++ syntax may be invalid
from a semantical point of view. A valid program is one that is syntactically and
semantically correct.

It's the same with natural language: grammar tells you what sentences are, but the
interpretation of a sentence (in particular, whether it makes sense at all) requires a
concept of meaning.

When a program is invalid, the compiler may output an error message, and this will
de�nitely happen when the program contains syntax errors, violations of the syntactical
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rules. A program that is semantically invalid may compile without errors, but we are
not allowed to make any assumptions about its behavior; the program could run �ne,
for example if the semantical error in question has no consequences on a particular
platform. On other platforms, the program may behave strangely, or crash. Even on
the same platform, it might work sometimes, but fail at other times. We say that the
program's behavior is unde�ned. Clearly, one should avoid writing programs that exhibit
unde�ned behavior.

The syntax of C++ is speci�ed formally in a mathematical language. The description
of the semantics is less strict; it rather resembles the text of a law, and as such it su�ers
from omissions and possible misinterpretations. The o�cial law of C++ covering both
syntax and semantics, is the ISO/IEC standard 14882 from 1998.

While such a formal speci�cation is indispensable (otherwise, how should a compiler
know whether your program text is actually a C++ program, and what it is supposed
to do?), it is not suitable for learning C++. Throughout this book, we explain the
relevant syntactical and semantical terms in natural language and by example. For
the sake of readability, we will often not strictly distinguish between syntactical and
semantical terms: some terms are most naturally introduced as having both syntactical
and semantical aspects, and it depends on the context which aspect is relevant.

Unspecified and implementation defined behavior. Sometimes, even valid programs behave
di�erently on di�erent platforms; this is one of the more ugly aspects of C++ that we'd
prefer to sweep under the rug. Unfortunately, we can't ignore the issue completely, since
it occasionally pops up in \real life".

There are two kinds of platform-dependent behavior. The nicer one is called imple-
mentation de�ned behavior.

Whenever the C++ standard calls some aspect of the language \implementation
de�ned", you can expect your platform to contain documentation that fully speci�es the
aspect. The typical example for such an an implementation de�ned aspect is the number
of bits that can be manipulated at once, see Section 1.2.3. In case of implementation
de�ned aspects and resulting behavior, the C++ standard and the platform together
completely determine the actual behavior.

The less nice kind is called unspeci�ed behavior, coming from some unspeci�ed
aspect of the language. Here you can rely on a well-de�ned and usually small set of
possible speci�cations, but the platform is not required to contain a full speci�cation of
the aspect. A typical example for such an unspeci�ed aspect is the evaluation order of
operands within an expression, see Section 2.1.12.

In writing programs, unspeci�ed aspects cannot always be avoided, but usually, some
care ensures that no unspeci�ed or even unde�ned behavior results.

2.1.2 Comments and layout

Every good program contains comments, for example



2.1. A FIRST C++ PROGRAM 25

// Program: power8.cpp

// Raise a number to the eighth power.

A comment starts with two slashes // and continues until the end of the line. Comments
do not provide any functionality, meaning that the program would do exactly the same
without them. Why is a program without comments bad, then? We do not only write
programs for the compiler to translate them into executables, but we also write them for
other people (including ourselves) to read, modify, correct or extend them.

Without comments, the latter tasks become very tedious when the program is not
completely trivial. Trust us: Even you will not be able to understand your own pro-
grams after a couple of weeks, without comments. There is no standard way of writing
comments, but we will follow some common-sense guidelines. One of them is that every
program|even if it is very simple|should start with one or more lines of comments
that mention the program's name and say what it does. In our case, the above two lines
fully su�ce.

Another key feature of a readable program is its layout; consider the version of
power8.cpp shown in Program 2. We have removed comments, and all \unnecessary"
layout elements like spaces, line breaks, blank lines, and indentations.

1 #include <iostream >
2 int main (){std::cout <<"Compute a^8 for a =? ";
3 int a;std::cin >>a;int b=a*a;b=b*b;std::cout <<
4 a<<"^8 = "<<b*b<<".\n";return 0;}

Program 2: progs/lecture/power8 condensed.cpp

The compiler is completely ignorant about these changes, but a person reading the
program will �nd this condensed version quite di�cult to understand. The purpose of a
good layout is to visualize the program structure. This for example means that logical
blocks of the program should be separated by blank lines, or that one line of sourcecode
should be responsible for only one thing. Indentation, like power8.cpp has it between
the pair of curly braces, is another indispensable ingredient of good layout, although you
will only later be able to fully appreciate this.

Typically, collaborative software projects have layout guidelines, making sure that
everybody in the project can easily read everybody else's code. At the level of the
simple programs discussed in this book, such formal guidelines are not necessary; we
simply adhere to standard guidelines that have proven to work well in practice, and that
are being used in almost every other book on C++ as well.

2.1.3 Include directives

Every useful program contains one or more include directives, such as

#include <iostream >
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Usually, these appear at the very beginning of the program. #include directives are
needed since, in C++, many important features are not part of the core language. In-
stead, they are implemented in the so-called standard library which is part of every
C++ implementation. A library is a logical unit used to group certain functionality
and to provide it to the user in a succinct form. In fact, the standard library consists of
several libraries one of which is the input/output library.

A library presents its functionality to the user in the form of one or several headers.
Each such header contains information that is needed by the compiler. In order to use
a certain feature from a library, one has to include the corresponding header into the
program by means of an #include directive. In power8.cpp, we want to use input and
output which are (maybe surprisingly) not part of the core language. The corresponding
header of the standard library is called iostream.

A well-designed C++ library puts its functionality into a namespace. The namespace
of the standard library is called std. Then, in order to access a feature from the library,
we have to qualify its name with the namespace, like in std::cin (this is the feature that
allows us to read input from the keyboard). This mechanism helps to avoid name clashes
in which di�erent features accidentally get the same name. At the same time, explicit
quali�cation increases the readability of a program, as it is immediately apparent from
which library a given feature comes. A name that is not quali�ed is called unquali�ed
and usually corresponds to a feature de�ned in our own program.

2.1.4 The main function

Every C++ program must have a main function. The shortest program reads as follows.

int main() { return 0; }

This program does nothing. The main function is called by the operating system when
you tell it to run the program; but why is it a function, and what is \return 0;"
supposed to mean? Just like a mathematical function, the main function can have
arguments given to it upon execution of the program, and the computations within
the curly braces yield a function value that is given back (or returned) to the operating
system. In our case, we have written a main function that does not expect any arguments
(this is indicated by the empty brackets () behind main) and whose return value is the
integer 0. The fact that the return value must be an integer is indicated by the word int

before main. By convention, return 0 tells the operating system that the program has
run successfully (or that we don't care whether it has), while any other value explicitly
signals failure.

In a strict mathematical sense, the main function of power8.cpp is utterly boring.
The whole functionality of the program comes from the e�ect of the function. This e�ect
is to read a number from the standard input and write its eighth power to the standard
output. The fact that functions can have e�ects sets C++ apart from many functional
programming languages.
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2.1.5 Values and effects

The value and e�ect of a function are determined by the C++ semantics. Merely knowing
the syntactical rules of writing functions does not tell us anything about values and
e�ects. In this sense, value and e�ect are purely semantical terms.

For example, we have to know that in C++, the character 0 is interpreted as the
integer 0 (although this is not di�cult to guess). It is also important to understand that
value and e�ect depend on the concrete program state in which the function is called.

2.1.6 Types and functionality

The word int is the name of a C++ type. This type is used since the program
power8.cpp deals with integers. In mathematics, integers are modeled by the ring
(Z,+, �). This algebraic structure de�nes the integers in terms of their value range
(the set Z), and in terms of their functionality (addition and multiplication). In C++,
integers can be modeled by the type int. Like a \mathematical type", a C++ type has
a name, a value range, and functionality, de�ning what we can do with it. When we
refer to a type, we will do so by its name. Note that the name is a syntactical aspect of
the type, while value range and functionality are of semantical nature.

Conveniently, C++ contains a number of fundamental types (sometimes called built-
in types) for typical applications. The type int is one of them. The major di�erence to
the \mathematical type" (Z,+, �) is that int has a �nite value range only.

2.1.7 Literals

A literal represents a constant value of some type. For example, in line 19 of the program
power8.cpp, 0 is a literal of type int, representing the value 0. For each fundamental
type, it is separately de�ned how its literals look like, and what their values are. A literal
can be seen as the syntactical counterpart of a value: it makes the value \visible" in the
program.

2.1.8 Variables

The line

int a;

contains a declaration of a variable. A variable represents a not necessarily constant
value of some type. The variable has a name, a type, a value, and an address (typically
in the computer's main memory; you can think of the address simply as the position of
the variable in the main memory). The purpose of the address is to store and look up
the value under this address. The reason for calling such an entity a variable is that its
value can be changed by modifying the memory content at the corresponding address.
In contrast, the name and type remain �xed.
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When we refer to a variable, we will do so by its name. The declaration int a de�nes
a variable with the following characteristics.

name type value address
a int unde�ned chosen by compiler/OS

You might wonder why this is called a de�nition of a, even though it does not de�ne
the value of a. But recall that this value depends on the program state, and that the
de�nition fully speci�es how the value is obtained: look it up at a's address. Saying
that a variable has a value is therefore somewhat imprecise, but we'll stick to it, just like
mathematicians talk about function value when they actually mean the value obtained
by evaluating the function with concrete arguments. We even go one step further with
our sloppiness: if a has value 2, for example, we also say that \a is 2". This is the way
that programmers usually talk about variables and their values. We will get to know
mechanisms for assigning and changing values of variables in Section 2.1.14.

In C++, it is good general practice to de�ne a variable immediately before it is used
for the �rst time. This practice improves the readability of your programs.

2.1.9 Constants (I promised myself)

Imagine that you wake up on a Sunday morning with a raging hangover, and you promise
yourself that you will never touch alcohol again. But if there is no one to check whether
you keep that promise, chances are that next Sunday you wake up with the next hangover.

In the ethical language of C++, you can give promises that you must keep. Here is
an example of the most basic kind of promise. In writing

const int speed_of_light = 299792458;

you de�ne a variable speed_of_light whose value is 299, 792, 458 (m/s). The keyword
const in front of the declaration is the promise that this variable will never change
its value throughout the program. Such a variable is called a constant. The type of
speed_of_light is const int, the const-quali�ed version of int.

The compiler will check whether you as the programmer keep your promise. Any sub-
sequent lines of code that attempt to store a value under the address of speed_of_light
will generate an error message. For example, if your program contains the two lines

const int speed_of_light = 299792458;
...
speed_of_light = 300000000; // let’s make it a bit easier

the compiler will remind you of your promise not to change the value of speed_of_light.
The const promise implies that declarations as in

const int speed_of_light;

make no sense and are actually forbidden in the main program, as they would yield
constants of eternally unde�ned value.
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You don't have to give a const promise, and since it seems like extra e�ort at �rst
sight, why should you do it? Because it helps you (and others that may further develop
your code in the future) to avoid programming errors. If you de�ne a variable (such
as speed_of_light) with the intention of keeping its value �xed once and for all, then
you should use const to tell the compiler about your intention. If you don't, it may
(accidentally) happen that a 'constant' (such as the speed of light, or the VAT rate) gets
modi�ed; the resulting erroneous behavior of the program may be very hard to discover
and to track down.

The whole point of high-level programming languages is to make the programmer's
life easier; the compiler is our friend and can help us to avoid many time-consuming
errors. The const mechanism is like a check digit: by providing additional redundant
data (the const keyword), we make sure that inconsistencies in the whole data set (the
program) are automatically detected.

Also, consistently using const makes the program more readable, an aspect whose
importance we have already stressed in Section 2.1.2. In reading

const int speed_of_light = 299792458;

you immediately know that the program is working with a �xed speed_of_light through-
out. We therefore advocate the following

Const Guideline: Whenever you de�ne a variable in a program, think about whether its
value is supposed to change or not. In the latter case, use the const keyword to turn
the variable into a constant.

In existing code (of \real programmers"), this guideline is often not followed, and in
the context of very short programs, it may even be perceived as pedantic. The authors
prefer being pedantic to risking unnecessary programming errors. A program that follows
the Const Guideline is called const-correct.

2.1.10 Identifiers and names

The name of a variable must be an identi�er, according to the following de�nition, and
it must be di�erent from certain reserved names like int.

Definition 1 An identifier is a sequence of characters composed of the 52 letters a. . . z
and A. . . Z, the 10 digits 0. . . 9, and the underscore (_). The �rst character has to
be a letter.

A C++ program may also contain other names, for example the quali�ed names
std::cin and std::cout. The C++ syntax speci�es what a name is, while the C++
semantics tells us what the respective name refers to in a given context.
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2.1.11 Objects

An object is a part of the computer's main memory that is used by the program to store
a value. An object has an address, a type, and a value of its type (determined by the
memory content at the object's address).

With this de�nition, a variable can be considered as a named object, but we may also
have unnamed objects. Although we can't show an example for an unnamed object at
this point, we can argue that unnamed objects are important.

In fact, if you want to write interesting programs, it is absolutely necessary to work
with objects that are not named by variables. This can be seen by the following simple
thought experiment: suppose that you have written a program that stores a sequence of
integers to be read from a �le (for example, to sort them afterwards). Now you look at
your program and count the number of variables that it contains. Say this number is 31.
But in these 31 variables, you can store no more than 31 integers. If your program is of
any practical use, it can certainly store a sequence of 32 integers, but then there must
be at least one integer that cannot be stored under a variable name.

2.1.12 Expressions

In the program power8.cpp, three character sequences stand out, because they look
familiar and are chiey responsible for the functionality of the program: these are the
character sequences a * a in line 14 and b * b in lines 15 and 18.

An expression represents a computation involving other expressions. More precisely,
an expression is either a primary expression, for example a literal or a name, or it is
a composite expression. A composite expression is obtained by combining expressions
through certain operations, or by putting a pair of parentheses () around an expression.

The expression a * a is an arithmetic expression, involving numeric variables (actu-
ally, the names of the variables, but for the sake of readability, we suppress this subtlety)
and the multiplication operator, just like we know it from mathematics. According to our
above de�nition, a * a is a composite expression, built from the multiplication operator
and the two primary expressions a and a.

According to the above de�nition, an expression is a syntactical entity, but it has
semantical aspects as well: every expression has a type, a value of this type, and possibly
an e�ect. The type is �xed, but the value and the e�ect only materialize when the
expression gets evaluated, meaning that the computation it represents is carried out.
Evaluating an expression is the most frequent activity going on while a C++ program is
executed; the evaluation computes the value of the expression and carries out its e�ect
(if any).

Type and value of a primary expression are determined by its de�ning literal, or by
type and value of the entity behind its de�ning name. Primary expressions have no
e�ect. Type, value and e�ect of a composite expression are determined by the involved
operation, depending on the values and e�ects of the involved sub-expressions. Putting
parentheses () around an expression yields an expression with the same type, value and
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e�ect.
The expression a * a, for example, is of type int, and not unexpectedly, its value is

the square of the value of a. The expression has no e�ect. The expression b = b * b,
built from the assignment operator and the two expressions b and b * b, has the same
type and value as b * b, but it has an additional e�ect: it assigns the square of b back
to b. (This is a shorthand for the correct, but somewhat clumsy formulation that the
new value of b is set to the square of the old value of b.)

We say that an expression is evaluated rather than executed, because many expres-
sions do not have an e�ect, so that their functionality is associated with the value only.
Even for expressions with e�ect, some books use the term side e�ect to emphasize that
the important thing is the value. The C++ entities chiey responsible for e�ects are the
statements to which we get below.

We want to remark that the only way of accessing an expression's value is to evaluate
it, and this also carries out its e�ect. You cannot get the value without the e�ect.

2.1.13 Lvalues and rvalues

An lvalue is an expression that has an address. In the program power8.cpp, the variable
b is an lvalue, and its address is the address of the variable b.

The value of an lvalue is de�ned as the value of the object at its address. An lvalue
can therefore be viewed as the syntactical counterpart of an object: it gives the object a
(temporary) name and makes it \visible" within a C++ program. We also say that the
lvalue refers to the object at its address.

In particular, every variable is an lvalue. But lvalues provide a means for accessing
and changing object values, even without having a corresponding variable. As we will
see in Section 2.1.14 below, the expression std::cout << a \hidden" in line 18 is such
an lvalue.

Every expression that is not an lvalue is an rvalue. For example, literals are rvalues:
there is no address associated with the int-literal 0, say. Putting a pair of parenthesis
around an lvalue yields an lvalue, and similarly for rvalues.

The terms lvalue and rvalue already indicate that we think about them not so much
in terms of expressions, but rather in terms of their values. We will often identify an
lvalue with the object it refers to, and an rvalue simply with its value.

2.1.14 Operators

Line 14 of power8.cpp, for example, features the binary multiplication operator *.
Like a function, an operator expects arguments (here also called operands) of spec-

i�ed types, from which it computes a return value of a speci�ed type, according to its
functionality. In addition, these computations may have an e�ect.

This was the semantical view; on the syntactical level, the operands as well as the
composite expression (built from the operator and its operands, see Section 2.1.12), are
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expressions; the operator speci�es for each of them whether it is an lvalue or an rvalue.
If the composite expression is an lvalue, the operator is said to return the object referred
to by the lvalue. If the composite expression is an rvalue, the operator simply returns
its value.

The number of operands is called the arity of the operator. Most operators have
arity 1 (unary operators) or 2 (binary operators).

Whenever an rvalue is expected as an operand, it is also possible to provide an lvalue.
In this case, the lvalue will simply be interpreted as an rvalue, meaning that its address
is only used to look up the value, but not to change it. This is known as lvalue-to-
rvalue conversion. In stating that an operand must be an rvalue, the operator therefore
guarantees that the operand's value remains unchanged; by expecting an lvalue, the
operator explicitly signals its intention to change the value.

Evaluation of composite expressions. When a composite expression involving an operator
gets evaluated, the operands are evaluated �rst (recall that this also carries out the e�ects
of the operands, if any). Based on the resulting values, the operator computes the value
of the composite expression. The latter computations may have additional e�ects, and
all e�ects together form the e�ect of the composite expression.

The order in which the operands of a composite expression are evaluated is (with
rare exceptions) unspeci�ed, see also Section 2.1.1.

Therefore, if the e�ect of one operand inuences values or e�ects of other operands,
value and e�ect of the composite expression may depend on the evaluation order. The
consequence is that value and e�ect of the composite expression may be unspeci�ed as
well.

Since the compiler is not required to issue a warning in such cases, it is the respon-
sibility of the programmer to avoid any expression whose value or e�ect depends on the
evaluation order of operands.

Operator specifics. What is it that sets operators apart from functions? On the one hand,
there is only a �nite number of possible operator tokens such as * or =. Many of these
tokens directly correspond to well-known mathematical operator symbols indicating the
functionality of the operator. Unfortunately, the token = corresponds to mathematical
assignment :=, and not to mathematical equality =, a constant source of confusion for
beginners.

On the other hand, and most conveniently, operator calls do not have to obey the
usual function call notation, like in f(x, y). After all, we want to write a * a in a
program, and not *(a,a). In summary, operators let us write more natural and more
readable code.

Four di�erent operators (all of them binary) occur in power8.cpp, namely the mul-
tiplication operator *, the assignment operator =, the input operator >>, and the output
operator <<. Let us discuss them in turn.
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Multiplication operator. The multiplication operator * expects two rvalue operands of
some type T, and it returns the product of its two operands as an rvalue. The multipli-
cation operator has no e�ect on its own.

Assignment operator. The assignment operator = expects an lvalue of some type T as its
�rst operand, and an rvalue of the same type as its second operand. It assigns the value
of the second operand to the �rst operand and returns the �rst operand as an lvalue. In
our program power8.cpp, the expression b = b * b therefore sets the value of b to the
square of its previous value, and then returns b.

In fact, the letter \l" in the term lvalue stands for the fact that the expression may
appear on the left hand side of an assignment. Similarly, the term rvalue signals an
expression that may appear only on the right hand side of an assignment.

Input Operator. In power8.cpp, the composite expression std::cin >> a in line 11 sets
the variable a to the next value from the standard input, usually the keyboard.

In general, the input operator >> expects as its �rst operand an lvalue referring to an
input stream. The second operand is an lvalue of some type T. The operator sets the
second operand to the next value read from the input stream and returns the stream as
an lvalue.

An input stream represents the state of some input device. We think of this device as
producing a continuous stream of data that can be tapped to provide input on demand.
Under this point of view, the state of the stream corresponds to the sequence of data
not yet read. In setting the value of its second operand, the input operator removes one
data item from the stream to reect the fact that this item has now been read. For this,
it is important that the stream comes as an lvalue. Conceptually, an input stream is also
considered part of the program state.

How much of the data is read as one item, and how exactly it is interpreted as a
value of type T highly depends on the type T of the second operand. For now, it is
enough to know that this interpretation is readily de�ned for the type int and for the
other fundamental types that we will encounter in the following sections.

In C++, the lvalue std::cin refers to the variable cin de�ned in the input/output
library, and this variable corresponds to the standard input stream.

It is up to the program's caller to �ll the standard input stream with data. For exam-
ple, suppose that the program was started from a command shell. Then usually, while
the program is running, all input to the command shell is forwarded to the program's
standard input stream. It is also possible to redirect a program's standard input stream
to read data from a �le instead.

The fact that the input operator returns the input stream is not accidental, as it allows
to build expressions involving chains of input operations, such as std::cin >> x >> y.
We will discuss this mechanism in detail for the output operator below.
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Output Operator. In power8.cpp, the composite expression std::cout << a in line 18
writes the value of a to the standard output, usually the computer screen.

In general, the output operator << expects as its �rst operand an lvalue referring to
an output stream. The second operand is an rvalue of some type T. The operator writes
the value of the second operand to the output stream and returns the output stream as
an lvalue.

An output stream represents the state of some output device. We think of this device
as storing the continuous stream of output data that is generated by the program. In
writing to the stream, the output operator therefore changes the stream state, and this
makes it necessary to provide the stream as an lvalue. Conceptually, an output stream
is also considered part of the program state.

It depends on the type T in which format the second operand's value is written to
the stream; for the type int and the other fundamental types, this format is readily
de�ned.

C++ de�nes a standard output stream std::cout and a standard error stream
std::cerr in the input/output library.

It is up to the program's caller to process these output streams. For example, suppose
that the program was started from a command shell. Then usually, while the program is
running, both standard output stream and standard error stream are forwarded to the
command shell. But it is also possible to redirect one or both of these streams to write
to a �le instead. This can be useful to separate regular output (sent to std::cout) from
error output (sent to std::cerr).

As indicated above for input streams, it is possible to output several values through
one expression, as in

std::cout << a << "^8 = " << b * b << ".\n"

Maybe this looks a bit strange, because there is more than one << operator token and
more than two operands; but in mathematics, we also write a + b + c as a shortcut for
either (a + b) + c or a + (b + c); because addition is associative, we don't even have to
specify which variant we intend.

In C++, such shortcuts are also allowed in order to avoid cluttering up the code with
parentheses. But C++ operators are in general not associative, so we have to know the
`logical parentheses' in order to understand the meaning of the shortcut.

The operators >> and << are left-associative, meaning that the above expression is
logically parenthesized as follows.

((( std::cout << a) << "^8 = ") << b * b) << ".\n"

Recall that the innermost expression std::cout << a is an lvalue referring to the stan-
dard output stream. Hence, this expression serves as a legal �rst operand for the next
outer composite expression (std::cout << a) << "^8 = " and so on. The full expres-
sion therefore outputs the values of all expressions occurring after some <<, from left to
right. The rightmost of these expressions ends with \n that causes a line break.

Warning: In using such nested output expressions, it is very easy to make mistakes
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based on false assumptions about the evaluation order. As an example, consider the
expression

std::cout << (a = 10) << ", " << a

where the variable a initially has value 5, say. You might expect that this outputs 10, 10.
But it is equally conceivable that the output is 10, 5. The latter happens if the right
operand a of the outermost composite expression

((std::cout << (a = 10)) << ", ") << a

is evaluated �rst, and the former happens if the left operand (whose e�ect includes
changing the value of a to 10) is evaluated �rst. On the platform of the authors, the
output is 10, 5.

2.1.15 Statements

A statement is a basic building block of a C++ program, and it usually has an e�ect. The
e�ect depends on the program state and materializes when the statement is executed.
As with expressions, we say that a statement does something. A statement usually ends
with a semicolon and represents a \step" of the program. Statements are executed in
top-to-bottom order. The shortest possible statement is the null statement consisting
only of the semicolon; it has no e�ect. In a typical program, most statements evaluate
one or several expressions.

A statement is not restricted to one line of sourcecode; on the contrary, readability
often requires to break up statements into several lines of code. The compiler ignores
these line breaks, as long as we do not put them at unreasonable places like in the middle
of a name.

In power8.cpp, there are three kinds of statements.

Expression statement. Appending a semicolon to an expression leads to an expression
statement. It evaluates the expression but does not make use of its value. This is a
frequent form of statements, and in our small program, the statement

b = b * b;

as well as all statements starting with std::cin or std::cout are expression statements.

Declaration statement. Such a statement introduces a new name into the program. This
can be the name of a variable of a given type, like in the declaration statements

int a;

and

int b = a * a;

A declaration statement consist of a declaration and a concluding semicolon. In our
program power8.cpp, we deal with variable declarations; they can be of the form



36 CHAPTER 2. FOUNDATIONS

T x

or

T x = expr

where T is a type, x is the name of the new variable, and expr is an rvalue. A variable
declaration is not an expression; for example, it can occur at speci�c places only. But
when it occurs, it behaves like an expression in the sense that a declaration also has an
e�ect and a value. Its e�ect is to allocate memory for the new variable at some address,
and to initialize it with the value of expr, if present. Its value is the resulting value of
the new variable. The declaration is said to de�ne the variable.

As in the case of expression statements, a declaration statement carries out the e�ect
of the declaration and ignores its value.

Return statement. Such a statement is of the form

return expression;

where expression is an rvalue. It only occurs within a function. The return statement
evaluates expression, �nishes the function's computations, and puts expression's value
at some (temporary) address that the caller of the function can access. Abstracting from
these technicalities, we simply say that the statement returns expression to the caller.

We have seen only one example so far: the statement return 0; returns the value
0 (formally, the literal 0 of value 0) to the operating system which has called the main

function of our program.
Figure 2 summarizes the syntactical and semantical terms that we have introduced,

along with their relations. The �gure emphasizes the central role that expressions play
in C++.

2.1.16 The first program revisited

If you run the executable �le resulting from Program 1 for a couple of input values, you
will quickly notice that something is weird. For example, on the platform of the authors,
the following happens:

Compute a^8 for a =? 15
15^8 = -1732076671.

Obviously, the eighth power of a positive number cannot be negative, so what is going
on? We will discuss this in detail in the next section, but the short explanation is that
the type int can only deal with numbers up to a certain size. If the mathematical
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Figure 2: Syntactical and semantical terms appearing in our �rst program
power8.cpp. Purely semantical terms appear in white, purely syntacti-
cal terms in dark gray. Mixed terms are drawn in light gray. Solid arrows
A→ B are to be read as \A has B", while solid lines in the expression part
mean that the upper term is more general than the lower one.

result of a computation exceeds this size, the C++ result will necessarily di�er from the
mathematical result.

This sounds like bad news; after all, 158 is not such a big number, and if we can-
not even compute with numbers of this size, what can we compute at all? The good
news is that the problem is easy to �x. The authors have implemented a type called
ifm::integer that is capable of dealing with integers of arbitrary size (up to the mem-
ory limits, of course). Using this type is very easy, and this is one of the key strengths of
C++: we simply have to replace int by ifm::integer in our program and in addition
include a library that contains the de�nition of the new type. Here is the accordingly
changed program.

1 // Program: power8_exact.cpp
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2 // Raise a number to the eighth power ,

3 // using integers of arbitrary size

4

5 #include <iostream >
6 #include <IFM/integer.h>
7

8 int main()
9 {
10 // input

11 std::cout << "Compute a^8 for a =? ";
12 ifm:: integer a;
13 std::cin >> a;
14

15 // computation

16 ifm:: integer b = a * a; // b = a^2

17 b = b * b; // b = a^4

18

19 // output b * b, i.e., a^8

20 std::cout << a << "^8 = " << b * b << ".\n";
21 return 0;
22 }

Program 3: progs/lecture/power8 exact.cpp

Using the above program, you can compute the correct value of 158:

Compute a^8 for a =? 15
15^8 = 2562890625.

But also much larger values will work (if you happen to be interested in them):

Compute a^8 for a =? 1234567
1234567^8 = 5396563761318393964062660689603780554533710504641.

We will not discuss the type ifm::integer any further in this book, and there's no
need for it, since it just works like int (except that it does not have the size limitations
of int). But whenever you need (in an exercise or challenge) larger numbers, you are
free to use the type ifm::integer instead of int.

2.1.17 Details

Commenting. There is a way of writing comments that are not limited to one line of
code. Any text enclosed by /* (start of comment) and */ (end of comment) is ignored
by the compiler. The initial comment of our program power8.cpp could also have been
written as

/*

Program: power8.cpp
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Raise a number to the power 8.

*/

This mechanism may seem useful for longer comments spanning several lines of code,
but the problem is that you do not immediately recognize a line in the middle of such a
construction as a comment: you always have to look for the enclosing /* and */ to be
sure.

Sometimes, /* and */ are used for very short comments within lines of code, like in

c = a * /* don’t divide! */ b;

For readability reasons, we do not advocate this kind of comment, either.

Identifiers starting with an underscore. Occasionally, real-life C++ code contains \identi-
�ers" starting with the underscore character _, although this is not allowed according to
De�nition 1. The truth is that the programmer is not allowed to use such \identi�ers";
they are reserved for internal use by the compiler. Compilers should issue at least a
warning, when they discover such a badly formed \identi�er", but often they just let it
pass.

The main function. The main function is an exceptional function in several ways. One
particular specialty is that the return statement can be omitted. A main function without
a return statement at the end behaves precisely as if it would end with return 0;. This
de�nition has been made for historical reasons mostly; it is an anomaly compared to
other functions (which will be discussed later). Therefore, we stick to the explicit return
statement and ask you to do the same.

Using directives. It is possible to avoid all std:: pre�xes through one additional line of
code, a using directive. In case of power8.cpp, this would look like in Program 4.

1 // Program: power8_using.cpp

2 // Raise a number to the eighth power.

3

4 #include <iostream >
5

6 using namespace std;
7

8 int main()
9 {
10 // input

11 cout << "Compute x^8 for x =? ";
12 int a;
13 cin >> a;
14

15 // computation
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16 int b = a * a; // b = a^2

17 b = b * b; // b = a^4

18

19 // output b * b, i.e., a^8

20 cout << a << "^8 = " << b * b << ".\n";
21 return 0;
22 }

Program 4: progs/lecture/power8 using.cpp

The using directive is a declaration statement of the form

using namespace X;

It allows us to use all features from namespace X without qualifying them through the
pre�x X::. This mechanism seems quite helpful at �rst sight, but it has severe drawbacks
that prevent us from using (let alone advocating) it in this book.

Let's start with the major drawback. Namespaces may have a large number of features
(in particular, the namespace std has), with a large number of names. cin and cout are
two such names from the namespace std. It is very di�cult (and also not desirable) to
know all these names. On the other hand, it would be good to know them in order to
avoid conicts with the names we introduce. For example, if we de�ne a variable named
cout somewhere in Program 4, we are asking for trouble: when we later use the expression
cout, it is not clear whether it refers to the standard output stream, or to our variable.
We can easily avoid the variable name cout, of course, but we may accidentally introduce
another name that also appears in the namespace std. The unfortunate consequence is
that in some expression of our program, this name might not refer to the feature we
introduced, but to a feature of the same name from the standard library. We may end
up silently using a feature from the standard library that we don't even know and that
we never intended to use. The resulting strange behavior of our program can be very
di�cult to track down.

In the original program power8.cpp, introducing a name cout (or any other name also
appearing in namespace std) does not cause any harm: without the std:: quali�cation,
it can never \accidentally" refer to something from the standard library.

Here is the second drawback of using directives. A large program contains many
names, and in order to keep track of, it is desirable that the name \tells" us where it
comes from: is it a name we have introduced, or does it come from a library? If so, from
which one? With using directives, we lose that information, meaning that the program
becomes less readable and more di�cult to maintain.

2.1.18 Goals

Dispositional. At this point, you should . . .
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1) understand the basic syntactical and semantical terms of C++, in particular ex-
pression, operator, statement, lvalue, rvalue, literal, variable, and constant ;

2) understand syntax and semantics of the program power8.cpp.

Operational. In particular, you should be able to . . .

(G1) describe the basic syntactical and semantical terms of C++ (as listed above) in
your own words and give examples;

(G2) tell whether a given character sequence is an identi�er;

(G3) tell whether a given character sequence is a simple expression, as de�ned below;

(G4) �nd out whether a given simple expression is an lvalue or an rvalue;

(G5) evaluate a given simple expression;

(G6) check whether a program of complexity similar to power8.cpp correctly uses the
const keyword, and whether it follows the Const Guideline (meaning that it is const-
correct).

(G7) read and write programs with functionality similar to power8.cpp.

A simple expression is an expression which only involves int-literals, identi�ers, the
binary multiplication operator *, the assignment operator, and parentheses.

2.1.19 Exercises

Exercise 1 Which of the following character sequences are not C++ identi�ers, and
why not? (G2)

(a) identifier (b) int (c) x_i (d) 4x__

(e) A99_ (f) _tmp (g) T# (h) x12b

Exercise 2 Which of the following character sequences are not C++ expressions, and
why not? Here, a and b are variables of type int. (G3)

(a) 1*(2*3) (b) a=(b=5) (c) 1=a (d) (a=1)

(e) (a=5)*(b=7) (f) (1 (g) (a=b)*(b=5) (h) (a*3)=(b*5)

Exercise 3 For all of the expressions that you have identi�ed in Exercise 2, decide
whether these are lvalues or rvalues, and explain your decisions. (G4)

Exercise 4 Determine the values of the expressions that you have identi�ed in Ex-
ercise 2 and explain how these values are obtained. Which of these values are
unspeci�ed and can therefore not be determined uniquely? (G5)

Exercise 5 Which of the following (rather stupid) programs are syntactically incorrect
(w.r.t. the usage of const). and why? Among the correct ones, which programs do
not adhere to the Const Guideline of Section 2.1.9, and why? (G6).
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a) int main ()
{

const int a = 5;
int b = a;
b = b*2;
return 0;

}

b) #include <iostream >
int main ()
{

const int a = 5;
std::cin >> a;
std::cout << a + 5;
return 0;

}

c) #include <iostream >
int main ()
{

const int a;
int b;
std::cin >> b;
std::cout << a;
return 0;

}

d) int main ()
{

const int a = 5;
int b = 2*a;
int c = 2*b;
b = b*b;
return 0;

}

e) int main ()
{

const int a = 5;
const int b = (a = 6);
return 0;

}
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f) int main ()
{

const int a = 5;
a = 5;
return 0;

}

g) #include <iostream >
int main ()
{

int a = 5;
a = a*a;
int b = a;
b = b*b;
const int c = b;
std::cout << c*c;
return 0;

}

Exercise 6 What is the smallest natural number that is divisible by all numbers be-
tween 2 and (G7)

a) 10 ?

b) 20 ?

c) 30 ?

The result is also known as the least common multiple of the respective numbers.
Note: This exercise does not require you to write a program, but you may use a

program to help you in the computations.

Exercise 7 Write a program multhree.cpp that reads three integers a, b, c from stan-
dard input and outputs their product abc. (G7)

Exercise 8 Write a program power20.cpp that reads an integer a from standard input
and outputs a20 using at most �ve multiplications. (G7)

Exercise 9 During an electronic transmission, the following C++ program got gar-
bled. As you can see, the layout got messed up, but at the same time, some errors
got introduced as well. (G4)(G7)

#include <iostream >
int main []{int a;int b;int c;std::cin >> a;
cin >> b;c = a * b;std::cout << c*c;return 0;}



44 CHAPTER 2. FOUNDATIONS

a) Write the program down in a well-formatted way.

b) The program contains two syntax errors. Fix them! What does the �xed program
do?

c) The (�xed) program contains a number of composite expressions. List them all,
and decide for each composite expression whether it is an rvalue or an lvalue. Recall
that a composite expression may consist of primary expressions, but also of other
composite expressions.

d) Add sensible comments to the program; most notably, there should be a comment
in the beginning that says what the program does.

e) Move the variable declarations to their logical places (immediately before �rst use),
and make the program const-correct.

Exercise 10 Write a program age_verification.cpp that de�nes the current year
(e.g. 2009) as a constant, and then outputs the age groups that are not allowed
to buy alcohol. (If you are a manager at Coop, you can now post this at every
checkout). For the year 2009, the output should be (G7)

No alcohol to people born in the years 1992 - 2009!
For people born in 1991, check the id!

2.1.20 Challenges

Exercise 11 The obvious \slow" method for computing the eighth power of an integer
a needs seven multiplications. Program 1 requires only three, and we believe that
this should be faster. The goal of this challenge is to �nd out: how much faster?
For example, if we compute the eighth power of a 10, 000-digit number using both
methods, what will be the di�erence in runtime? Using the type int, though, we
cannot correctly compute with 10, 000-digit numbers (as you will easily notice when
you start power8.cpp with somewhat larger inputs, see Section 2.1.16). For this
reason, you should use the type ifm::integer for your computations.

Write two programs, power8_slow.cpp and power8_fast.cpp that compute the
eighth power of an integer with 7 and 3 multiplications, respectively (over the exact
type ifm::integer). Since we want to measure runtimes, there should be no output
(you don't want to read it, anyway). In order to be able to use the same large
inputs for both programs, it is bene�cial to have the programs read the input from
a �le. For example, if you have a �le power8.dat with contents 1234567, you can
tell the program power8_exact.cpp to read its input from this �le by starting it with
the command

./ power8_exact < power8.dat
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Now that you have both programs, create an input �le power8.dat, and �ll it
with larger and larger numbers (each time doubling the number of digits, for exam-
ple). Then measure the times taken by each of the programs power8_slow.cpp and
power8_fast.cpp on these inputs. You can simply do this using your watch (for
su�ciently many digits both programs will be slow enough), or you can start the
programs like this:

time ./ power8_fast < power8.dat

This command will run the program and afterwards output the number of seconds
that it took (the �rst number, the one ending in u, is the relevant one).

What do you observe? Is power8_fast.cpp more than twice as fast as power8_slow.cpp
(this is what you might expect from the number of multiplications)? Or do you ob-
serve a speedup factor quite di�erent from 2? And is this factor stable as the input
numbers get larger?

Whatever you observe, try to explain your observations!

Exercise 12 Let `(n) be the smallest number of multiplications that are needed in
order to compute the n-th power an of an integer a. Since `(n) may depend on
what we consider as a \computation", we make `(n) well-de�ned by restricting to the
following kind of computations. Let a0 denote the input number a. A computation
consists of t steps, where t is some natural number, and step i, 1 � i � t has the
form

ai = aj * ak

with j, k < i. The computation is correct if at = an. For example, to compute a8 in
three steps (three multiplications) as in power8.cpp, we can use the computation

a1 = a0 * a0

a2 = a1 * a1

a3 = a2 * a2

Now, `(n) is de�ned as the smallest value of t such that there exists a correct t-step
computation for an.

a) In the above model of computation, prove that for all n � 1,

λ(n) � `(n) � λ(n) + ν(n) − 1,

where λ(n) is one less than the number of signi�cant bits of n in the binary
representation of n (see Section 2.2.8), and ν(n) is the number of 1's in the
binary representation of n. For example, the binary representation of 20 is
10100, and hence λ(20) = 4 and ν(20) = 2, resulting in `(n) � 5.

b) Either prove that the upper bound in a) is always best possible, or �nd a value
n� such that `(n�) < λ(n�) + ν(n�) − 1.
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2.2 Integers

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere
ist Menschenwerk.

Leopold Kronecker, in a lecture to the Berliner
Naturforscher-Versammlung (1886)

This section discusses the types int and unsigned int for representing
integers and natural numbers, respectively. You will learn how to evalu-
ate arithmetic expressions over both types. You will also understand the
limitations of these types, and|related to this|how their values can be
represented in the computer's memory.

Here is our next C++ program. It asks the user to input a temperature in degrees
Celsius, and outputs it in degrees Fahrenheit. The conversion is de�ned by the following
formula.

Degrees Fahrenheit =
9 �Degrees Celsius

5
+ 32.

1 // Program: fahrenheit.cpp

2 // Convert temperatures from Celsius to Fahrenheit.

3

4 #include <iostream >
5

6 int main()
7 {
8 // Input

9 std::cout << "Temperature in degrees Celsius =? ";
10 int celsius;
11 std::cin >> celsius;
12

13 // Computation and output

14 std::cout << celsius << " degrees Celsius are "
15 << 9 * celsius / 5 + 32 << " degrees Fahrenheit .\n";
16 return 0;
17 }

Program 5: progs/lecture/fahrenheit.cpp

If you try out the program on the input of 15 degrees Celsius, you will get the
following output.

15 degrees Celsius are 59 degrees Fahrenheit.
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This output is produced when the expression statement in lines 14{15 of the program
is executed. Here we focus on the evaluation of the arithmetic expression

9 * celsius / 5 + 32

in line 15. This expression contains the primary expressions 9, 5, 32, and celsius, where
celsius is a variable of type int. This fundamental type is one of the arithmetic types
in C++.

Literals of type int. 9, 5 and 32 are decimal literals of type int, with their values imme-
diately apparent. Decimal literals of type int consist of a sequence of digits from 0 to 9,
where the �rst digit must not be 0. The value of a decimal literal is the decimal number
represented by the sequence of digits. There are no literals for negative integers. You
can get value −9 by writing -9, but this is a composite expression built from the unary
subtraction operator (Section 2.2.4) and the literal 9.

2.2.1 Associativity and precedence of operators

The evaluation of an expression is to a large extent governed by the associativities
and precedences of the involved operators. In short, associativities and precedences
determine the logical parentheses in an expression that is not, or only incompletely,
parenthesized. We have already touched associativity in connection with the output
operator in Section 2.1.14.

C++ allows incompletely parenthesized expressions in order to save parentheses at
obvious places. This is like in mathematics, where we write 3 + 4 � 5 when we mean
3+(4 �5). We also write 3+4+5, even though it is not a priori clear whether this means
(3+ 4)+ 5 or 3+(4+ 5). Here, the justi�cation is that addition is associative, so it does
not matter which variant we mean.

The price to pay for less parentheses is that we have to know the logical parentheses.
But this is a moderate price, since the two rules that are used most frequently are quite
intuitive and easy to remember. Also, there is always the option of explicitly adding
parentheses in case you are not sure where C++ would put them. Let us start with the
two essential rules for arithmetic expressions.

Arithmetic Evaluation Rule 1: Multiplicative operators have higher precedence than
additive operators.

The expression 9 * celsius / 5 + 32 involves the multiplication operator *, the divi-
sion operator /, and the addition operator +. All three are binary operators. In C++
as in mathematics, the multiplicative operators * and / have higher precedence than
the additive operators + and -. We also say that multiplicative operators bind more
strongly than additive ones. This means, our expression contains the logical parentheses
(9 * celsius / 5) + 32: it is a composite expression built from the addition operator
and its operands 9 * celsius / 5 and 32.
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Arithmetic Evaluation Rule 2: Binary arithmetic operators are left associative.

In mathematics, it does not matter how the sub-expression 9 * celsius / 5 is parenthe-
sized. But in C++, it is done from left to right, that is, the two leftmost sub-expressions
are grouped together. This is a consequence of the fact that the binary arithmetic op-
erators are de�ned to be left associative. The expression 9 * celsius / 5 is therefore
logically parenthesized as (9 * celsius) / 5, and our original expression has to be read
as

((9 * celsius) / 5) + 32

Identifying the operators in an expression. There is one issue we haven't discussed yet,
namely that di�erent C++ operators may have the same token. For example, - can be
a binary operator as in 3 - 4, but it can also be a unary operator as in -5. Which one
is meant must be inferred from the context. Usually, this is clear, and in cases where it
is not (but also in other cases), it is probably a good idea to add some extra parentheses
to make the expression more readable (see also the Details section below).

Let us consider another concrete example, the expression -3 - 4. It is clear that
the �rst - must be unary (there is no left hand side operand), while the second one is
binary (there are operands on both sides). But is this expression logically parenthesized
as -(3 - 4), or as (-3) - 4? Since we get di�erent values in both cases, we better make
sure that we know the answer.

The correct logical parentheses are

(( − 3) − 4),

so the value of the expression -3 - 4 is −7. This follows from the third most important
rule for arithmetic expressions.

Arithmetic Evaluation Rule 3: Unary operators + and - have higher precedence than
their binary counterparts.

By using (explicit) parentheses as in 9 * (celsius + 5) * 32, precedences can be
overruled. To get the logical parentheses for such a partially parenthesized expression,
we apply the rules from above, considering the already parenthesized parts as operands.
In the example, this leads to the logical parentheses (9 * (celsius + 5)) * 32.

The Details section discusses how to parenthesize a general expression involving ar-
bitrary C++ operators, using their arities, precedences and associativities.

2.2.2 Expression trees

In every composite expression, the logical parentheses determine a unique \top-level"
operator, namely the one that appears within the smallest number of parentheses. The
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expression is then a composite expression, built from the top-level operator and its
operands that are again expressions.

The structure of an expression can nicely be visualized in the form of an expression
tree. In Figure 3, the expression tree for the expression 9 * celsius / 5 + 32 is shown.

9 celsius 32

9 * celsius

(9 * celsius) / 5

((9 * celsius) / 5) + 32

* / +

1 2 3 4

5

5

6

7

Figure 3: An expression tree for 9 * celsius / 5 + 32 and its logical parentheses
((9 * celsius) / 5) + 32. Nodes are labeled from one to seven.

How do we get this tree? The expression itself de�nes the root of the tree, and the
operands of the top-level operator become the root's children in the tree. Each operand
then serves as the root of another subtree. When we reach a primary expression, it
de�nes a leaf in the tree, with no further children.

2.2.3 Evaluating expressions

From an expression tree we can easily read o� the possible evaluation sequences for
the arithmetic expression. Such a sequence contains all sub-expressions occurring in
the tree, ordered by their time of evaluation. For this sequence to be valid, we have to
make sure that we evaluate an expression only after the expressions corresponding to
all its children have been evaluated. By looking at Figure 3, this becomes clear: before
evaluating 9 * celsius, we have to evaluate 9 and celsius, otherwise, we don't have
enough information to perform the evaluation.

When we associate the evaluation sequence with the corresponding sequence of nodes
in the tree, a valid node sequence topologically sorts the tree. This means that every
node in the sequence occurs only after all its children have occurred. In Figure 3, for
example, the node sequence (1, 2, 5, 3, 6, 4, 7) induces a valid evaluation sequence. Assum-
ing that the variable celsius has value 15, we obtain the following evaluation sequence.
(In each step, the sub-expression to be evaluated next is marked by a surrounding box).
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9 * celsius / 5 + 32 −→1 9 * celsius / 5 + 32

−→2 9 * 15 / 5 + 32

−→5 135 / 5 + 32

−→3 135 / 5 + 32

−→6 27 + 32

−→4 27 + 32

−→7 59

The sequence (1, 2, 3, 4, 5, 6, 7) is another valid node sequence, inducing a di�erent
evaluation sequence; the resulting value of 59 is the same. There are much more evalua-
tion sequences, of course, and it is unspeci�ed by the C++ standard which one is to be
used.

In our small example, all possible evaluation sequences will result in value 59, but
it is also not hard to write down expressions whose values and e�ects depend on the
evaluation sequence being chosen (see Exercise 2(g), Exercise 15(h), and the Details
section below). A program that contains such an expression might exhibit unspeci�ed
behavior. But through good programming style, this issue is easy to avoid, since it
typically only occurs when one tries to squeeze too much functionality into a single line
of code.

2.2.4 Arithmetic operators on the type int

In the program fahrenheit.cpp, we have already encountered the multiplicative oper-
ators * and /, as well as the binary addition operator +. Its obvious counterpart is the
binary subtraction operator -.

Table 1 lists arithmetic operators (and the derived assignment operators) that are
available for the type int, with their arities, precedences and associativities. The actual
numbers that appear in the precedence column are not relevant: it is the order among
precedences that matters.

Let us discuss the functionalities of these operators in turn, where *, + and - are
self-explanatory. But already the division operator requires a discussion.

The division operator. According to the rules of mathematics, we could replace the ex-
pression

9 * celsius / 5 + 32

by the expression

9 / 5 * celsius + 32

without a�ecting its value and the functionality of the program fahrenheit.cpp. But if
we run the program with the latter version of the expression on the input of 15 degrees
Celsius, we get the following output:
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Description Operator Arity Prec. Assoc.

post-increment ++ 1 17 left
post-decrement -- 1 17 left
pre-increment ++ 1 16 right
pre-decrement -- 1 16 right
sign + 1 16 right
sign - 1 16 right
multiplication * 2 14 left
division (integer) / 2 14 left
modulus % 2 14 left
addition + 2 13 left
subtraction - 2 13 left
assignment = 2 4 right
mult assignment *= 2 4 right
div assignment /= 2 4 right
mod assignment %= 2 4 right
add assignment += 2 4 right
sub assignment -= 2 4 right

Table 1: Arithmetic and assignment operators for the type int. Each increment
or decrement operator expects an lvalue. The composite expression is an
lvalue (pre-increment and pre-decrement), or an rvalue (post-increment
and post-decrement). Each assignment operator expects an lvalue as left
operand and an rvalue as right operand; the composite expression is an
lvalue. All other operators involve rvalues only and have no e�ects.
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15 degrees Celsius are 47 degrees Fahrenheit.

This result is fairly di�erent from our previous (and correct) result of 59 degrees
Fahrenheit, so what is going on here? The answer is that the binary division operator
/ on the type int implements the integer division, in mathematics denoted by div.
This does not correspond to the regular division where the quotient of two integers is in
general a non-integral rational number.

The modulus operator. The remainder of the integer division can be obtained with the
binary modulus operator %, in mathematics denoted by mod. The mathematical rule

a = (adiv b)b + amodb

also holds in C++: for example, if a and b are variables of type int, the value of b being
non-zero, the expression

(a / b) * b + a % b

has the same value as a. The modulus operator is considered as a multiplicative operator
and has the same precedence (14) and associativity (left) as the other two multiplicative
operators * and /.

If both a and b have non-negative values, then a % b has a non-negative value as
well. This implies that the integer division rounds down in this case. If (at least) one
of a or b has a negative value, it is implementation de�ned whether division rounds up
or down. Note that by the identity a = (a / b) * b + a % b, the rounding mode for
division also determines the functionality of the modulus operator. If b has value 0, the
values of a / b and a % b are unde�ned.

Coming back to our example (and taking precedences and associativities into ac-
count), we get the following valid evaluation sequence for our alternative Celsius-to-
Fahrenheit conversion.

9 / 5 * celsius + 32 −→ 1 * celsius + 32
−→ 1 * 15 + 32
−→ 15 + 32
−→ 47

Here we see the \error" made by the integer division: 9 / 5 has value 1.

Unary additive operators. We have already touched the unary - operator, and this operator
does what one expects: the value of the composite expression -expr is the negative of the
value of expr. There is a unary + operator, for completeness, although its \functionality"
is non-existing: the value of the composite expression +expr is the same as the value of
expr.
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Increment and decrement operators. Each of the tokens ++ and -- is associated with two
distinct unary operators that di�er in precedence and associativity.

The pre-increment ++ and the pre-decrement -- are right associative, For a unary
operator, this means that the argument appears to the right of the operator token.
The e�ect of the composite expressions ++expr and --expr is to increase (decrease,
respectively) the value of expr by 1. Then, the object referred to by expr is returned.
For this to make sense, expr has to be an lvalue. We also say that pre-increment is ++
in pre�x notation, and similarly for --.

The post-increment ++ and the post-decrement -- are left associative. As before,
the e�ect of the composite expressions expr++ and expr-- is to increase (respectively
decrease) the value of expr by 1, and expr has to be an lvalue for this to work. The
return value, though, is an rvalue corresponding to the old value of expr before the
increment or decrement took place. We also say that post-increment is ++ in post�x
notation, and similarly for --.

The di�erence between the increment operators in pre- and post�x notation is illus-
trated in the following example program.

#include <iostream >
int main() {

int a = 7;
std::cout << ++a << "\n"; // outputs 8

std::cout << a++ << "\n"; // outputs 8

std::cout << a << "\n"; // outputs 9

return 0;
}

You may argue that the increment and decrement operators are superuous, since their
functionality can be realized by combining the assignment operator (Section 2.1.14) with
an additive operator. Indeed, if a is a variable, the expression ++a is equivalent in value
and e�ect to the expression a = a + 1. There is one subtlety, though: if expr is a
general lvalue, ++expr is not necessarily equivalent to expr = expr + 1. The reason
is that in the former expression, expr is evaluated once only, while in the latter, it is
evaluated twice. If expr has an e�ect, this can make a di�erence.

On the other hand, this subtlety is not the reason why increment and decrement
operators are so popular and widely used in C++. The truth is that incrementing or
decrementing values by 1 are such frequent operations in typical C++ code that it pays
o� to have shortcuts for them.

Prefer pre-increment over post-increment. The statements ++i; and i++; are obviously
equivalent, as their e�ect is the same and the value of the expression is not used. You
can exchange them with each other arbitrarily without a�ecting the behavior of the sur-
rounding program. Whenever you have this choice, you should opt for the pre-increment
operator. Pre-increment is the simpler operation because the value of ++i can simply be
read o� the variable i. In contrast, the post-increment has to \remember" the original



54 CHAPTER 2. FOUNDATIONS

value of i. As pre-increment is simpler, it also tends to be more e�cient.
Remark: We write \pre-increment tends to be more e�cient" because in many cases

the compiler realizes when the value of an expression is not used. In such a case, the
compiler may choose on its own to replace the post-increment in the source code by a
\pre-increment" in machine language as an optimization. However, there is absolutely
no bene�t in choosing a post-increment where a pre-increment would do as well. In this
case, you should take the burden from the compiler and optimize by yourself.

Also, post-increment and post-decrement are the only unary C++ operators that are
left associative. This makes their usage appear somewhat counterintuitive.

Why C++ should rather be called ++C. The language C++ is a further development of
the language C. And indeed, you can read the e�ect of the \expression" C++ as \take
C one step further". But the name C++ is still a misnomer, because the value of the
\expression" C++ is the plain old C, after all. A better name would be ++C: the
\value" of this is really the new language created from taking C one step further. Bjarne
Stroustrup, the designer of C++, writes that \Connoisseurs of C semantics �nd C++
inferior to ++C".

Assignment operators. The assignment operator = is available for all types, see Section
2.1.14. But there are speci�c operators that combine the arithmetic operators with an
assignment. These are the binary operators +=, -=, *=, /= and %=. The expression
expr1 += expr2 has the e�ect of adding the value of expr2 (an rvalue) to the value of
expr1 (an lvalue). The object referred to by expr1 is returned. This is a generalization
of the pre-increment: the expression ++expr is equivalent to expr += 1. As before,
expr1 += expr2 is not equivalent to expr1 = expr1 + expr2 in general, since the
latter expression evaluates expr1 twice.

The operators -=, *=, /= and %= work in the same fashion, based on the subtraction,
multiplication, division, and modulus operator, respectively.

All the assignment operators have precedence 4, i.e. they bind more weakly than the
other arithmetic operators. This is quite intuitive: a=b*c-d, say, means a=(b*c-d).

2.2.5 Value range

A variable of type int is associated with a �xed number of memory cells, and therefore
also with a �xed number of bits, say b. We call this a b-bit representation.

Such a representation implies that an object of type int can assume only �nitely
many di�erent values. Since every bit can independently have two states, the maximum
number of representable values is 2b, and the actual value range is de�ned as the set

{−2b−1,−2b−1 + 1, . . . ,−1, 0, 1, . . . , 2b−1 − 1} � Z
of 2b numbers. The C++ standard does not prescribe this, but any di�erent choice of
value range would be somewhat unreasonable, given other requirements imposed by the
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standard. You can �nd out the smallest and largest int values on your platform, using
the library limits. The corresponding code is given in Program 6.

1 // Program: limits.cpp

2 // Output the smallest and the largest value of type int.

3

4 #include <iostream >
5 #include <limits >
6

7 int main()
8 {
9 std::cout << "Minimum int value is "
10 << std:: numeric_limits <int >:: min() << ".\n"
11 << "Maximum int value is "
12 << std:: numeric_limits <int >:: max() << ".\n";
13 return 0;
14 }

Program 6: progs/lecture/limits.cpp

When you run the program limits.cpp on a 32-bit system, you may get the following
output.

Minimum int value is -2147483648.

Maximum int value is 2147483647.

Indeed, as 2147483647 = 231−1, you can deduce that the number of bits used to represent
an int value on your platform is 32. At this point, you are not supposed to understand
expressions like std::numeric_limits<int>::min() in detail, but we believe that you
get their idea. We cannot resist to note in passing that 2147483647 = 231 − 1 is the
number from Mersenne's conjecture that Euler has proved to be prime in 1772, see
Section 1.1.

It is clear that the arithmetic operators (except the unary + and the binary / and %)
cannot work exactly like their mathematical counterparts, even when their arguments
are restricted to representable int values. The reason is that the values of composite
expressions constructed from these operators can under- or overow the value range of
the type int. The most obvious such example is the expression 2147483647+1. As we
have just seen, its mathematically correct value of 2147483648 may not be representable
over the type int on your platform, in which case you will inevitably get some other
value.

Such under- and overows are a severe problem in many practical applications, but
it would be an even more severe problem not to know that they can occur.
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2.2.6 The type unsigned int

An object of type int can have negative values, but often we only work with natural
numbers. (For us, the set N of natural numbers starts with 0, N = {0, 1, 2, . . .}.) Using
a type that represents only non-negative values allows to extend the range of positive
values without using more bits. C++ provides such a type, it is called unsigned int.
On this type, we have all the arithmetic operators we also have for int, with the same
arities, precedences and associativities. Given a b-bit representation, the value range of
unsigned int is the set

{0, 1, . . . , 2b − 1} � N
of 2b natural numbers. Indeed, when you replace all occurrences of int by unsigned int

in the program limits.cpp, it may produce the following output.

Minimum value of an unsigned int object is 0.

Maximum value of an unsigned int object is 4294967295.

Literals of type unsigned int look like literals of type int, followed by either the
letter u or U. For example, 127u and 0U are literals of type unsigned int, with their
values immediately apparent.

2.2.7 Mixed expressions and conversions

Expressions may involve sub-expressions of type int and of type unsigned int. For
example 17+17u is a legal arithmetic expression, but what are its type and value? In
such mixed expressions, the operands are implicitly converted to the more general
type. By the C++ standard, the more general type is unsigned int. Therefore, the
expression 17+17u is of type unsigned int and gets evaluated step by step as

17+17u −→ 17u+17u −→ 34u

This might be somewhat confusing, since in mathematics, it is just the other way around:
Z (the set of integers) is more general than N (the set of natural numbers). We are not
aware of any deeper justi�cation for the way it is done in C++, but at least the conversion
is well-de�ned:

Non-negative int values are \converted" to the same value of type unsigned int;
negative int values are converted to the unsigned int value that results from (mathe-
matically) adding 2b. This rule establishes a bijection between the value ranges of int
and unsigned int.

Implicit conversions in the other direction may also occur but are not always well-
de�ned. Consider for example the declarations

int a = 3u;
int b = 4294967295u;

The value of a is 3, since this value is in the range of the type int. But if we assume
the 32-bit system from above, the value of b is implementation de�ned according to the
C++ standard, since the literal 4294967295 is outside the range of int.
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2.2.8 Binary representation

Assuming b-bit representation, we already know that the type int covers the values

−2b−1, . . . , 2b−1 − 1,

while unsigned int covers

0, . . . , 2b − 1.

In this subsection, we want to take a closer look at how these values are represented
in memory, using the b available bits. This will also shed more light on some of the
material in the previous subsection.

The binary expansion of a natural number n 2 N is the sum

n =

∞∑
i=0

bi2
i,

where the bi are uniquely determined coe�cients from {0, 1}, with only �nitely many of
them being nonzero. For example,

13 = 1 � 20 + 0 � 21 + 1 � 22 + 1 � 23.

The sequence of the bi in reverse order is called the binary representation of n. The
binary representation of 13 is 1101, for example.

Conversion decimal → binary. The identity

n =

∞∑
i=0

bi2
i = b0 +

∞∑
i=1

bi2
i = b0 +

∞∑
i=0

bi+12
i+1 = b0 + 2

∞∑
i=0

bi+12
i

︸ ︷︷ ︸
=:n 0

provides a simple algorithm to compute the binary representation of a given decimal
number n 2 N. The least signi�cant coe�cient b0 of the binary expansion of n is
nmod 2. The other coe�cients bi, i � 1, can subsequently be extracted by applying the
same technique to n 0 = (n − b0)/2.

For example, for n = 14 we get b0 = 14mod 2 = 0 and n 0 = (14 − 0)/2 = 7. We
continue with n = 7 and get b1 = 7mod 2 = 1 and n 0 = (7 − 1)/2 = 3. For n = 3 we get
b2 = 3mod 2 = 1 and n 0 = (3 − 1)/2 = 1 which leaves us with n = b3 = 1. In summary,
the binary representation of 14 is b3b2b1b0 = 1110.

Conversion binary → decimal. To convert a given binary number bk . . . b0 into decimal
representation, we can once again use the identity from above.

k∑
i=0

bi2
i = b0 + 2

k−1∑
i=0

bi+12
i = . . . = b0 + 2(b1 + 2(b2 + 2(� � �+ 2bk) . . . ))
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For example, to convert the binary number b4b3b2b1b0 = 10100 into decimal repre-
sentation, we compute

(((b4 � 2 + b3) � 2 + b2) � 2 + b1) � 2 + b0 = (((1 � 2 + 0) � 2 + 1) � 2 + 0) � 2 + 0 = 20.

Representing unsigned int values. Since every unsigned int value

n 2 {0, . . . , 2b − 1}

has a binary representation of length exactly b (�lling up with leading zeros), this binary
representation is a canonical format for storing n using the b available bits. Like the
value range itself, this storage format is not explicitly prescribed by the C++ standard,
but hardly anything else makes sense in practice. As there are 2b unsigned int values,
and the same number of b-bit patterns, each pattern encodes one value. For b = 3, this
looks as follows.

n representation
0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Representing int values. A common way of representing int values using the same b bits
goes as follows. If the value n is non-negative, we store the binary representation of n

itself|a number from

{0, . . . , 2b−1 − 1}.

That way we use all the b-bit patterns that start with 0.

If the value n is negative, we store the binary representation of n + 2b, a number
from

{2b−1, . . . , 2b − 1}.

This yields the missing b-bit patterns, the ones that start with 1. For b = 3, the resulting
representations are
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n representation
−4 100

−3 101

−2 110

−1 111

0 000

1 001

2 010

3 011

This is called the two's complement representation. In this representation, adding
two int values n and n 0 is very easy: simply add the representations according to the
usual rules of binary number addition, and ignore the overow bit (if any). For example,
to add −2 and −1 in case of b = 3, we compute

110

+ 111

1101

Ignoring the leftmost overow bit, this gives 101, the representation of the result −3

in two's complement. This works since the binary number behind the encoding of n is
either n or n + 2b. Thus, when we add the binary numbers for n and n 0, the result is
congruent to n + n 0 modulo 2b and therefore agrees with n + n 0 in the b rightmost bits.

Using the two's complement representation we can now better understand what hap-
pens when a negative int value n gets converted to type unsigned int. The standard
speci�es that for this, n has to be incremented by 2b. But under the two's complement,
the negative int value n and the resulting positive unsigned int value n + 2b have the
same representation! This means that the conversion is purely conceptual, and no actual
computation takes place.

The C++ standard does not prescribe the use of the two's complement, but the rule
for conversion from int to unsigned int is clearly motivated by it.

2.2.9 Integral types

There is a number of other fundamental types to represent signed and unsigned integers,
see the Details section. These types may di�er from int and unsigned int with respect
to their value range. All these types are called integral types, and for each of them,
all the operators in Table 1 (Page 51) are available, with the same arities, precedences,
associativities and functionalities (up to the obvious limits dictated by the respective
value ranges).
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2.2.10 Details

Literals. There are also non-decimal literals of type int. An octal literal starts with
the digit 0, followed by a sequence of digits from 0 to 7. The value is the octal number
represented by the sequence of digits following the leading 0. For example, the literal
011 has value 9 = 1 � 81 + 1 � 80.

Hexadecimal literals start with 0x, followed by a sequence of digits from 0 to 9 and
letters from A to F (representing the hexadecimal digits of values 10, . . . , 15). The value
is the hexadecimal number represented by the sequence of digits and letters following
the leading 0x. For example, the literal 0x1F has value 31 = 1 � 161 + 15 � 160.

Logically parenthesizing a general expression. Given an expression that consists of a se-
quence of operators and operands, we want to deduce the logical parentheses. For each
operator in the sequence, we know its arity, its precedence (a number between 1 and 18,
see Table 1 on Page 51 for the arithmetic operators), and its associativity (left or right).
In case of a unary operator, the associativity speci�es on which side of the operator its
operand is to be found.

Let us consider the following abstract example to emphasize that what we do here is
completely general and not restricted to arithmetic expressions.

expression x1 op1 x2 op2 x3 op3 op4 x4

arity 2 2 2 1

precedence 4 13 13 16

associativity r l l r

Here is how the parentheses are obtained: for each operator, we identify its leading
operand, de�ned as the left hand side operand for left associative operators, and as the
right hand side operand otherwise. The leading operand for opi includes everything to
the relevant side between opi and the next operator of lower precedence than opi. In
other words, everything in between these two operators is \grabbed" by the \stronger"
operator.

In our example, the leading operand of op3 is the subsequence x2 op2 x3 to the left
of op3, since the next operator of lower precedence to the left of op3 is op1.

In the case of binary operators, we also �nd the secondary operand, the one to the
other side of the leading operand. The secondary operand for opi includes everything to
the relevant side between opi and the next operator of the same or lower precedence
than opi. The only di�erence to the leading operand rule is that the secondary operand
already ends when an operator of the same precedence appears.

According to this de�nition, the secondary operand of op3 is op4 x4 in our example.
Finally, we put a pair of parentheses around the subsequence corresponding to the

leading operand, the operator itself, and the secondary operand (if any).
Here is the table for our example again, enhanced with the subsequences of all four

operators that are put in parentheses according to the rules just described.
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expression x1 op1 x2 op2 x3 op3 op4 x4

arity 2 2 2 1

precedence 4 13 13 16

associativity r l l r

op1 ( x1 op1 x2 op2 x3 op3 op4 x4 )

op2 ( x2 op2 x3 )

op3 ( x2 op2 x3 op3 op4 x4 )

op4 ( op4 x4 )

Now we simply put together all parentheses that we have obtained, taking their
multiplicities into account. In our example we get the expression

( x1 op1 (( x2 op2 x3 ) op3 (op4 x4 ))).

By some magic, this worked out, and we have a fully parenthesized expression (the outer
pair of parentheses can be dropped again, of course). But note that we cannot expect
such nice behavior in general. Consider the following example.

expression x1 op1 x2 op2 x3

arity 2 2

precedence 13 13

associativity r l

op1 ( x1 op1 x2 op2 x3 )

op2 ( x1 op1 x2 op2 x3 )

The resulting parenthesized expression is

(( x1 op1 x2 op2 x3 )),

which does not specify the evaluation order. What comes to our rescue is that C++
only allows expressions for which the magic works out! The previous bad case is impos-
sible, for example, since all binary operators of the same precedence also have the same
associativity.

Unsigned arithmetic. We have discussed how int values are converted to unsigned int

values, and vice versa. The main issue (what to do with non-representable values)
also occurs during evaluation of arithmetic expressions involving only one of the types.
The C++ standard contains one rule for this. For all unsigned integral types, the
arithmetic operators work modulo 2b, given b-bit representation. This means that the
value of every arithmetic operation with operands of type unsigned int is well-de�ned.
It does not necessarily give the mathematically correct value, but the unique value in the
unsigned int range that is congruent to it modulo 2b. For example, if a is a variable of
type unsigned int with non-zero value, then -a has value 2b − a.

No such rule exists for the signed integral types, meaning that over- and underow
are dealt with at the discretion of the compiler.
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Sequences of + and -. We have argued above that it is usually clear which operators occur
in an expression, even though some of them share their token. But since the characters
+ and - are heavily overused in operator tokens, special rules are needed to resolve the
meanings of sequences of +'s, or of -'s.

For example, only from arities, precedences and associativities it is not clear how to
interpret the expressions a+++b or ---a. The �rst expression could mean (a++)+b, but it
could as well mean a+(++b) or a+(+(+b). Similarly, the second expression could either
mean -(--a), --(-a) or -(-(-a).

The C++ standard resolves this dilemma by de�ning that a sequence consisting only
of +'s, or only of -'s, has to be grouped into pairs from left to right, with possibly one
remaining + or - at the end. Thus, a+++b means (a++)+b, and ---a means --(-a). Note
that for example the expression a++b would make sense when parenthesized as a+(+b),
but according to the rule just established, it is not a well-formed expression, since a unary
operator ++ cannot have operands on both sides. The expression ---a with its logical
parentheses --(-a) is invalid for another reason: the operand of the pre-increment must
be an lvalue, but the expression -a is an rvalue.

Other integral types. C++ contains a number of fundamental signed and unsigned inte-
gral types. The signed ones are signed char, short int, int and long int. The stan-
dard speci�es that each of them is represented by at least as many bits as the previous
one in the list. The number of bits used to represent int values depends on the platform.
The corresponding sequence of unsigned types is unsigned char, unsigned short int,
unsigned int and unsigned long int.

These types give compilers the freedom of o�ering integers with larger or smaller
value ranges than int and unsigned int. Smaller value ranges are useful when memory
consumption is a concern, and larger ones are attractive when over- and underow oc-
curs. The signi�cance of these types (which are already present in the C programming
language) has faded in C++. The reason is that we can quite easily implement our own
tailor-made integral types in C++, if we need them. In C this is much more cumber-
some. Consequently, many C++ compilers simply make short int and long int an
alias for int, and the same holds for the corresponding unsigned types.

Order of effects and sequence points Increment and decrement operators as well as assign-
ment operators construct expressions with an e�ect. Such operators have to be used
with care for two reasons.

The obvious reason is that (as we have already learned in the end of Section 2.1.1)
the evaluation order for the sub-expressions of a given expression is not speci�ed in
general. Consequently, value and e�ect may depend on the evaluation order. Consider
the expression

++i + i

where we suppose that i is a variable of type int. If i is initially 5, say, then the value
of the composite expression may in practice be 11 or 12. The result depends on whether
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or not the e�ect of the left operand ++i of the addition is processed before the right
operand i is evaluated. The value of the expression ++i + i is therefore unspeci�ed by
the C++ standard.

To explain the second (and much less obvious, but fortunately also much less relevant)
reason, let us consider the following innocent looking expression that involves a variable
i of type int.

i = ++i + 1

This expression has two e�ects: the increment of i and the assignment to i. Because
the assignment can only happen after the operands have been evaluated, it seems that
the order of the two e�ects is clear: the increment comes before the assignment, and the
overall value and e�ect are well-de�ned.

However, this is not true, for reasons that have to do with our underlying computer
model, the von Neumann architecture. From the computer's point of view, the evaluation
of the sub-expression ++i consists of the following steps.

1. Copy the value of i from the main memory into one of the CPU registers;

2. Add 1 to this value in the register;

3. Write the register content back to main memory, at the address of i;

Clearly, the �rst two steps are necessary to obtain the value of the expression ++i and,
hence, have to be processed before the assignment. But the third step does not necessarily
have to be completed before the assignment. In order to allow the compiler to optimize
the transfer of data between CPU registers and main memory (which is very much
platform dependent), this order has not been speci�ed. In fact, it is not unreasonable
to assume that the tra�c between registers and main memory is organized such that
several items are transferred at once or quickly after another, using so-called bursts.

Suppose as before that i initially has value 5. If the assignment is performed after
the register content is written back to main memory, i = ++i + 1 sets i to 7. But if
the assignment happens before, the later transfer of the register value 6 overrides the
previous value of 7, and i is set to 6 instead.

The C++standard de�nes a sequence point to be a point during the evaluation se-
quence of an expression at which is guaranteed that all e�ects of previously evaluated
(sub)expressions have been carried out. It was probably the existence of highly opti-
mized C compilers that let the C++ standard refrain from declaring the assignment as a
sequence point. In other words, when the assignment to i takes place in the evaluation
i = ++i + 1, it is not speci�ed whether the e�ect of the previously evaluated increment
operator has been carried out or not. In contrast, the semicolon that terminates an
expression statement is always a sequence point.

Therefore, we only have an issue with expressions that have more than one e�ect.
Hence, if you prefer not to worry about e�ect order, ensure that each expression that
you write generates at most one e�ect. Expressions with more than one e�ect can make
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sense, though, and they are ok, as long as some sequence points separate the e�ects and
put them into a well-de�ned order. This is summarized in the following rule.

Single Modification Rule: Between two sequence points, the evaluation of an expression
may modify the value of an object of fundamental type at most once.

An expression like i = ++i + 1 that violates this rule is considered semantically
illegal and leads to unde�ned behavior.

If you perceive this example as arti�cial, here is a \more natural" violation of the
single modi�cation rule: if nextvalue is a variable of type int, it might seem that

nextvalue = 5 * nextvalue + 3

could more compactly be written as

(nextvalue *= 5) += 3

This will compile: (nextvalue *= 5) is an lvalue, so we can assign to it. Still, the latter
expression is invalid since it modi�es nextvalue twice.

At this point, an attentive reader should wonder how an expression that involves sev-
eral output operators complies with the Single Modi�cation Rule. Indeed, an expression
like

std::cout << a << "^8 = " << b * b << ".\n"

has several e�ects all of which modify the lvalue std::cout. This works since the type
of std::cout (which we will not discuss here) is not fundamental and, hence, the Single
Modi�cation Rule does not apply in this case.

2.2.11 Goals

Dispositional. At this point, you should . . .

1) know the three Arithmetic Evaluation Rules;

2) understand the concepts of operator precedence and associativity;

3) know the arithmetic operators for the types int and unsigned int;

4) be aware that computations involving the types int and unsigned int may deliver
incorrect results, due to possible over- and underows.

Operational. In particular, you should be able to . . .

(G1) parenthesize and evaluate a given arithmetic expression involving operands of
types unsigned int and int, the binary arithmetic operators +,-, *, /, %, and
the unary - (the paragraph on parenthesizing a general expression in the Details
section enables you to do this for all arithmetic operators);

(G2) derive basic statements about arithmetic expressions;
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(G3) convert a given decimal number into binary representation and vice versa;

(G4) derive the two's complement representation of a given number in b-bit represen-
tation, for some b 2 N;

(G5) write programs whose output is determined by a �xed number of arithmetic ex-
pressions involving literals and input variables of types int and unsigned int;

(G6) determine the value range of integral types on a given machine (using a program).

2.2.12 Exercises

Exercise 13 Parenthesize the following expressions and then evaluate them step by
step. This means that types and values of all intermediate results that are computed
during the evaluation should be provided. (G1)

a) -2-4*3 b) 10%6*8%3 c) 6-3+4*5

d) 5u+5*3u e) 31/4/2 f) -1-1u+1-(-1)

Exercise 14 Which of the following character sequences are not legal expressions, and
why? (Here, a, b, and c are variables of type int.) For the ones that are legal, give
the logical parentheses. (In order to avoid (misleading?) hints, we have removed
the spaces that we usually include for the sake of better readability.) (G1)

a) c=a+7+--b b) c=-a=b c) c=a=-b

d) a-a/b*b e) b*=++a+b f) a-a*+-b

g) 7+a=b*2 h) a+3*--b+a++ i) b+++--a

These exercises require you to read the paragraph on logically parenthesizing a general
expression in the Details section. Exercise i) also requires you to read the paragraph on
sequences of + and - in the Details section.

Exercise 15 For all legal expressions from Exercise 14, provide a step-by-step eval-
uation, supposing that initially a has value 5, b has value 2, and the value of c is
unde�ned. Which of the expressions result in unspeci�ed or unde�ned behavior?

(G1)

Exercise 16 Prove that for all a � 0 and b, c > 0, the following equation holds.

(adiv b)div c = adiv(bc).

Does this imply that the two expressions a/b/c and a/(b*c) are equivalent for
all such values of the variables a, b, and c (which are assumed to be of type
unsigned int)? (G2)

Exercise 17 Compute by hand binary representations of the following decimal num-
bers. (G3)
a) 15 b) 172 c) 329 d) 1022
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Exercise 18 Compute by hand decimal representations of the following binary num-
bers. (G3)
a) 110111 b) 1000001 c) 11101001 d) 101010101

Exercise 19 By September 2009, the largest known Mersenne Prime is 243,112,609 − 1,
see Section 1.1. What is the number of decimal digits that this number has? Explain
how you got your answer! (G3)

Hint: You may need the basic rules of logarithms and a pocket calculator.

Exercise 20 Assuming a 4-bit representation, compute the binary two's complement
representations of the following decimal numbers. (G4)
a) 6 b) -4 c) -8 d) 9 e) -3

Exercise 21 Suppose that someone drives from A to B at an average speed of 50
km/h. On the way back from B to A, there is a tra�c jam, and the average speed
is only 30 km/h. What is the average speed over the whole roundtrip?

When confronted with this question, many people would answer \40 km/h," but
this is wrong. Write a program that lets the user enter two average speeds in km/h
(A → B and B → A) and computes from this the average speed over the whole
roundtrip (A → B → A). Both inputs should be positive integers, and the output
should be rounded down to the next smaller integer.

Exercise 22 Write a program celsius.cpp that converts temperatures from degrees
Fahrenheit into degrees Celsius.

The initial output that prompts the user to enter the temperature in degrees
Fahrenheit should also contain lower and upper bounds for the allowed inputs.
These bounds should be chosen such that no over- and underows can occur in
the subsequent computations, given that the user respects the bounds. You may for
this exercise assume that the integer division rounds towards zero for all operands:
for example, -5 / 2 then rounds the exact result −2.5 to −2.

The program should output the correct result in degrees Celsius as a mixed ra-
tional number of the form xy

9
(meaning x + y/9), where x, y 2 Z and |y| � 8. For

example, 134
9
could be output simply as 13 4/9. We also allow for example the

output -1 -1/9 (meaning −1 − 1/9 = −10/9). (G5)

Exercise 23 Write a program threebin.cpp that reads a (decimal) number a � 0 from
standard input and outputs the last three bits of a's binary representation. Fill up
with leading zeros in case the binary representation has less than three bits. (G5)

Exercise 24 Write a program vat.cpp that computes from a net amount (in integral
units of CHF) a total amount, including value-added tax (VAT). The VAT rate
should be provided to the computation in form of a constant (in one tenth of a
percent, to allow VAT rates like 7.6%). The net amount is the input. The output
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(VAT and total amount) should be rounded (down) to two digits (Rp.) after the
decimal point. (G5)

An example run of the program may look like this (assuming a VAT rate of 7.6%).

Net amount =? 59
VAT = 4,48
Total amount = 63,48

2.2.13 Challenges

Exercise 25 Josephus was a Jewish military leader in the Jewish-Roman war of 66-
73. After the Romans had invaded his garrison town, the few soldiers (among
them Josephus) that had survived the killings by the Romans decided to commit
suicide. But somehow, Josephus and one of his comrades managed to surrender to
the Roman forces without being killed (Josephus later became a Roman citizen and
well-known historian).

This historical event is the background for the Josephus Problem that o�ers a
(mythical) explanation about how Josephus was able to avoid suicide. Here is the
problem.

41 people (numbered 0, 1, ..., 40) are standing in a circle, and every k-th per-
son is killed until no one survives. For k = 3, the killing order is therefore
2, 5, 8, ..., 38, 0, 4, .... Where in the circle does Josephus have to position himself in
order to be the last survivor (who then obviously doesn't need to kill himself)?

a) Write a program that solves the Josephus problem; the program should receive
as input the number k and output the number p(k) 2 {0, ..., 40} of the last
survivor.

b) Let us assume that Josephus is not able to chose his position in the circle, but
that he can in return choose the parameter k 2 {1, . . . , 41}. Is it possible for
him to survive then, no matter where he initially stands?

Hint: This exercise has a theoretical part in which you need to come up with a
formula for the survivor number that you can evaluate using the subset of the C++
language that you know so far.

Exercise 26 A triple (a, b, c) of positive integers is called a Pythagorean triple if
a2 + b2 = c2. For example, (3, 4, 5) is a Pythagorean triple. Write a program
pythagoras.cpp that allows you to list all Pythagorean triples for which a + b + c =

1000. We're not demanding that the program lists them directly, but the program
should \prove" that your list is correct. How many such Pythagorean triples are
there? (This is a slight variation of Problem 9 from the Project Euler, see http://

projecteuler.net/.)
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2.3 Booleans

The truth always lies somewhere else.

Folklore

This section discusses the type bool used to represent truth values or
Booleans, for short. You will see a number of operations on Booleans
and why only few of these operations su�ce to express all the others.
You will learn how to evaluate expressions involving the type bool, using
short-circuit evaluation.

What is the simplest C++ type you can think of? If we think of types in terms
of their value ranges, then you will probably come up with a type whose value range
is empty or consists of one possible value only. Arguably, values of such types are very
easy to represent, even without spending any memory resources. However, although such
types are useful in certain circumstances, you can't do a lot of interesting computations
with them. After all, there is no operation on them other than the identity.

So, let us rephrase the above question: What is the simplest non-trivial C++ type you
can think of? After the above discussion we certainly have one candidate: a type with a
value range that consists of exactly two elements. At �rst sight, such a type may again
appear very limited. Nevertheless, we will see below that it allows for many interesting
operations. Actually, such a type is su�cient as a basis for all kinds of computations you
can imagine. (Recall, for example, that integral numbers can be represented in binary
format, that is, using the two values 0 and 1 only.)

2.3.1 Boolean functions

The name \Boolean" stems from the British mathematician George Boole (1815{1864)
who pioneered in establishing connections between logic and symbolic algebra. By the
term Boolean function we denote a function f : Bn → B, where B := {0, 1} and n 2 N.
(Read 0 as false and 1 as true.)

Clearly the number of di�erent Boolean functions is �nite for every �xed n; Exer-
cise 27 asks you to show what exactly their number is. To give you a �rst hint: For
n = 1 there are only four Boolean functions, the two constant functions c0 : x 7→ 0 and
c1 : x 7→ 1, the identity id : x 7→ x and the negation NOT : x 7→ x, where 0 := 1 and
1 := 0.

In the following we restrict our focus to unary and binary Boolean functions, that
is, functions from B or B2 to B. Such functions are most conveniently described as a
small table that lists the function values for all possible arguments. An example for a
binary Boolean function is AND : (x, y) 7→ x ∧ y shown in Figure 5(a). It is named
AND because x ∧ y = 1 if and only if x = 1 and y = 1. You may guess why the
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function f : (x, y) 7→ x ∨ y de�ned in Figure 5(b) is called OR. In fact, there are two
possible interpretations of the word \or": You can read it as \at least one of", but
just as well it can mean \either . . . or", that is, \exactly one of". The function that
corresponds to the latter interpretation is shown in Figure 5(c). It is usually referred to
as XOR : (x, y) 7→ x � y or exclusive or. Figure 5(e) depicts the table for the unary
function NOT.

x y x ∧ y

0 0 0

0 1 0

1 0 0

1 1 1

(a) AND.

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

(b) OR.

x y x� y

0 0 0

0 1 1

1 0 1

1 1 0

(c) XOR.

x y x ↑ y

0 0 1

0 1 1

1 0 1

1 1 0

(d) NAND.

x x

0 1

1 0

(e) NOT.

Figure 4: Examples for Boolean functions.

Completeness. Figure 4 shows just a few examples. However, in a certain sense, it
shows you everything about binary Boolean functions. Some of these functions are
so fundamental that every binary Boolean function can be generated from them. For
example, XOR can be generated from AND, OR and NOT:

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

Informally, \either or" means \or" but not \and". Formulas like this are easily checked
by going through all (four) possible combinations of arguments.

Similarly, the function NAND : (x, y) 7→ x ↑ y described in Figure 5(d) can be
generated from NOT and AND (hence the name):

NAND(x, y) = NOT(AND(x, y)).

Let us de�ne what we mean by \generate".

Definition 2 Consider a set F of boolean functions. A binary boolean function f is
called generated by F if f can be expressed by a formula that only contains the
variables x and y, the constants 0 and 1, and the functions from F.

For a set F of binary functions, a set F of binary functions is said to be complete
if and only if every function f 2 F can be generated by F.

We are now prepared for a completeness proof.

Theorem 1 The set of functions {AND,OR,NOT} is complete for the set of binary
Boolean functions.
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Proof. Every binary Boolean function f is completely described by its characteris-
tic vector (f(0, 0), f(0, 1), f(1, 0), f(1, 1)). For example, AND has characteristic vector
(0, 0, 0, 1), or 0001 for short. Let fb1b2b3b4

denote the Boolean function with characteris-
tic vector b1b2b3b4. For example, AND = f0001.

In the �rst step of the proof, we show that all those functions can be generated whose
characteristic vector contains a single 1. Indeed,

f0001(x, y) = AND(x, y),

f0010(x, y) = AND(x,NOT(y)),

f0100(x, y) = AND(y,NOT(x)),

f1000(x, y) = NOT(OR(x, y)).

To check the formula for f0010, for example, we can create a table for the function
AND(x,NOT(y)) as in Figure 4 and convince ourselves that the resulting characteristic
vector is 0010.

In the second step, we show that every function whose characteristic vector is nonzero
can be generated. This is done by combining the already generated \single-1" functions
through OR, which simply adds up their 1's. For example,

f1100(x, y) = OR(f1000(x, y), f0100(x, y)),

f0111(x, y) = OR(OR(f0100(x, y), f0010(x, y)), f0001(x, y)).

We abstain from working this argument out formally, since we believe that you get its
idea. Finally, we generate f0000 as

f0000(x, y) = 0.

�

Exercise 30 asks you to show that the sets {AND,NOT}, {OR,NOT}, and even the set
that consists of the single function {NAND} are complete for the set of binary Boolean
functions.

2.3.2 The type bool

In C++, Booleans are represented by the fundamental type bool. Its value range consists
of the two elements true and false that are associated with the literals true and false,
respectively. For example,

bool b = true;

de�nes a variable b of type bool and initializes it to true.
Formally, the type bool is an integral type, de�ned to be less general than int (which

in turn is less general than unsigned int, see Section 2.2.7). An expression of type bool,
or of a type whose values can be converted to bool, is called a predicate.
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Logical operators. The complete set of binary Boolean functions is available via the log-
ical operators && (AND), || (OR), and ! (NOT). Compared to the notation used in
Section 2.3.1 we simply identify 1 with true and 0 with false. Both && and || are bi-
nary operators, while ! is unary. All operands are rvalues of type bool, and all logical
operators also return rvalues of type bool. Like in logics, && binds more strongly than
||, and ! binds more strongly than && (recall that an operator binds more strongly than
another if its has higher precedence).

Relational operators. There is also a number of operators on arithmetic types whose result
is of type bool. For each arithmetic type there exist the six relational operators <, >,
<=, >=, ==, and !=. These are binary operators whose two rvalue operands are of some
arithmetic type and whose result is an rvalue of type bool. The operators <= and >=

correspond to the mathematical relations � and �, respectively. The operator == tests
for equality and != tests for inequality.

Since bool is an integral type, the relational operators may also have operands of type
bool. The respective comparisons are done according to the convention false<true.

Watch out! A frequent beginner's mistake is to use the assignment operator =
where the equality operator == is meant.

As a general rule, arithmetic operators bind more strongly than relational ones, and
these in turn bind more strongly than the logical operators.

Boolean Evaluation Rule: Binary arithmetic operators have higher precedence than
relational operators, and these have higher precedence than binary logical operators.

All binary relational and logical operators are (as the binary arithmetic operators)
left-associative, see also Table 2. For example, the expression

7 + x < y && y != 3 * z

is logically parenthesized as

((7 + x) < y) && (y != (3 * z)).

Be careful with mathematical shortcut notation such as a = b = c. As a C++ expression,

a == b == c

is not equivalent to

a == b && b == c.

By left associativity of ==, the expression a == b == c is logically parenthesized as
(a == b) == c. If all of a, b, and c are variables of type int with value 0, the evaluation
yields

(0 == 0) == 0 −→ true == 0 −→ 1 == 0 −→ false ,

just the opposite of what you usually mean by a = b = c.
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De Morgan’s laws. The well-known formulae of how to express AND in terms of OR and
vice versa with the help of NOT, are named after the British mathematician Augustus De
Morgan (1806{1871). He was a pioneer in symbolic algebra and logics. Also the rigorous
formulation of \mathematical induction" as we know and use it today goes back to him.
The de-Morgan-formulae state that (in C++-language)

!(x && y) == (!x || !y)

and

!(x || y) == (!x && !y) .

These formulae can often be used to transform a Boolean expression (an expression of
type bool) into a \simpler" equivalent form. For example,

!(x < y || x + 1 > z) && !(y <= 5 * z || !(y > 7 * z))

can equivalently be written as

x >= y && x + 1 <= z && y > 5 * z && y > 7 * z

which is clearly preferable in terms of readability.
For more details about precedences and associativities of the logical and relational

operators, see Table 2. You may �nd this information helpful in order to solve Exercise 32.

Description Operator Arity Prec. Assoc.

logical not ! 1 16 right
less < 2 11 left
greater > 2 11 left
less or equal <= 2 11 left
greater or equal >= 2 11 left
equality == 2 10 left
inequality != 2 10 left
logical and && 2 6 left
logical or || 2 5 left

Table 2: Precedences and associativities of logical and relational operators. All
operands and return values are rvalues.

Conversion and promotion. It is possible that the two operands of a relational operator
have di�erent type. This case is treated in the same way as for the arithmetic operators.
The composite expression is evaluated on the more general type, to which the operand of
the less general type is implicitly converted. In particular, bool operands are converted
to the respective integral type of the other operand. Here, the value false is converted
to 0, and true to 1. If the integral type is int, this conversion is de�ned to be a
promotion. A promotion is a special conversion for which the C++ standard guarantees
that no information gets lost.
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The conversion goes into the other direction for logical operators. In mixed expres-
sions, the integral operands of logical operators are converted to bool in such a way that
0 is converted to false and any other value is converted to true.

These conversions also take place in initializations and assignments, as in the following
examples.

bool b = 5; // b is initialized to true

int i = b; // i is initialized to 1

2.3.3 Short circuit evaluation

The evaluation of expressions involving logical and relational operators proceeds accord-
ing to the general rules, as discussed in Sections 2.2.1 and 2.2.3. However, there is one
important di�erence regarding the order in which the operands of an operator are eval-
uated. While in general this order is unspeci�ed, the binary logical operators && and
|| always guarantee that their left operand is evaluated �rst. Moreover, if the value of
the composite expression is already determined by the value of the left operand then the
right operand is not evaluated at all. This evaluation scheme is known as short circuit
evaluation.

How can it happen that the �nal value is already determined by the left operand
only? Suppose that in an && operator the left operand evaluates to false ; then no matter
what the right operand gives, the result will always be false. Hence, there is no need to
evaluate the right operand at all. The analogous situation occurs if in an || operator
the left operand evaluates to true.

At �rst sight it looks as if short circuit evaluation is merely a matter of e�ciency.
But there is another bene�t. It occurs when dealing with expressions that are de�ned
for certain parameters only. Consider for example the division operation that is de�ned
for a nonzero divisor only. Due to short circuit evaluation, we can write

x != 0 && z / x > y

and be sure that this expression is always valid. If the right operand was evaluated for
x having value 0, then the result would be unde�ned.

2.3.4 Details

Naming. The XOR function is also frequently called antivalence and denoted by =.
The NAND function is also known as alternate denial or She�er stroke. The latter
name is after the American mathematician Henry M. She�er (1883{1964) who proved
that all other logical operations can be expressed in terms of NAND.

Bitwise operators. We have seen in Section 2.2.8 that integers can be represented in
binary format, that is, as a sequence of bits each of which is either 0 or 1. Boolean
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functions can naturally be extended to integral types by applying them bitwise to the
binary representations.

Definition 3 Consider a nonnegative integer b and two integers x =
∑b

i=0 ai2
i and

y =
∑b

i=0 bi2
i, for which ai, bi 2 {0, 1} for all 0 � i � b.

For a unary Boolean function f : {0, 1}→ {0, 1} the bitwise operator ϕf correspond-
ing to f is de�ned as ϕf(x) =

∑b
i=0 f(ai)2

i.

For a binary Boolean function g : {0, 1}2 → {0, 1} the bitwise operator ϕg corre-

sponding to g is de�ned as ϕg(x, y) =
∑b

i=0 g(ai, bi)2
i.

For illustration, suppose that we have an unsigned integral type with a 4-bit repre-
sentation. That is, 0000 represents 0, 0001 represents 1, and so on, up to 1111 which
represents 15.

Then you can check that ϕOR(4, 13) = 13, ϕNAND(13, 9) = 6, and ϕNOT(2) = 13.

Several bitwise operators are de�ned for the integral types in C++. There is a
bitwise AND &, a bitwise OR |, and a bitwise XOR ^, as well as a bitwise NOT ~ that
is usually referred to as complement. As the arithmetic operators, the binary bitwise
operators (except for ~) have a corresponding assignment operator. The precedences and
associativity of these operators are listed in Table 3.

Description Operator Arity Prec. Assoc.

bitwise complement ~ 1 16 right
bitwise and & 2 9 left
bitwise xor ^ 2 8 left
bitwise or | 2 7 left
and assignment &= 2 4 right
xor assignment ^= 2 4 right
or assignment |= 2 4 right

Table 3: Precedence and associativity of bitwise operators.

Note that the functionality of these operators is implementation de�ned, since the
bitwise representations of integral type values are not speci�ed by the C++ standard.
We have only discussed the most frequent (and most likely) such representations in
Section 2.2.8. You should therefore only use these operators when you know the rep-
resentation. Even then, expressions involving the bitwise operators are implementation
de�ned.

This is most obvious with the bitwise complement: even if we assume the standard
binary representation of Section 2.2.8, the value of the expression ~0 depends on the
number b of bits in the representation. This value therefore changes when you switch
from a 32-bit machine to a 64-bit machine.
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2.3.5 Goals

Dispositional. At this point, you should . . .

1) know the basic terminology around Boolean functions and understand the concept
of completeness;

2) know the type bool, its value range, and the conversions and operations involving
bool;

3) understand the evaluation of expressions involving logical and relational operators,
in particular the Boolean Evaluation Rule and the concept of short circuit evaluation.

Operational. In particular, you should be able to . . .

(G1) prove or disprove basic statements about Boolean functions;

(G2) prove whether or not a given set of binary Boolean functions is complete;

(G3) evaluate a given expression involving arithmetic, logical, and relational operators;

(G4) read and understand a given simple program (see below), involving objects of
arithmetic type (including bool) and arithmetic, logical, and relational operators.

The term simple program refers to a program that consists of a main function which
in turn consists of a sequence of declaration and expression statements. Naturally, only
the fundamental types and operations discussed in the preceding sections are used.

2.3.6 Exercises

Exercise 27 For n 2 N, how many di�erent Boolean functions f : Bn → B exist? (G1)

Exercise 28 Prove or disprove that for all x, y, z 2 B (G1)

a) (x� y)� z = x� (y� z). (i.e., XOR is associative)

b) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z). (i.e., (AND,OR) is distributive)

c) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z). (i.e., (OR,AND) is distributive)

d) (x ↑ y) ↑ z = x ↑ (y ↑ z). (i.e., NAND is associative)

Exercise 29 For x1, . . . , xn, n 2 N, give a verbal description of x1 � x2 � . . . � xn in
terms of the xi, 1 � i � n. (G1)

Exercise 30 Show that the following sets of functions are complete for the set of
binary Boolean functions. (G2)

a) {AND,NOT}
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b) {OR,NOT}

c) {NAND}

d) {NOR}, where NOR := NOT �OR.
e) {XOR,AND}

You may use the fact that {AND,OR,NOT} is a complete set of binary Boolean functions.

Exercise 31 Suppose a, b, and c are all variables of type int. Find values for a,
b, and c for which the expressions a < b < c and a < b && b < c yield di�erent
results. (G3)

Exercise 32 Parenthesize the following expressions according to operator precedences
and associativities. (G3)

a) x != 3 < 2 || y && -3 <= 4 - 2 * 3

b) z > 1 && ! x != 2 - 2 == 1 && y

c) 3 * z > z || 1 / x != 0 && 3 + 4 >= 7

Exercise 33 Evaluate the expressions given in Exercise 32 step-by-step, assuming that
x, y, and z are all of type int with x==0, y==1, and z==2. (G3)

Exercise 34 What can you say about the output of the following program? Charac-
terize it depending on the input and explain your reasoning. (G4)

1 #include <iostream >
2 int main()
3 {
4 int a;
5 std::cin >> a;
6 std::cout << (a++ < 3) << ".\n";
7 const bool b = a * 3 > a + 4 && !(a >= 5);
8 std::cout << (!b || ++a > 4) << ".\n";
9 return 0;
10 }

Exercise 35 Find the logical parentheses in lines 9 and 12 of the following program.
What can you say about the output of the following program? Characterize it
depending on the input and explain your reasoning. (G4)

1 #include <iostream >
2

3 int main ()
4 {
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5 unsigned int a;
6 std::cin >> a;
7

8 unsigned int b = a;
9 b /= 2 + b / 2;
10 std::cout << b << "\n";
11

12 const bool c = a < 1 || b != 0 && 2 * a / (a - 1) > 2;
13 std::cout << c << "\n";
14

15 return 0;
16 }

2.3.7 Challenges

Exercise 36 The Reverse Polish Notation (RPN) is a format of writing expressions
without any parentheses. RPN became popular in the late nineteensixties when the
company Hewlett-Packard started to use it as input format for expressions on their
desktop and handheld calculators.

In RPN, we �rst write the operands, and then the operator (that's what the
Reverse stands for). For example, the expression

AND(OR(0,NOT(AND(0, 1))), 1)

can be written like this in RPN:

0 0 1 AND NOT OR 1 AND.

The latter sequence of operands and operators de�nes a speci�c evaluation se-
quence of the expression, see Section 2.2.3. To evaluate an expression in RPN, we
go through the sequence from left to right; whenever we �nd an operand, we don't
do anything, but when we �nd an operator (of arity n), we evaluate it for the n

operands directly to the left of it and replace the involved n + 1 sequence elements
by the result of the evaluation. Then we go to the next sequence element. In case of
our example above, this proceeds as follows (currently processed operator in bold):

0 0 1 AND︸ ︷︷ ︸
0

NOT OR 1 AND

0 0 NOT︸ ︷︷ ︸
1

OR 1 AND

0 1 OR︸ ︷︷ ︸
1

1 AND

1 1 AND︸ ︷︷ ︸
1

1
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To see that this is indeed a way of evaluating the original expression

AND(OR(0,NOT(AND(0, 1))), 1),

you can for example make a bottom-up drawing of an expression tree (Section 2.2.2)
that corresponds to the evaluation sequence in RPN. You will �nd that this tree is
also valid for the original expression.

Here comes the actual exercise. Write programs and.cpp, or.cpp, and not.cpp

that receive as input a sequence s of boolean values in {0, 1} (\all operands to the left
of the operator"). The output should be the sequence s 0 that we get by replacing the
last n operands in s with the result of evaluating the respective operator for them.
In case of and.cpp and or.cpp, we use n = 2, and for not.cpp n = 1. For example,
on input (1, 1, 0), program and should output the sequence (1, 0), while not should
yields (1, 1, 1).

In addition, write programs zero.cpp and one.cpp that output the sequence s 0

obtained by appending a 0 or 1 to the input s. Finally, write a program eval.cpp

(with no input) that outputs the empty sequence.
The goal of all this is to evaluate boolean functions in RPN by simply calling the

corresponding sequence of programs (preceded by a call to eval), where the output
of one program is used as input for the next one in the sequence. In Unix and
Linux this can elegantly be done via a pipe. For example, to evaluate the example
expression from above in RPN, we simply type the command

./eval |./ zero |./ zero |./ one |./ and |./ not |./or |./ one |./ and

This calls all listed programs in turn, where a separating pipe symbol | has the
e�ect that the output of the program to the left of it is used as the input for (\is
piped into") the program to the right of it.

Consequently, the whole aforementioned command should simply write 1 to stan-
dard output, the result of the evaluation. Also test your programs with some other
RPN sequences, in particular the \obvious" ones of the form

./eval |./ zero |./ one |./or

(this one should output 1) to make sure that they work as expected.

Hint: It is not necessary that your programs accept sequences s of arbitrary length
as input. A maximum length of 32, for example, is su�cient for all practical pur-
poses; in this case, the sequence can be encoded by one value of type unsigned int.
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2.4 Control statements

We are what we repeatedly do. Excellence, then, is not an act
but a habit.

Will Durant in a summary of Aristotle's ideas,
The Story of Philosophy: The Lives and Opinions

of the World's Greatest Philosophers (1926)

This section introduces four concepts to control the execution of a pro-
gram: selection, iteration, blocks, and jumps. These concepts enable us
to deviate from the default linear control ow which executes statement
by statement from top to bottom. You will learn how these concepts
are implemented in C++, and how to apply them to create interesting
programs.

The programs that we have seen so far are all pretty simple. They consist of a sequence
of statements that are executed one by one from the �rst to the last. Such a program
is said to have a linear control ow. This type of control ow is quite restrictive, as
each statement in the source code is executed at most once during the execution of the
program. Suppose you want to implement an algorithm that performs 10,000 steps for
some input. Then you would have to write a program with at least 10,000 lines of code.
Obviously this is undesirable. Therefore, in order to implement non-trivial algorithms,
more powerful mechanisms to control the ow of a program are needed.

2.4.1 Selection: if– and if-else statements

One particularly simple way to deviate from linear control ow is to select whether or
not a particular statement is executed. In C++ this can be done via an if statement.
The syntax is

if ( condition )
statement

where condition is an expression or variable declaration of a type whose values can be
converted to bool, and statement | as the name suggests | is a statement. In case
you are missing a semicolon after statement: recall that this semicolon is part of the
statement. The semantics is the following: condition is evaluated; if and only if its value
is true, statement is executed afterwards. In other words, an if statement splits the
control ow into two branches. The value of condition selects which of these branches is
executed. For example, the following lines of code
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int a;
std::cin >> a;
if (a % 2 == 0) std::cout << "even";

read a number from standard input into the variable a and write \even" to standard
output if and only if a is even.

Optionally, an if statement can be complemented by an else-branch. The syntax is

if ( condition )
statement1

else

statement2

and the semantics is as follows: condition is evaluated; if its value is true, statement1
is executed afterwards; otherwise, statement2 is executed afterwards. For example, the
following lines of code

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

read a number from standard input into the variable a. Then if a is even, \even" is
written to standard output; otherwise, \odd" is written to standard output.

When formatting an if statement, it is common to insert a line break before state-
ment1, before else, and before statement2. Moreover, statement1 and statement2 are
indented and else is aligned with if, as shown in the example above. If the whole
statement �ts on a single line then it can also be typeset as a single line.

Collectively, if- and if-else statements are known as selection statements.

2.4.2 Iteration: for statements

A much more powerful way of manipulating the control ow is provided by iteration
statements. Iteration allows to execute a statement many times, possibly with di�erent
parameters each time. Iteration statements are also called loops, as they \loop through" a
statement (potentially) several times. Selection and iteration statements are collectively
referred to as control statements.

Consider the problem of computing the sum Sn =
∑n

i=1 i of the �rst n natural
numbers, for a given n 2 N. Program 7 reads in a variable n from standard input,
de�nes another variable s to contain the result, computes the result and �nally outputs
it. In order to understand why the program sum_n.cpp indeed behaves as claimed, we
have to explain the di�erent parts of a for statement.
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1 // Program: sum_n.cpp

2 // Compute the sum of the first n natural numbers.

3

4 #include <iostream >
5

6 int main()
7 {
8 // input

9 std::cout << "Compute the sum 1+...+n for n =? ";
10 unsigned int n;
11 std::cin >> n;
12

13 // computation of sum_{i=1}^n i

14 unsigned int s = 0;
15 for (unsigned int i = 1; i <= n; ++i) s += i;
16

17 // output

18 std::cout << "1+...+" << n << " = " << s << ".\n";
19 return 0;
20 }

Program 7: progs/lecture/sum n.cpp

for statement. The for statement is a very compact form of an iteration statement, as
it combines three statements or expressions into one. In most cases, the for statement
serves as a \counting loop" as in Program 7. Its syntax is de�ned by

for ( init-statement condition; expression )
statement

where init-statement is an expression statement, a declaration statement, or the null
statement, see Section 2.1.15. In all of these cases, init-statement ends with a semicolon
such that there are always two semicolons in between the parentheses after a for. Usually
init-statement de�nes and initializes a variable that is used to control and eventually
end the iteration statement's execution. In sum_n.cpp, init-statement is a declaration
statement that de�nes the variable i.

As in an if statement, condition is an expression or variable declaration whose type
can be converted to bool. It de�nes how long the iteration goes on, namely as long as
condition returns true. It is allowed that condition is empty in which case its value is
interpreted as true. As the name suggests, expression is an arbitrary expression that
may also be empty (in which case it has no e�ect). statement is an arbitrary statement.
It is referred to as the body of the for statement.
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Typically, expression has the e�ect of changing a value that appears in condition.
Such an e�ect is said to \make progress towards termination". The goal is that condi-
tion is false after expression has been evaluated a �nite number of times. In that sense,
every evaluation of expression makes a step towards the end of the for statement. In
sum_n.cpp, expression increments the variable i which is bounded from above in condi-

tion. In cases like this where the value of a single variable is accessed and changed by
condition and expression, we call this variable the control variable of the for statement.

We are now ready to precisely de�ne the semantics of a for statement. First, init-
statement is executed once. Thereafter condition is evaluated. If it returns true, an
iteration of the loop starts. If condition returns false, the for statement terminates,
that is, its processing ends immediately.

Each single iteration of a for statement consists of �rst executing statement and then
evaluating expression. After each iteration, condition is evaluated again. If it returns
true, another iteration follows. If condition returns false, the for statement terminates.
The execution order is therefore init-statement, condition, statement, expression, condi-
tion, statement, expression, . . . until condition returns false.

Let's see this in action: Consider the for statement

for (unsigned int i = 1; i <= n; ++i) s += i;

in sum_n.cpp and suppose n == 2. First, the variable i is de�ned and initialized to
1. Then it is tested whether i <= n. As 1 <= 2 is true, the �rst iteration starts. The
statement s += i is executed, setting s to 1, and thereafter i is incremented by one such
that i == 2. One iteration is now complete. As a next step, the condition i <= n is
evaluated again. As 2 <= 2 is true, another iteration follows. First s += i is executed,
setting s to 3. Thereafter, i is incremented by one such that i == 3. The second
iteration is now complete. The subsequent evaluation of i <= n entails 3 <= 2 which
is false. Thus, no further iteration takes place and the processing of the for statement
ends. The value of s is now 3, the sum of the �rst 2 natural numbers.

Infinite loops. It is easily possible to create loops that do not terminate. For example,
recall that both condition and expression may be empty. Moreover, both init-statement

and statement can be the null statement. In this case we get the for statement

for (;;);

As the empty condition has value true, executing this statement runs through iteration
after iteration without actually doing anything. Therefore, for (;;) may be read as
\forever". In general, a statement which does not terminate is called an in�nite loop.

Clearly, in�nite loops are extremely undesirable and programmers try hard to avoid
them. Nevertheless, sometimes such loops occur even in real life software. If you regularly
use a computer, you have probably experienced this kind of phenomenon: a program
\hangs".
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You may ask: Why doesn't the compiler simply detect in�nite loops and warns me
about them just as it complains about syntax errors? Indeed, this would be a great thing
to have and it would solve many problems in software development. The problem is that
in�nite loops are not always as easy to spot as in the above example. Loops can be
pretty complicated, and possibly they loop in�nitely when executed in certain program
states only.

In fact, the situation is hopeless: It can be shown that the problem of detecting
in�nite loops (commonly referred to as the halting problem) cannot be solved by a
computer, as we have and understand it today (see the Details). Therefore, some care is
needed when designing loops. We have to check \by hand" that the iteration statement
terminates for all possible program states that can occur.

Gauss. You may know or have realized that our program sum_n.cpp is actually a bad
example. It is bad in the sense that it does not convincingly demonstrate the power of
control statements.

In his primary school days, the German mathematician Carl Friedrich Gauss (1777{
1855) was told to sum up the numbers 1, 2, 3, . . . , 100. The teacher had planned to keep
his students busy for a while, but Gauss came up with the correct result 5050 very
quickly. He had imagined writing down the numbers in increasing order, and one line
below once again in decreasing order. Clearly, the two numbers in each column sum up
to 101; hence, the overall sum is 100 � 101 = 10100, half of which is the number that was
asked for.

1 2 3 . . . 98 99 100
100 99 98 . . . 3 2 1
101 101 101 . . . 101 101 101

In this way, Gauss discovered the formula

n∑
i=1

i = n(n + 1)/2,

for every n 2 N. The for statement in sum_n.cpp can therefore be replaced by the much
more elegant and e�cient statement

s = n * (n + 1) / 2;

Note that in this statement, the integer division coincides with the real division, since
for all n, the product n(n+1) is even. We next get to a real application of selection and
iteration statements.

Prime numbers. In the introductory Section 1.1, we have talked a lot about prime num-
bers. How would a program look like that tests whether or not a given number is
prime? A number n 2 N, n � 2 is prime if and only if it is not divisible by any number
d 2 {2, . . . , n − 1}. The strategy for our program is therefore clear: Write a loop that
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runs through all these numbers, and test each of them for being a divisor of n. If a
divisor is found, we can stop and output a factorization of n into two numbers, proving
that n is not prime. Otherwise, we output that n is prime. Program 8 implements this
strategy in C++, using one for statement, and one if statement. Remarkably, the for
statement has an empty body, since we have put the divisibility test into the condition.
The important observation is that the condition n % d != 0 de�nitely returns false for
d == n, so that the loop is guaranteed to terminate; if (and only if) condition returns
false earlier, we have found a divisor of n in the range {2, . . . , n − 1}.

1 // Program: prime.cpp

2 // Test if a given natural number is prime.

3

4 #include <iostream >
5

6 int main ()
7 {
8 // Input

9 unsigned int n;
10 std::cout << "Test if n>1 is prime for n =? ";
11 std::cin >> n;
12

13 // Computation: test possible divisors d

14 unsigned int d;
15 for (d = 2; n % d != 0; ++d);
16

17 // Output

18 if (d < n)
19 // d is a divisor of n in {2,...,n-1}

20 std::cout << n << " = " << d << " * " << n / d << ".\n";
21 else
22 // no proper divisor found

23 std::cout << n << " is prime.\n";
24

25 return 0;
26 }

Program 8: progs/lecture/prime.cpp

We would like to point out that the above arguments are only valid for n � 2;
Exercise 45 asks you to consider the cases n = 0, 1.

2.4.3 Blocks and scope

In C++ it is possible to group a sequence of one or more statements into one single
statement that is then called a compound statement, or simply a block. This mechanism
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does not manipulate the control ow directly. Blocks allow to structure a program by
grouping statements that logically belong together. In particular, they are a tool to
design powerful and at the same time readable control statements.

Syntactically, a block is simply a sequence of zero or more statements that are enclosed
in curly braces.

f statement1 statement2 ... statementN g

Each of the statements may in particular be a block, so it is possible to have nested
blocks. The simplest block is the empty block {}.

You have already seen blocks. Each program contains a special block, the so-called
function body of the main function. This block encloses the sequence of statements that
is executed when the main function is called by the operating system.

Using blocks, one can create selection and iteration statements whose body contains
a sequence of two or more statements. For example, suppose that for testing purposes
we would like to write out all partial sums during the computation in sum_n.cpp:

for (unsigned int i = 1; i <= n; ++i) {
s += i;
std::cerr << i << "-th partial sum is " << s << "\n";

}

Here two statements are executed in each iteration of the loop. First, the next summand
is added to s, then the current value of s is written to standard error output.

Blocks should in general be formatted as shown above. That is, a line break appears
after the opening and before the closing brace, and all lines in between are indented one
level. Only if the block consists of just one single statement and it all �ts on one line,
the block can be formatted as one single line.

The kind of test output we have created in the previous example is called debugging
output. A bug is a commonly used term to denote a programming error, hence \debug-
ging" is the process of �nding and eliminating such errors. It is good practice to write
debugging output to standard error output since it can then more easily be separated
from the \real" program output that usually goes to standard output.

Visibility. Blocks do not only structure a program visually but they also provide a logical
boundary around declarations (of variables, for example). Every declaration that appears
inside a block is called local to that block. A local declaration extends only until the
end of the block in which it appears. A name that is introduced by a local declaration
is not \visible" outside of the block where it is declared. For example, in

1 int main()
2 {
3 {
4 const int i = 2;
5 }
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6 std::cout << i; // error , undeclared identifier

7 return 0;
8 }

the variable i declared inside the block in line 3{5 is not visible in the output statement
in line 6. Thus, if you confront the compiler with this code, it issues an error message.

Control statements and blocks. Control statements act like blocks themselves. Therefore
every declaration appearing in a control statement is local to that control statement. In
particular, this applies to a variable de�ned in the init-statement of a for statement.
For example, in

1 int main()
2 {
3 for (unsigned int i = 0; i < 10; ++i) s += i;
4 std::cout << i; // error , undeclared identifier

5 return 0;
6 }

the expression i in line 4 does not refer to the variable i de�ned in line 3.

Declarative region. After having seen these �rst examples, we will now introduce the
precise terminology that allows us to deduce which names can be used where in the
program. Each declaration has an associated declarative region. This region is the part
of the program in which the declaration appears. Such a region can be a block, a function
de�nition, or a control statement. In all these cases the declaration is said to have local
scope. A declaration can also have namespace scope, if it appears inside a namespace,
see Section 2.1.3. Finally, a declaration that is outside of any particular other structure
has global scope.

Scope. A name introduced by a declaration D is valid or visible in a part of its declara-
tion's declarative region, called the scope of the declaration. Within the scope of D, the
name introduced by D may be used and actually refers to the declaration D. In most
cases, the scope of a declaration is equal to its potential scope.

The potential scope of a declaration starts at the point where the declaration appears.
For the name to be declared this is called its point of declaration. The potential scope
extends until the end of the declarative region.

To get the scope of a declaration, we start from its potential scope but we possibly
have to remove some parts of it. This happens when the potential scope contains one or
more declarations of the same name. As an example, consider Program 9.

1 #include <iostream >
2

3 int main()
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4 {
5 const int i = 2;
6 for (int i = 0; i < 5; ++i)
7 std::cout << i; // outputs 0, 1, 2, 3, 4

8 std::cout << i; // outputs 2

9 return 0;
10 }

Program 9: progs/lecture/scope.cpp

The i in line 7 refers to the declaration from line 6, whereas the i in line 8 refers to
the declaration from line 5. Therefore, the program outputs �rst 0, 1, 2, 3, 4, and then
2. In some sense, the declaration in line 6 temporarily hides the previous declaration of
i from line 5. This phenomenon is called name hiding. But when the declarative region
of the second declaration ends in line 7, the second declaration \becomes invisible" (we
say: \it runs out of scope") and the �rst declaration takes over again. In particular,
since the name i in line 8 refers to the constant de�ned in line 5, we get the output 2 in
line 8.

It is good practice to avoid name hiding since this unnecessarily obfuscates the pro-
gram. On the other hand, name hiding allows us (like in Program 9) to use our favorite
identi�er i as the name of the control variable in a for statement, without having to
check whether there is some other name i somewhere else in the program. This is an
acceptable and even useful application of name hiding.

Now we can get to the formal de�nition of scope in the general case (possible presence
of multiple declarations of the same name). The scope of a declaration D is obtained
from its potential scope as follows: For each declaration E in the potential scope of D

such that both D and E declare the same name, the potential scope of E is removed from
the scope of D. Figure 5 gives a symbolic picture of the situation.

In Program 9, the declarative region of the declaration in line 5 is line 4{10 (a block),
its potential scope is line 5{10, and its scope is line 5 plus line 8{10. For the declaration
in line 6, declarative region (a control statement), potential scope and scope are line 6{7.

Breaking down the scopes into lines is in general not possible, of course, since line
breaks may (or may not) appear almost anywhere. If we want to talk about scope on a
line-by-line basis, we have to format the program accordingly.

Storage duration. Related to the scope of a variable is its storage duration. This term
denotes the time in which the address of the variable is valid, that is, some memory
location is assigned to it.

For a variable with local scope, the storage duration is usually the time in which
the program's control is in the variable's potential scope. During program execution,
this means that whenever the variable declaration is reached, some memory location is
assigned and the address becomes valid. And whenever the execution gets to the end of
the declarative region, the associated memory is freed and the variable's address becomes
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DD

E1E1

E2E2

E3E3

Figure 5: Potential scopes of declarations D, E1, E2, E3 of the same name, drawn as
rectangles with the corresponding declaration in the upper left corner (left);
on the right, we see the resulting scopes of D (dark gray), E1, E3 (light gray)
and E2 (white).

invalid. We therefore get a \fresh instance" of the variable everytime its declaration is
executed.

This behavior is called automatic storage duration. For example, in

for (unsigned int i = 0; i < 10; ++i) {
const int k = i;
...

}

the initialization takes place in each iteration, and it yields a di�erent value each time.
This is �ne, since the \constness" individually refers to each of the ten instances of k
that are being generated throughout the loop.

As a more concrete example, consider the following code fragment.

1 int i = 5;
2 for (int j = 0; j < 5; ++j) {
3 std::cout << ++i; // outputs 6, 7, 8, 9, 10

4 int k = 2;
5 std::cout << --k; // outputs 1, 1, 1, 1, 1

6 }

Since line 3 belongs to the scope of the declaration in line 1, the e�ect of line 3 is to
increment the variable de�ned in line 1 in every iteration of the for statement. Line 5,
on the other hand, belongs to the scope of the declaration in line 4; the e�ect of line 5 is
therefore to decrement the \fresh" variable k in every iteration, and this always results
in value 1.

In contrast, a variable that is de�ned in namespace scope or global scope has static



2.4. CONTROL STATEMENTS 89

storage duration. This means that its address is determined at the beginning of the
program's execution, and it does not change (hence \static") nor become invalid until
the execution of the program ends. The variables named by std::cin and std::cout,
for instance, have static storage duration. Variables with static storage duration are also
referred to as static variables.

2.4.4 Iteration: while statements

So far, we have seen one iteration statement, the for statement. The while statement
is a simpli�ed for statement, where both init-statement and expression are omitted. Its
syntax is

while ( condition )
statement

where condition and statement are as in a for statement. As before, statement is referred
to as the body of the while statement. Semantically, a while statement is equivalent to
the corresponding for statement

for ( ; condition ; )
statement

The execution order is therefore condition, statement, condition,. . . until condition re-
turns false.

Since while statements are so easy to rewrite as for statements, why do we need
them? The main reason is readability. As its name suggests, a for statement is typically
perceived as a counting loop in which the increment (or decrement) of a single variable
is responsible for the progress towards termination. In this case, the progress is most
conveniently made in the for statement's expression. But the situation can be more
complex: the progress may depend on the values of several variables, or on some condition
that we check in the loop's body. In some of these cases, a while statement is preferable.
The next section describes an example.

The Collatz problem. Given a natural number n 2 N, we consider the Collatz sequence
n0, n1, n2, . . . with n0 = n and

ni =

{
ni−1/2, if ni−1 is even

3ni−1 + 1, if ni−1 is odd
i � 1.

For example, if n = 5, we get the sequence 5, 16, 8, 4, 2, 1, 4, 2, 1, . . .. Since the sequence
gets repetitive as soon as 1 appears, we may stop at this point. Program 10 reads in a
number n and outputs the elements of the sequence (ni)i�1 until the number 1 appears.
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1 // Program: collatz.cpp

2 // Compute the Collatz sequence of a number n.

3

4 #include <iostream >
5

6 int main()
7 {
8 // Input

9 std::cout << "Compute the Collatz sequence for n =? ";
10 unsigned int n;
11 std::cin >> n;
12

13 // Iteration

14 while (n > 1) {
15 if (n % 2 == 0)
16 n = n / 2;
17 else
18 n = 3 * n + 1;
19 std::cout << n << " ";
20 }
21 std::cout << "\n";
22 return 0;
23 }

Program 10: progs/lecture/collatz.cpp

The loop can of course be written as a for statement with empty init-statement

and expression, but the resulting variant of the program is less readable since it tries to
advertise the rather complicated iteration as a simple counting loop. As a rule of thumb,
if there is a simple expression that captures the loop's progress, use a for statement.
Otherwise, consider formulating your loop as a while statement.

Talking about progress: is it clear that the number 1 always appears? If not, the
program collatz.cpp contains an in�nite loop for certain values of n. If you play with
the program, you will observe that 1 indeed appears for all numbers you try, although
this may take a while. You will �nd, for example, that the Collatz sequence for n = 27

is

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121,
364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526,
263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754,
377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,
3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154,
3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4,
2, 1.
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It is generally believed that 1 eventually comes up for all values of n, but mathe-
maticians have not yet been able to produce a proof of this conjecture. As innocent as
it looks, this problem seems to be a very hard mathematical nut to crack (see also the
Details section), but you are certainly invited to give it a try!

2.4.5 Iteration: do statements

Do statements are similar to while statements, except that the condition is evaluated
after every iteration of the loop instead of before every iteration. Therefore, in contrast
to for{ and while statements, the body of a do statement is executed at least once.

The syntax of a do statement is as follows.

do

statement

while ( expression );

where expression is of a type whose values can be converted to bool.

The semantics is de�ned as follows. An iteration of the loop consists of �rst executing
statement and then evaluating expression. If expression returns true then another iter-
ation follows. Otherwise, the do statement terminates. The execution order is therefore
statement, expression, statement, expression, . . . until expression returns false.

Alternatively, the semantics could be de�ned in terms of the following equivalent for
statement.

for ( bool firsttime = true; firsttime || expression; firsttime = false )
statement

This behaves like our \simulation" of the while statement, except that in the �rst
iteration, expression is not evaluated (due to short circuit evaluation, see Section 2.3.3),
and statement is executed unconditionally.

Consider a simple calculator-type application in which the user enters a sequence of
numbers, and after each number the program outputs the sum of the numbers entered
so far. By entering 0, the user indicates that the program should stop. This is most
naturally written using a do statement, since the termination condition can only be
checked after the next number has been entered.

int a; // next input value

int s = 0; // sum of values so far

do {
std::cout << "next number =? ";
std::cin >> a;
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);
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In this case, it is not possible to declare a where we would usually do it, namely imme-
diately before the input statement. The reason is that a would then be local to the body
of the do statement and would not be visible in the do statement's expression a != 0.

2.4.6 Jump statements

At this point, we would like to extend our arsenal of control statements with a special
type of statements that are referred to as jump statements. These statements are not
necessary in the sense that they would allow you to do something which is not possible
otherwise. Instead, just like while{ and do statements (which are also unnecessary in that
sense), jump statements provide additional exibility in designing iteration statements.
You should use this exibility wherever it allows you to improve your code. However, be
also warned that jump statements should be used with care since they tend to complicate
the control ow. The complication of the control ow has to be balanced by a signi�cant
gain in other categories (such as code readability). Therefore, think carefully before
introducing a jump statement!

When a jump statement is executed, the program ow unconditionally \jumps" to a
certain point. There are two di�erent jump statements that we want to discuss here.

The �rst jump statement is called a break statement ; its syntax is rather simple.

break;

When a break statement is executed within an iteration statement, the smallest enclosing
iteration statement terminates immediately. The execution continues at the statement
after the iteration statement (if any). For example,

for (;;) break;

is not an in�nite loop but rather a complicated way of writing a null statement. Here is
a more useful appearance of break. In our calculator example from Page 91, it would be
more elegant to suppress the irrelevant addition of 0 in the last iteration. This can be
done with the following loop.

for (;;) {
std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}

Here, we see the typical usage of break, namely the termination of a loop \somewhere
in the middle". Note that we could equivalently write

do {
std::cout << "next number =? ";
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std::cin >> a;
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

} while (true);

In this case for is preferable, though, since it nicely reads as \forever". Of course,
the same functionality is possible without break, but the resulting code requires an
additional block and evaluates a != 0 twice.

do {
std::cout << "next number =? ";
std::cin >> a;
if (a != 0) {

s += a;
std::cout << "sum = " << s << "\n";

}
} while (a != 0);

The second jump statement is called a continue statement ; again the syntax is
simple.

continue;

When a continue statement is executed, the remainder of the smallest enclosing iteration
statement's body is skipped, and execution continues at the end of the body. The
iteration statement itself is not terminated.

If the surrounding iteration statement is a while or do statement, the execution there-
fore continues by evaluating its condition (expression, respectively). If the surrounding
iteration statement is a for statement, the execution continues by evaluating its ex-
pression and then its condition. Like the break statement, the continue statement can
therefore be used to manipulate the control ow \in the middle" of a loop.

In our calculator example, the following variant of the loop ignores negative input.
Again, it would be possible to do this without continue, at the expense of another nested
block.

for (;;) {
std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue;
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
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2.4.7 Equivalence of iteration statements

In terms of pure functionality, the while{ and do statements are redundant, as both of
them can equivalently be expressed using a for statement. This may create the impres-
sion that for statements have more expressive power than while{ and do statements.
In this section we show that this is not the case: all three iteration statements are
functionally equivalent. More precisely, we show how to use

� do statements to express while statements, and

� while statements to express for statements.

If we denote \A can be used to express B" by A⇒ B, we therefore have

do statement ⇒ while statement ⇒ for statement ⇒ do statement,

where we know the last implication from the previous section. Together, this clearly
\proves" the claimed equivalence.

Note that we put the word proves in quotes, as our reasoning cannot be considered
a formal proof. In order to really prove a statement like this, we �rst of all would have
to be more formal in de�ning the semantics of statements. Semantics of programming
languages is a subject of its own, and the formal treatment of semantics is way beyond
what we can do here. In other words: The following is as much of a \proof" as you
will get here, but it is su�cient to understand the relations between the three iteration
statements.

do statement ⇒ while statement. Consider the while statement

while ( condition )
statement

Your �rst idea how to simulate this using a do statement might look like this:

if ( condition )
do

statement

while ( condition );

Indeed, this induces the execution order condition, statement, condition,. . . until condi-
tion returns false and the statement terminates. But there is a simple technical problem:
if condition is a variable declaration, we can't use it as the expression in the do state-
ment. Here is a reformulation that works. (We are not saying that this should be done in
practice. On the contrary, this should never be done in practice. This section is about
conceptual equivalence, not about practical equivalence.)

do

if ( condition )
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statement

else

break;
while ( true );

This induces exactly the while statement's execution order condition, statement, condi-
tion,. . . until condition returns false and the loop is terminated using break.

while statement ⇒ for statement. Simulating the for statement

for ( init-statement condition; expression )
statement

by a while statement seems easy:

f
init-statement
while ( condition ) f
statement

expression;
g

g
Indeed, this will work, unless statement contains a continue. In the for statement,
execution would then proceed with the evaluation of expression, but in the simulating
while statement, expression is skipped, and condition comes next. This reformulation
is therefore wrong. Here is a version that works:

f
init-statement
while ( condition ) f
bool b = false;
while ( b = !b )
statement

if ( b ) break;
expression;

g
g
This looks somewhat more complicated, so let us explain what is going on.

We may suppose that the identi�er b does not appear in the given for statement
(otherwise we choose a di�erent name). Note that the whole statement forms a separate
block, as does a for statement. A potential declaration in init-statement as well as the
scope of b is thus limited to this block.

Consider an execution of the outer while statement. First, condition is evaluated,
and if it returns false the statement terminates. Otherwise, the variable b is set to true in
the inner while statement's condition, meaning that statement is executed next. (Recall
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that the assignment operator returns the new value of its left operand.) If statement does
not contain a break, the inner loop evaluates its condition for the second time. In doing
so, b is set to false, and the condition returns false. Therefore, the inner loop terminates.
Since b is now false, expression is evaluated next, followed by condition. This induces
the for statement's execution order condition, statement, expression, condition,. . . until
condition returns false and the outer loop terminates.

In the case where statement contains a break, the inner loop terminates immediately,
and b remains true. In this case, we also terminate the outer loop that represents our
original for statement.

In retrospect, we should now check that jump statements cause no harm in our
previous reformulation of the while statement in terms of the do statement. We leave
this as an exercise.

2.4.8 Choosing the “right” iteration statements

We have seen that from a functional point of view, the for statement, the while state-
ment and the do statement are equivalent. Moreover, the break and continue statements
are redundant. Still, C++ o�ers all of these statements, and this gives you the freedom
(but also the burden) of choosing the appropriate control statements for your particular
program.

Writing programs is a dynamic process. Even though the program may do what you
want at some point, the requirements change, and you will keep changing the program in
the future. Even if there is currently no need to change the functionality of the program,
you may want to replace a complicated iteration statement by an equivalent simpler
formulation. The general theme here is refactoring : the process of rewriting a program
to improve its readability or structure, while keeping its functionality unchanged.

Here is a simple guideline for writing \good" loops. Choose the loop that leads to
the most readable and concise formulation. This means

� few statements,

� few lines of code,

� simple control ow, and

� simple expressions.

Almost never there is the one and only best formulation; however, there are always
arguably bad choices which you should try to avoid. Usually, there are some tradeo�s,
like fewer lines of code versus more complicated expressions, and there is also some
amount of personal taste involved. You should experience and �nd out what suits you
best.

Let us look at some examples to show what we mean. Suppose that you want to
output the odd numbers between 0 and 100. Having just learned about the continue

statement, you may write the following loop.
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for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 == 0) continue;
std::cout << i << "\n";

}

This is perfectly correct, but the following version is preferable since it has fewer state-
ments and fewer lines of code.

for (unsigned int i = 0; i < 100; ++i)
if (i % 2 != 0) std::cout << i << "\n";

This variant still contains nested control statements; but you can get rid of the if

statement and obtain code with simpler control flow.

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

The same output can be produced with a while statement and equally simple control
ow.

int i = -1;
while ((i += 2) < 100)

std::cout << i << "\n";

But here, the condition is more complicated, since it combines assignment and compar-
ison operators. Such expressions are comparatively di�cult to understand due to the
e�ect of the assignment operation. Also, the initialization of i to −1 is counter-intuitive,
given that we deal with natural numbers.

You can solve the latter problem and at the same time get simpler expressions by writing

unsigned int i = 1;
while (i < 100) {

std::cout << i << "\n";
i += 2;

}

The price to pay is that you get less concise code; there are now �ve lines instead of the
two lines that the for statement needs. It seems that for the simple problem of writing
out odd numbers, a for statement with expression i += 2 is the loop of choice.

2.4.9 Details

Nested if-else statements. Consider the statement

if(true) if (false); else std::cout << "Where do I belong?";

It is not a priori clear what its e�ect is: if the else branch belongs to the outer if, there
will be no output (since the condition has value true), but if the else branch belongs
to the inner if, we get the output Where do I belong?
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The intuitive rule is that the else branch belongs to the if immediately preceding
it, in our case to the inner if. Therefore, the output is Where do I belong?, and we
should actually format the statement like this:

if(true)
if (false)

; // null statement

else
std::cout << "Where do I belong?";

Whenever you are unsure about rules like this, you can make the structure clear through
explicit blocks:

if(true) {
if (false) {

; // null statement

}
else {

std::cout << "Where do I belong?";
}

}

The switch statement. Besides if. . . else there exists a second selection statement in
C++: the switch statement. It is useful to select between many alternative statements,
using the following syntax.

switch ( condition )
statement

The value of condition must be convertible to an integral type. This is in contrast to the
other control statements where condition has to be convertible to bool.

statement is usually a block that contains several labels of the form

case literal:

where literal is a literal of integral type. For no two labels shall these literals have the
same value. There can also be a label default:.

The semantics of a switch statement is the following. condition is evaluated and the
result is compared to each of the literals which appear in a label in statement. If for any
of them the values agree, the execution continues at the statement immediately following
the label. If there is no agreement but a default: label, the execution continues at the
statement immediately following the default: label. Otherwise, statement is ignored
and the execution continues after the switch statement.

Note that switch only selects an entry point for the processing of statement, it does
not exit when the execution reaches another label. If one wants to separate the di�erent
alternatives, one has to use break (and this is the only legal use of break outside of
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an iteration statement). Consider for example the following piece of code, and let us
suppose that x is a variable of type int.

switch (x) {
case 0: std::cout << "0";
case 1: std::cout << "1"; break;
default: std::cout << "whatever";

}

For x==0 the output is 01; for x==1 the output is 1; otherwise we get the output whatever.
The switch statement is powerful in the sense that it allows the di�erent alternatives

to share code. However, this power also makes switch statements hard to read and error
prone. A frequent problem is that one forgets to put a break where there should be one.
Therefore, we mention switch here for completeness only. Whenever there are only a
few alternatives to be distinguished, play it safe and use if. . . else rather than switch.

The Halting Problem, Decidability, and Computability. The halting problem is one of the
fundamental problems in the theory of computation. Informally speaking, the problem
is to decide (using an algorithm) whether a given program halts (terminates) when
executed on a given input (program state). The term \program" may refer to a C++-
program, but also to a program in any other common programming language.

To attack the problem formally, the British mathematician Alan Turing (1912-1954)
de�ned in a seminal paper a \minimal" programming language; a program in this lan-
guage is known as a Turing machine.

Turing proved that the halting problem is undecidable for Turing machines, but the
same arguments can also be used to prove the same statement for C++ programs.

What does \undecidable" mean? We have seen a simple loop for which it was painfully
evident that it is an in�nite loop, haven't we? Yes, indeed one can decide the halting
problem for many concrete programs. Undecidable means that (in a particular model
of computation) there cannot be an algorithm that decides the halting problem for all
possible programs.

Despite their simplicity, Turing machines are a widely accepted model of computa-
tion; in fact, just like machine language, Turing machines can do everything that C++
programs can do, except that they usually need a huge number of very primitive opera-
tions for that.

At the same time as Turing, the American mathematician Alonzo Church (1903{
1995) developed a computational model called λ-calculus. As it turned out, his model
is equivalent to Turing machines in terms of computational power. The Church-Turing
thesis states that \every function that is naturally regarded as computable can be com-
puted by a Turing machine". As there is no rigorous de�nition of what is \naturally
regarded as computable", this statement is not a theorem but a hypothesis that cannot
be proven mathematically. As of today, the hypothesis has not been disproved. In the-
oretical computer science the term computable used without further quali�cation is a
synonym for \computable by a Turing machine" (equivalently, a C++ program).
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Point of declaration. Our approach of de�ning potential scope and scope line by line is
a simpli�cation, even if the code is suitably formatted and we only have one declaration
per line. The truth is that the point of declaration of i in

int i = 5;

is in the middle of the declaration, after the name i has appeared. The potential scope
therefore does not include the full line, but only the part starting from =. This explains
what happens in the following code fragment, but fortunately this is consistent with our
line-by-line approach. In

1 int i = 5;
2 {
3 int i = i;
4 }

the name i after the = in line 3 refers to the declaration in line 3. Consequently, i is
initialized with itself in this line, meaning that its value will be unde�ned, and not 5.

In other situations it may happen, though, that the appearance of a name in the
declaration of the same name refers to a previous declaration of this name. For now,
we can easily avoid such subtleties by the following rule: any declaration should contain
the name to be declared once only.

The Collatz problem and the ?-operator. The Collatz sequence goes back to the German
mathematician Lothar Collatz (1910{1990) who studied it in the 1930's. Several prizes
have been o�ered to anyone who proves or disproves the conjecture that the number
1 appears in the Collatz sequence of every number n � 1. The famous Hungarian
mathematician Paul Erd}os o�ered $500, which is much by his standards (he used to o�er
much lower amounts for very di�cult problems). Erd}os said that \Mathematics is not
yet ready for such problems". Indeed, the conjecture is still unsolved.

We have presented the computation of the Collatz sequence as an application of the
while statement, pointing out that the conditional change of n is too complicated to
put it into a for statement's expression. Well, that's not exactly true: the designers
of C, the precursor to C++, had a weakness for very compact code and came up with
the conditional operator that allows us to simulate if statements by expressions. The
syntax of this ternary operator (arity 3) is

condition ? expression1 : expression2

Here, condition is an expression of a type whose values can be converted to bool, and ex-
pression1 and expression2 are expressions. The semantics is as follows. First, condition
is evaluated. If it returns true, expression1 is evaluated, and its value is returned as the
value of the composite expression. Otherwise (if condition returns false), expression2 is
evaluated, and its value is returned. The token ? is a sequence point (see Section 2.2.10),
meaning that all e�ects of condition are processed before either expression1 or expres-
sion2 are evaluated.
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Using the conditional operator, the loop of Program 10 could quite compactly be
written as follows.

for ( ; n > 1; std::cout << (n % 2 == 0 ? n=n/2 : n=3*n+1) << " ");

We leave it up to you to decide whether you like this variant better.

Static variables. The discussion about storage duration above does not tell the whole
story: it is also possible to de�ne variables with local scope that have static storage
duration.

This is done by prepending the keyword static to the variable declaration. For
example, in

for (int i = 0; i < 5; ++i) {
static int k = i;
k += i;
std::cout << k << "\n";

}

the address of k remains the same during all iterations, and k is initialized to i once
only, in the �rst iteration. The above piece of code will therefore output the sequence
of values 0, 1, 3, 6, 10 (remember Gauss). Without the static keyword, the result would
simply be the sequence of even numbers 0, 2, 4, 6, 8.

Static variables have been quite useful in C, for example to count how often a speci�c
piece of code is executed; in C++, they are less important.

For variables of fundamental type the initial value may be unde�ned, as in the de�-
nition int x;. However, the value is unde�ned only if x has automatic storage duration.
In contrast, variables with static storage duration are always zero-initialized, that is,
�lled with a \zero" of the appropriate type.

Jump statements. There are two more jump statements in C++ that we haven't dis-
cussed in this section. One of them is the return statement that you already know
(Section 2.1.15): it may occur only in a function, and its execution lets the program ow
jump to the end of the corresponding function body. The other jump statement is the
goto statement, but since this one is rarely needed (and somewhat di�cult to use), we
omit it.

2.4.10 Goals

Dispositional. At this point, you should . . .

1) know the syntax and semantics of if. . . else{, for{, while{, and do statements;

2) understand the concepts block, selection, iteration, declarative region, scope, and
storage duration;
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3) understand the concept of an in�nite loop and be aware of the di�culty of detecting
such loops;

4) understand the conceptual equivalence of for{, while{, and do statements;

5) know the syntax and semantics of continue{ and break statements;

6) know at least four criteria to judge the code quality of iteration statements.

Operational. In particular, you should be able to . . .

(G1) check a given simple program (as de�ned below) for syntactical correctness and
point out possible errors;

(G2) read and understand a given simple program and explain what happens during
its execution;

(G3) �nd (potential) in�nite loops in a given simple program;

(G4) �nd the matching declaration for a given identi�er;

(G5) determine declarative region and scope of a given declaration;

(G6) reformulate a given for{, while{, or do statement equivalently using any of the
other two statements;

(G7) compare the code quality of two given iteration statements and pick the one that
is preferable (if any);

(G8) design simple programs for given tasks.

The term simple program refers to a program that consists of a main function in which
up to four (possibly nested) iteration statements appear, plus some selection statements.
Naturally, only the fundamental types and operations discussed in the preceding sections
are used.

2.4.11 Exercises

Exercise 37 Correct all syntax errors in the program below. What does the resulting
program output for the following inputs?

(a) -4 (b) 0 (c) 1 (d) 3 (G1)(G2)

1 #include <iostraem >
2 int main()
3 {
4 unsinged int x = +1;
5 { std::cin >> x; }
6 for (int y = 0u; y < x) {
7 std:cout << ++y;
8 return 0;
9 }
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Exercise 38 What is the problem with the code below? Fix it and explain what the
resulting code computes. (G2)(G3)

1 unsigned int s = 0;
2 do {
3 int i = 1;
4 if (i % 2 == 1) s *= i;
5 } while (++i < 10);

Exercise 39 For each variable declaration in the following program give its declarative
region and its scope in the form \line x{y". What is the output of the program?
(G2)(G5)

1 #include <iostream >
2 int main()
3 {
4 int s = 0;
5 {
6 int i = 0;
7 while (i < 4)
8 {
9 ++i;
10 const int f = i + 1;
11 s += f;
12 const int s = 3;
13 i += s;
14 }
15 const unsigned int t = 2;
16 std::cout << s + t << "\n";
17 }
18 const int k = 1;
19 return 0;
20 }

Exercise 40 Consider the program given below for each of the listed input numbers.
Determine the values of x, s, and i at begin of the �rst �ve iterations of the for-
loop, before the condition is evaluated. What does the program output for these
inputs? (a) -1 (b) 1 (c) 2 (d) 3 (G2)(G3)

1 #include <iostream >
2 int main()
3 {
4 int x;
5 std::cin >> x;
6 int s = 0;
7 for (int i = 0; i < x; ++i) {
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8 s += i;
9 x += s / 2;
10 }
11 std::cout << s << "\n";
12 return 0;
13 }

Exercise 41 Find at least four problems in the code given below. (G3)(G4)(G5)

1 #include <iostream >
2 int main()
3 {
4 { unsigned int x; }
5 std::cin << x;
6 unsigned int y = x;
7 for (unsigned int s = 0; y >= 0; --y)
8 s += y;
9 std::cout << "s=" << s << "\n";
10 return 0;
11 }

Exercise 42 For which input numbers is the output of the program given below well de-
�ned? List those input/output pairs and argue why your list is complete. (G3)(G4)(G5)

1 #include <iostream >
2 int main()
3 {
4 unsigned int x;
5 std::cin >> x;
6 int s = 0;
7 for (unsigned int y = 1 + x; y > 0; y -= x)
8 s += y;
9 std::cout << "s=" << s << "\n";
10 return 0;
11 }

Exercise 43 Reformulate the code below equivalently in order to improve its readabil-
ity. Describe the program's output as a function of its input n. (G2)(G6)(G7)

1 unsigned int n;
2 std::cin >> n;
3 int x = 1;
4 if (n > 0) {
5 int k = 0;
6 bool e = true;
7 do {
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8 if (++k == n) e = false;
9 x *= 2;
10 } while (e);
11 }
12 std::cout << x;

Exercise 44 Reformulate the program below equivalently in order to improve its read-
ability and e�ciency. Describe the program's output as a function of its input x.
(G2)(G6)(G7)

1 #include <iostream >
2 int main()
3 {
4 int x;
5 std::cin >> x;
6 int s = 0;
7 int i = -10;
8 do
9 for (int j = 1;;)
10 if (j++ < i) s += j - 1; else break;
11 while (++i <= x);
12 std::cout << s << "\n";
13 return 0;
14 }

Exercise 45 What is the behavior of Program 8 on Page 84 if the user inputs 0 or
1? Rewrite the program (if this is necessary at all) so that it correctly handles
all possible inputs (we adopt the convention that 0 and 1 are not prime numbers).
(G2)(G3) (G8)

Exercise 46 Write a program fak-1.cpp to compute the factorial n! of a given input
number n. (G8)

Exercise 47 Write a program dec2bin.cpp that inputs a natural number n and outputs
the binary digits of n in reverse order. For example, for n==2 the output is 01 and
for n==11 the output is 1101 (see also Exercise 50). (G8)

Exercise 48 Write a program cross_sum.cpp that inputs a natural number n and out-
puts the sum of the (decimal) digits of n. For example, for n==10 the output is 1

and for n==112 the output is 4. (G8)

Exercise 49 Write a program perfect.cpp to test whether a given natural number n

is perfect. A number n 2 N is called perfect if and only if it is equal to the sum of its
proper divisors, that is, n =

∑
k2N, s.t. k<n ∧ k|n k. For example, 28 = 1 + 2 + 4 + 7 + 14

is perfect, while 12 < 1 + 2 + 3 + 4 + 6 is not.
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Extend the program to �nd all perfect numbers between 1 and n. How many
perfect numbers exist in the range [1, 50000]? (G8)

Exercise 50 Write a program dec2bin2.cpp that inputs a natural number n and out-
puts the binary digits of n in the correct order. For example, for n==2 the output
is 10 and for n==11 the output is 1011 (see also Exercise 47). (G8)

Exercise 51 Pete and Colin play a dice game against each other. Pete has three
four-sided (pyramidal) dice, each with faces numbered 1, 2, 3, 4. Colin has two
six-sided (cubical) dice, each with faces numbered 1, 2, 3, 4, 5, 6. Peter and Colin
roll their dice and compare totals: the highest total wins. The result is a draw if
the totals are equal.

What is the probability that Pyramidal Pete beats Cubic Colin? What is the
probability that Cubic Colin beats Pyramidal Pete? And what is the probability of
a draw? As a consequence, is it a fair game, and if not, who would you rather be?

Write a program dice.cpp that outputs the aforementioned probabilities as ra-
tional numbers of the form p/q. (This is a simpli�ed version of Problem 205 from
the Project Euler, see http://projecteuler.net/.) (G8)

Exercise 52 We know from Section 1.1 that it took Frank Nelson Cole around three
years to �nd the factorization

761838257287 � 193707721

of the Mersenne number 267 − 1 by hand calculations. Write a program cole.cpp

that performs the same task (hopefully in less than three years). (G8)
Hint: You will need the type ifm::integer, see Section 2.1.16.

2.4.12 Challenges

Exercise 53 The Ulam spiral is named after the Polish mathematician Stanislaw
Ulam who discovered it accidentally in 1963 while being bored during a scienti�c
meeting.

The Ulam spiral is a method of \drawing" prime numbers. For this, one �rst
lists all natural numbers in a spiral fashion, so that the integer grid Z2 gets �lled
with the natural numbers (see Figure 7(a)). For the drawing, every grid point con-
taining a prime number is replaced with a black pixel, while the composite numbers
are replaced with white pixels (Figure 7(b)). When this is done for the �rst n num-
bers (n large), one observes a surprising phenomenon: the prime numbers tend to
accumulate along diagonals (see Figure 7(c)).

Write a program that outputs the Ulam spiral generated by the �rst n numbers,
where n is read from the input. You may restrict n such that the drawing �ts into
a window of 500� 500 pixels, say. (G8)

Hint: You may use the libwindow library to produce the drawing. The example
program in its documentation should give you an idea how this can be done.
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(a) A spiral-shape listing of the
natural numbers

(b) Replacing prime num-
bers with black and
composite numbers
with white pixels

(c) A larger spiral (around
200x 200 grid points)

Figure 6: The Ulam Spiral

Exercise 54 The n-queens problem is to place n queens on an n� n chessboard such
that no two queens threaten each other. Formally, this means that there is no
horizontal, vertical, or diagonal with more than one queen in it. Write a program
that outputs the number of di�erent solutions to the n-queens problem for a given
input n. Assuming a 32 bit system, the program should work up to n = 9 at least.
Check through a web search whether the numbers that your program computes are
correct.

Exercise 55 The largest Mersenne prime known as of September 2009 is

243,112,609 − 1,

see Section 1.1. In Exercise 19, we have asked you to �nd the number of decimal
digits that this number has. In this challenge, we originally wanted to ask you to list
all these digits, but in the interest of the TA that has to mark your solution, we de-
cided to switch to the following variant: Write a program famous_last_digits.cpp

that computes and outputs the last 10 decimal digits of the above Mersenne prime!
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2.5 Floating point numbers

Furthermore, it has revealed the ratio of the chord and arc of
ninety degrees, which is as seven to eight, and also the ratio
of the diagonal and one side of a square which is as ten to
seven, disclosing the fourth important fact, that the ratio of
the diameter and circumference is as �ve-fourths to four.

Indiana House Bill No. 246, de�ning
2
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2
π

= 7
8
,
p

2 = 10
7
, and 1

π
= 5/16 (1897)

This section discusses the oating point number types float and double

for approximating real numbers. You will learn about oating point
number systems in general, and about the IEEE standard 754 that de-
scribes two speci�c oating point number systems. We will point out
the strengths and weaknesses of oating point numbers and give you
three guidelines to avoid common pitfalls in computing with oating point
numbers.

When converting degrees Celsius into Fahrenheit with the program fahrenheit.cpp

in Section 2.2, we make mistakes. For example, 28 degrees Celsius are 82.4 degrees
Fahrenheit, but not 82 as output by fahrenheit.cpp. The reason for this mistake is
that the integer division employed in the program simply \cuts o�" the fractional part.
What we need is a type that allows us to represent and compute with fractional numbers
like 82.4.

For this, C++ provides two oating point number types float and double. Indeed,
if we simply replace the declaration int celsius in fahrenheit.cpp by float celsius,
the resulting program outputs 82.4 for an input value of 28. Floating point numbers
also solve another problem that we had with the types int and unsigned int: float

and double have a much larger value range and are therefore suitable for \serious"
computations. In fact, computations with oating point numbers are very fast on modern
platforms, due to specialized processors.

Fixed versus floating point. If you think about how to represent decimal numbers like 82.4

using a �xed number of decimal digits (10 digits, say), a natural solution is this: you
partition the 10 available digits into 7 digits before the decimal point, say, and 3 digits
after the decimal point. Then you can represent all decimal numbers of the form

6∑
i=−3

βi10i,

with βi 2 {0, . . . , 9} for all i. This is called a �xed point representation.
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There are, however, two obvious disadvantages of a �xed point representation. On
the one hand, the value range is very limited. We have already seen in Section 2.2.5 that
the largest int value is so small that it hardly allows any interesting computations (as
an example, try out Program 1 on some larger input). A �xed point representation is
even worse in this respect, since it reserves some of our precious digits for the fractional
part after the decimal point, even if these digits are not|or not fully|needed (as in
82.4).

The second disadvantage is closely related: even though the two numbers 82.4 and
0.0824 have the same number of signi�cant digits (namely 3), the latter number is not
representable with only 3 digits after the decimal point. Here, we are wasting the 7 digits
before the decimal point, but we are lacking digits after the decimal point.

A oating point representation resolves both issues by representing a number simply
as its sequence of decimal digits (an integer called the signi�cand), plus the information
\where the decimal point is". Technically, one possibility to realize this is to store an
exponent such that the represented number is of the form

signi�cand � 10exponent .

For example,

82.4 = 824 � 10−1,

0.0824 = 824 � 10−4.

2.5.1 The types float and double

The types float and double are fundamental types provided by C++, and they store
numbers in oating point representation.

While the fundamental types int and unsigned int are meant to approximate the
\mathematical types" Z and N, respectively, the goal of both float and double is
to approximate the set R of real numbers. Since there are much more real numbers
than integers, this goal seems even more ambitious (and less realistic) than trying to
approximate Z, say, with a �nite value range. Nevertheless, the two types float and
double are very useful in practical applications. The oating point representation allows
values that are much larger than any value of type int and unsigned int. In fact, the
value ranges of the oating point number types float and double are su�cient in most
applications.

Values of these two types are referred to as oating point numbers, where double

usually allows higher (namely, double) precision in approximating real numbers.
On the types float and double we have the same arithmetic, relational, and assign-

ment operators as on integral types, with the same associativities and precedences. The
only exception is that the modulus operators % and %= are available for integral types
only. This makes sense, since division over float and double is meant to model the true
division over R which has no remainder.



110 CHAPTER 2. FOUNDATIONS

Like integral types, the oating point number types are arithmetic types, and this
completes the list of fundamental arithmetic types in C++.

Literals of type float and double. Literals of types float and double are more complicated
than literals of type int or unsigned int. For example, 1.23e-7 is a valid double literal,
representing the value 1.23 �10−7. Literals of type float look the same as literals of type
double, followed by the letter f or F.

In its most general form, a double literal consists of an integer part, followed by a
fractional part (starting with the decimal point .), and an exponential part (starting
with the letter e or E). The literal 1.23e-7 has all of these parts.

Both the integer part as well as the fractional part (after the decimal point) are
sequences of digits from 0 to 9, where one of them may be empty, like in .1 (meaning
0.1) and in 1. (meaning 1.0). The exponential part (after the letter e or E) is also a
sequence of digits, preceded by an optional + or -. Either the fractional part or the
exponential part may be omitted. Thus, 123e-9 and 1.23 are valid double literals, but
123 is not, in order to avoid confusion with int literals.

The value of the literal is obtained by scaling the fractional decimal value de�ned by
the integer part and the fractional part by 10e, where e is the (signed) decimal integer
in the exponential part (de�ned as 0, if the exponential part is missing).

To show oating point numbers in action, let us write a program that \computes" a
fully-edged real number, namely the Euler constant

∞∑
i=0

1

i!
= 2.71828 . . .

You may recall that this sum converges quickly, so we should already get a good approx-
imation for the Euler constant when we sum up the �rst 10 terms, say. Program 11 does
exactly this.

1 // Program: euler.cpp

2 // Approximate Euler’s constant e.

3

4 #include <iostream >
5

6 int main ()
7 {
8 // values for term i, initialized for i = 0

9 float t = 1.0f; // 1/i!

10 float e = 1.0f; // i-th approximation of e

11

12 std::cout << "Approximating the Euler constant ...\n";
13 // steps 1,...,n

14 for (unsigned int i = 1; i < 10; ++i) {



2.5. FLOATING POINT NUMBERS 111

15 e += t /= i; // compact form of t = t / i; e = e + t

16 std::cout << "Value after term " << i << ": " << e << "\n";
17 }
18

19 return 0;
20 }

Program 11: progs/lecture/euler.cpp

When you run the program, its output may look like this.

Approximating the Euler constant ...
Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

It seems that we do get a good approximation of the Euler constant in this way.
What remains to be explained is how the mixed expression e += t /= i in line 15 is
dealt with that contains operands of types unsigned int and float. Note that since
the arithmetic assignment operators are right-associative (Table 1 on Page 51), this
expression is implicitly parenthesized as e += (t /= i). When evaluated in iteration i,
it therefore �rst divides t by i (corresponding to the step from 1/(i − 1)! to 1/i!), and
then it adds the resulting value 1/i! to the approximation e.

2.5.2 Mixed expressions, conversions, and promotions

The oating point number types are de�ned to be more general than any integral type.
Thus, in mixed composite expressions, integral operands get converted to the respec-
tive oating point number type (see also Section 2.2.7 where we �rst saw this mecha-
nism for mixed expressions over the types int and unsigned int). The resulting value
is the representable value nearest to the original value, where ties are broken in an
implementation-de�ned fashion. In particular, if the original integer value is in the value
range of the relevant oating point number type, the value remains unchanged.

This in particular explains why the change of int celsius to float celsius in the
program fahrenheit.cpp leads to the behavior we want: during evaluation of the ex-
pression 9 * celsius / 5 + 32, all integral operands are eventually converted to float,
so that the computation takes place exclusively over the type float.

In the program euler.cpp, we have the same kind of conversion: in the mixed ex-
pression t /= i, the unsigned int operand i gets converted to the type float of the
other operand t.
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The type double is de�ned to be more general than the type float. Thus, a composite
expression involving operands of types float and double is of type double. When such
an expression gets evaluated, every operand of type float is promoted to double. Recall
from Section 2.3.2 that promotion is a term used to denote certain privileged conversions
in which no information gets lost. In particular, the value range of double must contain
the value range of float.

In summary, the hierarchy of arithmetic types from the least general to the most
general type is

bool � int � unsigned int � float � double.

We already know that a conversion may also go from the more general to the less
general type, see Section 2.2.7. This happens for example in the declaration statement

int i = -1.6f;

When a oating point number is converted to an integer, the fractional part is discarded.
If the resulting value is in the value range of the target type, we get this value, otherwise
the result of the conversion is unde�ned. In the previous example, this rule initializes i
with −1 (and not with the nearest representable value −2).

When double values are converted to float, we again get the nearest representable
value (with ties broken in an implementation-dependent way), unless the original value
is larger or smaller than any float value. In this latter case, the conversion is unde�ned.

2.5.3 Explicit conversions

Conversions between integral and oating point number types are common in practice.
For example, the conversion of a nonnegative float value x to the type unsigned int

corresponds to the well-known oor function bxc that rounds down to the next integer.
Conversely, it can make sense to perform an integral computation over a oating point
number type, if this latter type has a larger value range.

Explicit conversion allows to convert a value of any arithmetic type directly into
any other arithmetic type, without the detour of de�ning an extra variable like in
int i = -1.6f; To obtain the int value resulting from the float value −1.6, we can
simply write the expression int(-1.6f).

The general syntax of an explicit conversion, also called a cast expression, is

T ( expr )

where T is a type, and expr is an expression. The cast expression is valid if and only if
the corresponding conversion of expr to the type T (as in T x = expr) is de�ned.

For certain \complicated" type names T, it is necessary to parenthesize T, like in the
cast expression (unsigned int)(1.6f).
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2.5.4 Value range

For integral types, the arithmetic operations may fail to compute correct results only
due to over- or underow. This is because the value range of each integral type is a
contiguous subset of Z, with no \holes" in between.

For oating point number types, this is not true: with �nite (and even with countable)
value range, it is impossible to represent a subset of R with more than one element but
no holes. In contrast, over- or underows are less of an issue: the representable values
usually span a huge interval, much larger than for integral types. If you print the largest
double value on your platform via the expression

std:: numeric_limits <double >::max()

you might for example get the output 1.79769e+308. Recall that this means 1.79769 �
10308, a pretty large number.

Let us approach the issue of holes with a very simple program that asks the user to
input two oating point numbers and their di�erence. The program then checks whether
this is indeed the correct di�erence. Program 12 performs this task.

1 // Program: diff.cpp

2 // Check subtraction of two floating point numbers

3

4 #include <iostream >
5

6 int main()
7 {
8 // Input

9 float n1;
10 std::cout << "First number =? ";
11 std::cin >> n1;
12

13 float n2;
14 std::cout << "Second number =? ";
15 std::cin >> n2;
16

17 float d;
18 std::cout << "Their difference =? ";
19 std::cin >> d;
20

21 // Computation and output

22 std::cout << "Computed difference - input difference = "
23 << n1 - n2 - d << ".\n";
24 return 0;
25 }

Program 12: progs/lecture/di�.cpp
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Here is an example run showing that the authors are able to correctly subtract 1

from 1.5.

First number =? 1.5
Second number =? 1.0
Their difference =? 0.5
Computed difference - input difference = 0.

But the authors can apparently not correctly subtract 1 from 1.1:

First number =? 1.1
Second number =? 1.0
Their difference =? 0.1
Computed difference - input difference = 2.23517e-08.

What is going on here? After double checking our mental arithmetic, we must conclude
that it's the computer and not us who cannot correctly subtract. To understand why,
we have to take a somewhat closer look at oating point numbers in general.

2.5.5 Floating point number systems

A �nite oating point number system is a �nite subset of R, de�ned by four numbers
2 � β 2 N (the base), 1 � p 2 N (the precision), emin 2 Z (the smallest exponent)
and emax 2 Z (the largest exponent).

The set F(β, p, emin, emax) of real numbers represented by this system consists of all
oating point numbers of the form

s �
p−1∑
i=0

diβ
−i � βe,

where s 2 {−1, 1}, di 2 {0, . . . , β − 1} for all i, and e 2 {emin, . . . , emax}.
The number s is the sign, the sequence d0d1 . . . dp−1 is called the signi�cand (an

older equivalent term is mantissa), and the number e is the exponent.
We sometimes write a oating point number in the form

�d0.d1 . . . dp−1 � βe.

For example, using base β = 10, the number 0.1 can be written as 1.0 � 10−1, and as
0.1 � 100, 0.01 � 101 and in many other ways.

The representation of a number becomes unique when we restrict ourselves to the
set F�(β, p, emin, emax) of normalized numbers, i.e. the ones with d0 6= 0. The downside
of this is that we lose some numbers (in particular the number 0, but let's not worry
about this now). More precisely, normalization loses exactly the numbers of absolute
value smaller than βemin (see also Exercise 62).

For a �xed exponent e, the smallest positive normalized number is

1.0 . . . 0 � βe = βe,
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while the largest one is (by the formula
∑n

i=0 xi = (xn+1 − 1)/(x − 1) for x 6= 1)

(β − 1).(β − 1) . . . (β − 1) � βe =

p−1∑
i=0

(β − 1)β−i � βe =

 
1 −

 
1

β

!p!
βe+1 < βe+1.

This means that the normalized numbers are \sorted by exponent".
Most oating point number systems used in practice are binary, meaning that they

have base β = 2. In a binary system, the decimal numbers 1.1 and 0.1 are not repre-
sentable, as we will see next; consequently, errors are made in converting them to oating
point numbers, and this explains the strange behavior of Program 12.

Computing the floating point representation. In order to convert a given positive decimal
number x into a normalized binary oating point number system F�(2, p, emin, emax), we
�rst compute its binary expansion

x =

∞∑
i=−∞ bi2

i, bi 2 {0, 1} for all i.

This is similar to the binary expansion of a natural number as discussed in Section 2.2.8.
The only di�erence is that we have to allow all negative powers of 2, since x can be
arbitrarily close to 0. The binary expansion of 1.25 for example is

1.25 = 1 � 2−2 + 1 � 20.

We then determine the smallest and largest values of i, i and i, for which bi is nonzero
(note that i may be −∞, but i is �nite since x is �nite). The number i− i+ 1 2 N[ {∞}

is the number of signi�cant digits of x.
With di := bi−i, we get d0 6= 0 and

x =

i∑
i=i

bi2
i =

i−i∑
i=0

bi−i2
i−i =

i−i∑
i=0

di2
−i � 2i.

This implies that x 2 F�(2, p, emin, emax) if and only if i − i < p and emin � i � emax.
Equivalently, if the binary expansion of x has at most p signi�cant digits, and the
exponent of the normalized representation is within the allowable range.

In computing the binary expansion of x > 0, let us assume for simplicity that x < 2.
This is su�cient to explain the issue with the decimal numbers 1.1 and 0.1, and all other
cases can be reduced to this case by separately dealing with the largest even integer
smaller or equal to x: writing x = y + 2k with k 2 N and y < 2, we get the binary
expansion of x by combining the expansions of y and 2k.

For x < 2, we have

x =

0∑
i=−∞ bi2

i = b0 +

−1∑
i=−∞ bi2

i = b0 +

0∑
i=−∞ bi−12

i−1 = b0 +
1

2

0∑
i=−∞ bi−12

i

︸ ︷︷ ︸
=:x 0

.
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This identity provides a simple algorithm to compute the binary expansion of x. If
x � 1, the most signi�cant digit b0 is 1, otherwise it is 0. The other digits bi, i � −1,
can subsequently be extracted by applying the same technique to x 0 = 2(x − b0).

Doing this for x = 1.1 yields the following sequence of digits.

1.1 → b0 = 1

2(1.1 − 1) = 2 � 0.1 = 0.2 → b−1 = 0

2(0.2 − 0) = 2 � 0.2 = 0.4 → b−2 = 0

2(0.4 − 0) = 2 � 0.4 = 0.8 → b−3 = 0

2(0.8 − 0) = 2 � 0.8 = 1.6 → b−4 = 1

2(1.6 − 1) = 2 � 0.6 = 1.2 → b−5 = 1

2(1.2 − 1) = 2 � 0.2 = 0.4 → b−6 = 0
...

We now see that the binary expansion of the decimal number 1.1 is periodic: the corre-
sponding binary number is 1.00011, and it has in�nitely many signi�cant digits. Since all
numbers in the oating point number systems F(2, p, emin, emax) and F�(2, p, emin, emax)

have at most p signi�cant digits, it follows that x = 1.1 is not representable in a binary
oating point number system, regardless of p, emin and emax. The same is true for x = 0.1.

The Excel 2007 bug. We have shown in the previous paragraph that it is impossible
to convert some common decimal numbers (like 1.1 or 0.1) into binary oating-point
numbers, without making small errors. This has the embarrassing consequence that the
types float and double are unable to represent the values of some of their own literals.

Despite this problem, a huge number of decimal-to-binary conversions take place on
computers worldwide, the minute you read this. For example, whenever you enter a
number into a spreadsheet, you do it in decimal format. But chances are high that
internally, the number is converted to and represented in binary oating-point format.
The small errors themselves are usually not the problem; but the resulting \weird"
oating-point numbers extremely close to some \nice" decimal value may expose other
problems in the program.

A recent such issue that has received a lot of attention is known as the the Excel
2007 bug. Users have reported that the multiplication of 77.1 with 850 in Microsoft
Excel does not yield 65, 535 (the mathematically correct result) but 100, 000.

Microsoft reacted to this by admitting the bug, but at the same time pointing out
that the computed value is correct, and that the error only happens when this value
is displayed in the sheet. But how can it happen that the nice integer value 65, 535 is
incorrectly displayed? Well, it doesn't happen: when you multiply 65, 535 with 1, for
example, the result is correctly displayed as 65, 535.

The point is that the computed value is not 65, 535, but some other number extremely
close to it. The reason is that a small but unavoidable error is made in converting the
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decimal value 77.1 into the oating-point number system internally used by Excel: like
1.1 and 0.1, the number 77.1 has no �nite binary representation.

This error can of course not be \repaired" by the multiplication with 850, so Excel gets
a value only very close to 65, 535. This would be acceptable, but exactly for this value
(and 11 others, according to Microsoft), the display functionality has a bug. Naturally,
if only 12 \weird" numbers out of all oating-point numbers are a�ected by this bug, it
is easy not to detect the bug during regular tests.

While Microsoft earned quite some ridicule for the Excel 2007 bug (for which it
quickly o�ered a �x), it should in all fairness be admitted that such bugs could still be
hidden in software of other vendors as well.

Relative error. If we are not able to represent a real number x exactly as a binary oating
point number in the system F�(2, p, emin, emax), it is natural to approximate it by the
oating point number nearest to x. What is the error we make in this approximation?

Suppose that x is positive and has binary expansion

x =

i∑
i=−∞ bi2

i = bi.bi−1 . . . � 2i, where bi = 1.

There are two natural ways of approximating x with p or less signi�cant digits. One
way is to round down, resulting in the number

x = bi.bi−1 . . . bi−p+1 � 2i =

i∑
i=i−p+1

bi2
i.

This truncates all the digits bi, i � i − p, and the error we make is

x − x =

i−p∑
i=−∞ bi2

i �
i−p∑

i=−∞ 2i = 2i−p+1.

Alternatively, we could round up to the number

x = x + 2i−p+1

where our previous error estimate shows that indeed, x � x holds. For this, we have to
check that x has at most p signi�cant digits. This is true if bi−p+1 = 0, since then the

addition of 2i−p+1 adds exactly one digit to the at most p− 1 signi�cant digits of x. And
if bi−p+1 = 1, the addition of 2i−p+1 removes the least signi�cant coe�cient of 2i−p+1 and
may create one extra carry digit at the other end.

This means that x is between two numbers that are 2i−p+1 apart, so the nearer of the
two numbers is at most 2i−p away from x. On the other hand, x has size at least 2i,
meaning that

|x − x̂|/x � 2−p,
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where x̂ is the oating point number nearest to x. The number 2−p, referred to as the
machine epsilon, is the relative error made in approximating x with its nearest oating
point number x̂.

The previous inequality also holds for negative x and their corresponding best ap-
proximation x̂, so that we get the general relative error formula

|x − x̂|

|x|
� 2−p, x 6= 0.

This means that the distance of x to its nearest oating point number is in the
worst case proportional to the size of x. This is because the oating point numbers
are not equally spaced along the real line. Close to 0, their density is high, but the
more we go away from 0, the sparser they become. As a simple example, consider the
normalized oating point number system F�(2, 3,−2, 2). The smallest positive number is
1.00 �2−2 = 1/4, and the largest one is 1.11 �22 = 7 (recall that the digits are binary). The
distribution of all positive numbers over the interval [1/4, 7] is shown in the following
picture.

0 1 2 3 4 5 6 7 8

From this picture, it is clear that the relative error formula cannot hold for very large
x. But also if x is very close to zero, the relative error formula may fail. In fact, there is
a substantial gap between 0 and the smallest positive normalized number. Numbers x

in that gap are not necessarily approximable by normalized oating point numbers with
relative error at most 2−p.

Where is the mistake in our calculations, then? There is no mistake, but the calcula-
tions are only applicable if the oating point number x̂ nearest to x is in fact a oating
point number in the system we consider, i.e. if it has its exponent in the allowed range
{emin, . . . , emax}. This fails if x̂ is too large or too small.

Arithmetic operations. Performing addition, subtraction, multiplication, and division with
oating point numbers is easy in theory: as these are real numbers, we simply perform
the arithmetic operations over the set R of real numbers; if the result is not representable
in our oating point number system, we apply some rounding rule (such as choosing the
nearest representable oating point number).

In practice, oating point number arithmetic is not more di�cult than integer arith-
metic. Let us illustrate this with an example. Suppose that p = 4, and that we have a
binary system; we want to perform the addition

1.111 � 2−2

+ 1.011 � 2−1 .
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The �rst step is to align the two numbers such that they have the same exponent. This
means to \denormalize" one of the two numbers, e.g. the second one:

1.111 � 2−2

+ 10.110 � 2−2 .

Now we can simply add up the two signi�cands, just like we add integers in binary
representation. The result is

100.101 � 2−2.

Finally, we renormalize and obtain

1.00101 � 20.

We now realize that this exact result is not representable with p = 4 signi�cant digits, so
we have to round. In this case, the nearest representable number is obtained by simply
dropping the last two digits:

1.001 � 20.

2.5.6 The IEEE standard 754

Value range. The C++ standard does not prescribe the value range of the types float
and double. It only stipulates that the value range of float is contained in the value
range of double such that a float value can be promoted to a double value.

In practice, most platforms support (variants of) the IEEE standard 754 for rep-
resenting and computing with oating point numbers. Under this standard, the value
range of the type float is the set

F�(2, 24, −126, 127)

of single precision normalized oating point numbers, plus some special numbers (con-
veniently, 0 is one of these special numbers). The value range of double is the set

F�(2, 53, −1022, 1023)

of double precision normalized oating point numbers, again with some special numbers
added, including 0.

These parameters may seem somewhat arbitrary at �rst, but they are motivated by
a common memory layout in which 32 bits can be manipulated at once. Indeed, 32 bits
of memory are used to represent a single precision number. The signi�cand requires 23
bits; recall that in a normalized binary oating point number system, the �rst digit of
the signi�cand is always 1, hence it need not explicitly be stored. The exponent requires
another 8 bits for representing its 254 = 28 −2 possible values, and another bit is needed
for the sign.
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For double precision numbers, the signi�cand requires 52 bits, the exponent has 11
bits for its 2046 = 211 − 2 possible values, and one bit is needed for the sign. In total,
this gives 64 bits.

Note that in both cases, two more exponent values could be accommodated without
increasing the total number of bits. These extra values are in fact used for representing
the special numbers mentioned above, including 0.

Requirements for the arithmetic operations. The C++ standard does not prescribe the ac-
curacy of arithmetic operations over the types float and double, but the IEEE standard
754 does. The requirements are as strict as possible: the result of any addition, subtrac-
tion, multiplication, or division is the representable value nearest to the true value. If
there are two nearest values (meaning that the true value is halfway in between them),
the one that has least signi�cant digit dp−1 = 0 is chosen. This is called round-to-
even ; other rounding modes can be enabled if necessary. The same rule applies to the
conversion of decimal values like 1.1 to their binary oating point representation.

Moreover, comparisons of values have to be exact under all relational operators (Sec-
tion 2.3.2).

2.5.7 Computing with floating point numbers

We have seen that for every oating point number system, there are numbers that it
cannot represent, and these are not necessarily very exotic, as our example with the
decimal number 1.1 shows. On the other hand, the IEEE standard 754 guarantees
that we will get the nearest representable number, and the same holds for the result of
every arithmetic operation, up to (rare) over- and underows. Given this, one might
be tempted to believe that the results of most computations involving oating point
numbers are close to the mathematically correct results, with respect to relative error.

Indeed, this is true in many cases. For example, our initial program euler.cpp

computes a pretty good approximation of the Euler constant. Nevertheless, some care
has to be taken in general. The goal of this section is to point out common pitfalls, and
to provide resulting guidelines for \safe" computations with oating point numbers.

We start with the �rst and most important guideline that may already be obvious to
you at this point.

Floating Point Arithmetic Guideline 1: Never compare two oating point numbers for
equality, if at least one of them results from inexact oating point computations.

Even very simple expressions involving oating point numbers may be mathematically
equivalent, but still return di�erent values, since intermediate results are rounded. Two
such expressions are x * x - y * y and (x + y) * (x - y). Therefore, testing the
results of two oating point computations for equality using the relational operators ==
or != makes little sense. Since equality is sensitive to the tiniest errors, we won't get
equality in most cases, even if mathematically, we would.
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Given the formulation of the above guideline, you may wonder how to tell whether
a particular oating point computation is exact or not. Exactness usually depends
on the representation and is, therefore, hard to claim in general. However, there are
certain operations which are easily seen to be exact. For instance, multiplication and
division by a power of the base (usually, 2) do not change the signi�cand, but only the
exponent. Thus, these operations are exact, unless they lead to an over- or underow in
the exponent.

Moreover, it is safe to assume that the largest exponent is (much) higher than the
precision p, and in this case we can also exactly represent all integers of absolute value
smaller than βp. Consequently, integer additions, subtractions, and multiplications
within this range are exact.

The next two guidelines are somewhat less obvious, and we motivate them by �rst
showing the underlying problem. Throughout, we assume a binary oating point number
system of precision p.

Adding numbers of different sizes. Suppose we want to add the two oating point numbers
2p and 1. What will be the result? Mathematically, it is

2p + 1 =

p∑
i=0

bi2
i,

with (bp, bp−1, . . . , b0) = (1, 0, . . . , 0, 1). Since this binary expansion has p+1 signi�cant
digits, 2p + 1 is not representable with precision p. Under the IEEE standard 754, the
result of the addition is 2p (chosen from the two nearest candidates 2p and 2p + 2), so
this addition has no e�ect.

The general phenomenon here is that adding oating point numbers of di�erent sizes
\kills" the less signi�cant digits of the smaller number (in our example, all its digits).
The larger the size di�erence, the more drastic is the e�ect.

To convince you that this is not an arti�cial phenomenon, let us consider the problem
of computing Harmonic numbers (search the web for the coupon collector's problem to
�nd an interesting occurrence of Harmonic numbers). For n 2 N, the n-th Harmonic
number Hn is de�ned as the sum of the reciprocals of the �rst n natural numbers, that
is,

Hn =

n∑
i=1

1

i
.

It should now be an easy exercise for you to write a program that computes Hn for
a given n 2 N. You only need a single loop running through the numbers 1 up to n,
adding their reciprocals. Just as well you can make your loop run from n down to 1 and
sum up the reciprocals. Why not, that should not make any di�erence, right? Let us try
both variants and see what we get. The program harmonic.cpp shown below computes
the two sums and outputs them.
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1 // Program: harmonic.cpp

2 // Compute the n-th harmonic number in two ways.

3

4 #include <iostream >
5

6 int main()
7 {
8 // Input

9 std::cout << "Compute H_n for n =? ";
10 unsigned int n;
11 std::cin >> n;
12

13 // Forward sum

14 float fs = 0;
15 for (unsigned int i = 1; i <= n; ++i)
16 fs += 1.0f / i;
17

18 // Backward sum

19 float bs = 0;
20 for (unsigned int i = n; i >= 1; --i)
21 bs += 1.0f / i;
22

23 // Output

24 std::cout << "Forward sum = " << fs << "\n"
25 << "Backward sum = " << bs << "\n";
26 return 0;
27 }

Program 13: progs/lecture/harmonic.cpp

Think for a second and recall why it is important to not write 1 / i in line 16 and
line 21. Now let us have a look at an execution of the program. On the platform of the
authors, the following happens.

Compute H_n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686

The results di�er signi�cantly. The di�erence becomes even more apparent when we try
larger inputs.

Compute H_n for n =? 100000000
Forward sum = 15.4037
Backward sum = 18.8079

Notice that the forward sum did not change, which cannot be correct. Using the
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approximation

1

2(n + 1)
< Hn − lnn − γ <

1

2n
,

where γ = 0.57721666 . . . is the Euler-Mascheroni constant, we get Hn � 18.998 for
n = 108. That is, the backward sum provides a much better approximation of Hn.

Why does the forward sum behave so badly? The reason is simple: As the larger
summands are added up �rst, the intermediate value of the sum to be computed grows
(comparatively) fast. At some point, the size di�erence between the partial sum and the
summand 1

i
to be added is so large that the addition does not change the partial sum

anymore, just like in 2p + 1 00 = 00 2p. Thus, regardless of how many more summands are
added to it, the sum stays the same.

In contrast, the backward sum starts to add up the small summands �rst. Therefore,
the value of the partial sum grows (comparatively) slowly, allowing the small summands
to contribute. The summands treated in the end of the summation have still a good
chance to inuence the signi�cand of the partial sum, since they are (comparatively)
large.

The phenomenon just observed leads us to our second guideline.

Floating Point Arithmetic Guideline 2: Avoid adding two numbers that considerably
di�er in size.

Cancellation. Consider the quadratic equation

ax2 + bx + c = 0, a 6= 0.

It is well known that its two roots are given by

r1,2 =
−b�p

b2 − 4ac

2a
.

In a program that computes these roots, we might therefore want to compute the value
d = b2 − 4ac of the discriminant. If b2 and 4ac are representable as oating point
numbers with precision p, our previous error estimates guarantee that the result d̂ of
the �nal subtraction has small relative error: |d − d̂| � 2−p|d|. This means, even if d is
close to zero, d̂ will be away from d by much less than the distance of d to zero.

The problem arises if the numbers b2 and/or 4ac are not representable as oating
point numbers, in which case errors are made in computing them. Assume b = 2p, a =

2p−1 −1, c = 2p−1 +1 (all these numbers are exactly representable). Then the exact value
of d is 4. The value b2 = 22p is a representable oating point number, but 4ac = 22p − 4

is not, since this number has 2p−2 signi�cant digits (all of them equal to 1) in its binary
expansion. The nearest oating point number is obtained by rounding up (adding 4), and
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after the (error-free) subtraction, we get d̂ = 0. The relative error of this computation
is therefore 1 instead of 2−p.

The reason is that in subtracting two numbers that are almost equal, the more signif-
icant digits cancel each other. If, on the other hand, the remaining less signi�cant digits
already carry some errors from previous computations, the subtraction hugely ampli�es
these errors: the cancellation promotes the previously less signi�cant digits to much
more signi�cant digits of the result.

Again, the example we gave here is arti�cial, but be assured that cancellation happens
in practice. Even in the quadratic equation example, it might be that the equations that
come up in an application have the property that their discriminant b2 − 4ac is much
smaller than a, b and c themselves. In this case, cancellation will happen.

The discussion can be summarized in form of a third guideline.

Floating Point Arithmetic Guideline 3: Avoid subtracting two numbers of almost equal
size, if these numbers are results of other oating point computations.

2.5.8 Details

Other floating point number systems. The IEEE standard 754 de�nes two more oating
point number systems, single-extended precision (p = 32), and double-extended pre-
cision (p = 64), and some platforms o�er implementations of these types. There is
also the IEEE standard 854 that allows base β = 10, for obvious reasons: the decimal
format is the one in which we think about numbers, and in which we usually represent
numbers. In particular, a base-10 system has no holes in the value range at decimal
fractional numbers like 1.1 and 0.1.

IEEE compliance. While on most platforms, the types float and double correspond to
the single and double precision oating point numbers of the IEEE standard 754, this
correspondence is usually not one-to-one. For example, if you are trying to reproduce
the cancellation example we gave, you might write

const float b = 16777216.0f; // 2^24

const float a = 8388607.0f; // 2^23 - 1

const float c = 8388609.0f; // 2^23 + 1

std::cout << b * b - 4.0f * a * c << "\n";

and expect to get the predicted wrong result 0. But it may easily happen that you get
the correct result 4, even though your platform claims to follow the IEEE standard 754.
The most likely reason is that the platform internally uses a register with more bits to
perform the computation. While this seems like a good idea in general, it can be fatal
for a program whose functionality critically relies on the IEEE standard 754.

You will most likely see the cancellation e�ect in the following seemingly equivalent
variant of the above code.
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float b = 16777216.0f; // 2^24

float a = 8388607.0f; // 2^23 - 1

float c = 8388609.0f; // 2^23 + 1

float bb = b * b;
float ac4 = 4.0f * a * c;

std::cout << bb - ac4 << "\n";

Here, the results of the intermediate computations are written back to float variables,
probably resulting in the expected rounding of 4ac. Then the �nal subtraction reveals
the cancellation e�ect. Unless, of course, the compiler decides to keep the variable ac4

in a register with more precision. For this reason, you can typically provide a compiler
option to make sure that oating point numbers are not kept in registers.

What is the morale of this? You usually cannot fully trust the IEEE compliance
of a platform, and it is neither easy nor worthwhile to predict how oating point num-
bers exactly behave on a speci�c platform. It is more important for you to know and
understand oating point number systems in general, along with their limitations. This
knowledge will allow you to identify and work around problems that might come up on
speci�c platforms.

The type long double. The C++ standard prescribes another fundamental oating point
number type called long double. Its literals end with the letter l or L, and it is guar-
anteed that the value range of double is contained in the value range of long double.
Despite this, the conversion from double to long double is not de�ned to be a promotion
by the C++ standard.

While float and double usually correspond to single and double precision of the
IEEE standard 754, there is no such default choice for long double. In practice,
long double might simply be a synonym for double, but it might also be something
else. On the platform used by the authors, for example, long double corresponds to the
normalized oating point number system F�(2, 64, −16382, 16384)| this is exactly the
double-extended precision of the IEEE standard 754.

Numeric limits. If you want to know the parameters of the oating point number sys-
tems behind float, double and long double on your platform, you can employ the
numeric_limits we have used before in the program limits.cpp in Section 2.2.5. Here
are the relevant expressions together with their meanings, shown for the type float.

expression (of type int) meaning
std::numeric_limits<float>::radix β

std::numeric_limits<float>::digits p

std::numeric_limits<float>::min_exponent emin + 1

std::numeric_limits<float>::max_exponent emax + 1
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We remark that std::numeric_limits<float>::min() does not give the smallest
float value (because of the sign bit, this smallest value is simply the negative of the
largest value), but the smallest normalized positive value.

Special numbers. We have mentioned that the oating point systems prescribed by the
IEEE standard 754 contain some special numbers; their encoding uses exponent values
that do not occur in normalized numbers.

On the one hand, there are the denormalized numbers of the form

�d0.d1 . . . dp−1 � βemin,

with d0 = 0. A denormalized number has smaller absolute value than any normalized
number. In particular, 0 is a denormalized number.

The other special numbers cannot really be called numbers. There are values rep-
resenting +∞ and −∞, and they are returned by overowing operations. Then there
are several values called NaNs (for \not a number") that are returned by operations with
unde�ned result, like taking the square root of a negative number. The idea behind
these values is to provide more exibility in dealing with exceptional situations. Instead
of simply aborting the program when some operation fails, it makes sense to return an
exceptional value. The caller of the operation can then decide how to deal with the
situation.

2.5.9 Goals

Dispositional. At this point, you should . . .

1) know the oating point number types float and double, and that they are more
general than the integral types;

2) understand the concept of a oating point number system, and in particular its
advantages over a �xed point number system;

3) know that the IEEE standard 754 describes speci�c oating point number systems
used as models for float and double on many platforms;

4) know the three Floating Point Arithmetic Guidelines;

5) be aware that computations involving the types float and double may deliver in-
exact results, mostly due to holes in the value range.

Operational. In particular, you should be able to . . .

(G1) evaluate expressions involving the arithmetic types int, unsigned int, float
and double;

(G2) compute the binary representation of a given real number;
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(G3) compute the oating point number nearest to a given real number, with respect
to a �nite oating point number system;

(G4) work with a given oating point number system;

(G5) recognize usage of oating point numbers that violates any of the three Floating
Point Arithmetic Guidelines;

(G6) write programs that perform computations with oating point numbers.

2.5.10 Exercises

Exercise 56 For every expression in the following list, determine its type, its value,
and whether it is an rvalue or an lvalue. In each of the expressions, the variable x

is of type int and has value 1. (G1)

a) 1 + true == 2

b) 3 % 2 + 1 * 4

c) x = 10 / 2 / 5 / 2

d) x / 2.0

e) 1 + x++

f) ++x

Exercise 57 For every expression in the following list, determine its type and its
value. We assume a oating point representation according to IEEE 754, that is,
float corresponds to F�(2, 24, −126, 127) and double to F�(2, 53, −1022, 1023). We
also assume that 32 bits are used to represent int values. (G1)

a) 2e2-3e3f>-23.0

b) -7+7.5

c) 1.0f/2+1/3+1/4

d) true||false&&false

e) 1u-2u<0

f) 1+2*3+4

g) int(8.5)-int(7.6)

h) 100*1.1==110

i) 10*11.0==110
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j) 4+12/4.0/2

Exercise 58 Evaluate the following expressions step-by-step, according to the con-
version rules of mixed expressions. We assume a oating point representation
according to IEEE 754, that is, float corresponds to F�(2, 24, −126, 127) and double

corresponds to F�(2, 53, −1022, 1023). We also assume that 32 bits are used to rep-
resent int values. (G1)

a) 6 / 4 * 2.0f - 3

b) 2 + 15.0e7f - 3 / 2.0 * 1.0e8

c) 392593 * 2735.0f - 8192 * 131072 + 1.0

d) 16 * (0.2f + 262144 - 262144.0)

Exercise 59 Compute the binary expansions of the following decimal numbers.

a) 0.25 b) 1.52 c) 1.3 d) 11.1 (G2)

Exercise 60 For the numbers in Exercise 59, compute nearest oating point numbers
in the systems F�(2, 5,−1, 2) and F(2, 5,−1, 2). (G3)

Exercise 61 What are the largest and smallest positive normalized single and double
precision oating point numbers, according to the IEEE standard 754? (G4)

Exercise 62 How many oating point numbers do the systems F�(β, p, emin, emax) and
F(β, p, emin, emax) contain? (G4)

Exercise 63 Compute the value of the variable d after the declaration statement

float d = 0.1;

Assume the IEEE standard 754. (G3)

Exercise 64 What is the problem with the following loop (assuming the IEEE stan-
dard 754)? (G5)

for (float i = 0.1f; i != 1.0f; i += 0.1f)
std::cout << i << "\n";

Exercise 65 What is the problem with the following loop (assuming the IEEE stan-
dard 754)? (G5)

for (float i = 0.0f; i < 100000000.0f; ++i)
std::cout << i << "\n";
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Exercise 66 Write a program that outputs for a given decimal input number x, 0 <

x < 2, its normalized float value on your platform. The output should contain the
(binary) digits of the signi�cand, starting with 1, and the (decimal) exponent. You
may assume that the oating point number system underlying the type float has
base β = 2. (G3)(G6)

Exercise 67 Write a program that tests whether a given value of type double is ac-
tually an integer, and test the program with various inputs like 0.5, 1, 1234567890,
1234567890.2. Simply converting to a value of type int and checking whether this
changes the value does not work in general, since the given value might be an inte-
ger outside the value range of int. You may assume that the oating point number
system underlying the type double has base β = 2. (G3)(G6)

Exercise 68 The number π can be de�ned through various in�nite sums. Here are
two of them.

π

4
= 1 −

1

3
+

1

5
−

1

7
+ � � �

π

2
= 1 +

1

3
+

1 � 2
3 � 5 +

1 � 2 � 3
3 � 5 � 7 + � � �

Write a program for computing an approximation of π, based on these formulas.
Which formula is better for that purpose? (G6)

Exercise 69 There is a well-known iterative procedure (the Babylonian method) for
computing the square root of a positive real number s. Starting from any value
x0 > 0, we compute a sequence x0, x1‘, x2, . . . of values according to the formula

xn =
1

2
(xn−1 +

s

xn−1

).

It can be shown that

lim
n→∞ xn =

p
s.

Write a program babylonian.cpp that reads in the number s and computes an
approximation of

p
s using the Babylonian method. To be concrete, the program

should output the �rst number xi such that (G6)

|x2
i − s| < 0.001.

Exercise 70 Write a program fpsys.cpp to visualize a normalized oating point num-
ber system F�(2, p, emin, emax). The program should read the parameters p, emin, and
emax as inputs and for each positive number x from F�(2, p, emin, emax) draw a circle
of radius x around the origin. Use the library libwindow that is available at the
course homepage to create graphical output. Use the program to verify the numbers
you computed in Exercise 62. (G4)(G6)
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Exercise 71 We have seen that the decimal number 0.1 has no �nite representation
in a binary oating-point number system (β = 2). Mr. X. M. Plestudent claims
that this is due to β < 10. He suggests to work with a hexadecimal system (β = 16)
and argues that in such a system, 0.1 does have a �nite representation. Is Mr.
Plestudent right or not?

Somewhat more formally, is there a natural number p and numbers d1, . . . , dp

with di 2 {0, 1, . . . , 15} for all i, such that

1

10
=

p∑
i=1

di16−i = \0.d1 . . . dp"

holds? (G4)

Exercise 72 We have seen that there are decimal numbers without a �nite binary
representation (such as 1.1 and 0.1). Conversely, every (fractional) binary number
does have a �nite decimal representation, a fact that may be somewhat surprising
at �rst sight. Prove this fact!

More formally, given a number b of the form

b =

k∑
i=1

bi2
−i, b1, b2, . . . , bk 2 {0, 1},

prove that there is a natural number ` such that b can be written as an `-digit
decimal number

b =
∑̀
i=1

di10−i, d1, d2, . . . , d` 2 {0, 1, . . . , 9}.

(G4)

2.5.11 Challenges

Exercise 73 We have seen that decimal numbers do not necessarily have �nite binary
representations (examples are the decimal numbers 1.1 and 0.1). Vice versa, binary
numbers do have �nite decimal representations (Exercise 72). And Exercise 71 asks
whether every decimal number has a �nite hexadecimal representation. The goal of
this challenge is to understand the general picture.

Let β � 2 and γ � 2 be two natural numbers We say that γ re�nes β if for every
p, emin, emax, there are q, fmin, fmax such that

F(β, p, emin, emax) � F(γ, q, fmin, fmax).

In other words, every oating-point number system to the base β is contained in
some oating-point number system to the base γ.
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In this language, the result of Section 2.5.5 is that 2 does not re�ne 10. Exer-
cise 72 implies that 10 re�nes 2, and Exercise 71 asks whether 16 re�nes 10.

Here is the challenge: characterize the pairs (β, γ) for which γ re�nes β!

Exercise 74 The Mandelbrot set is a subset of the complex plane that became popular
through its fractal shape and the beautiful drawings of it. Below you see the set's
main cardioid and a detail of it at much higher zoom scale.

The Mandelbrot set is de�ned as follows. For c 2 C, we consider the sequence
z0(c), z1(c), . . . of complex numbers given by z0(c) = 0 and

zn(c) = zn−1(c)
2 + c, n > 0.

There are two cases: either |zn(c)| � 2 for all n (this obviously happens for example
if c = 0), or |zn(c)| > 2 for some n (this obviously happens for example if |c| > 2).
The Mandelbrot set consists of all c for which we are in the �rst case. It follows
that the Mandelbrot set contains 0 and is contained in a disk of radius 2 around 0

in the complex plane.
Write a program that draws (an approximation of) the Mandelbrot set, restricted

to a rectangular subset of the complex plane. It should be possible to zoom in, mean-
ing that the rectangular subset becomes smaller, and more details become visible in
the drawing window. Obviously, you can't process all in�nitely many complex num-
bers c in the rectangle, and for given c, you cannot really check whether |zn(c)| � 2

for all n, so it is necessary to discretize the rectangle into pixels, and to establish
some upper bound N on the number of iterations. If |zn(c)| � 2 for all n � N, you
may simply assume that c is in the Mandelbrot set. Per se, there is no guarantee
that the resulting drawing is even close to the Mandelbrot set (especially at �ner
level of detail), but for the sake of obtaining nice pictures, we can generously gloss
over this issue.

Hint: You may use the libwindow library to produce the drawing. The example
program in its documentation should give you an idea how this can be done.

Exercise 75 The following email was sent to a mailing list for users of the software
library CGAL.
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Hi all,

This should be a very easy question.

When I check if the points (0.14, 0.22), (0.15, 0.21) and (0.19,0.17) are

collinear, using CGAL::orientation, it returns CGAL::LEFT_TURN, which is

false, because those points are in fact collinear.

However, if I do the same with the points (14, 22), (15, 21) and (19, 17) I

get the correct answer: CGAL::COLLINEAR.

a) Find out what this email is about; in particular, what is CGAL, what is the
orientation of a point triple, what is CGAL::orientation, what does \collinear"
mean, and why is the writer of the email surprised about the observed behav-
ior?

b) Draft an answer to this email that explains the observations of the CGAL
user that wrote it.
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2.6 Arrays and pointers

As all real programmers know, the only useful data structure
is the array.

Ed Post, Real Programmers don't use Pascal (1983)

Reading into an array without making a "silly error" is be-
yond the ability of complete novices - by the time you get that
right, you are no longer a complete novice.

Bjarne Stroustrup, C++ Style and Technique FAQ

This section introduces arrays as containers for sequences of objects of
the same type, with random access to individual members of the sequence.
An array is the most primitive but at the same time a very e�cient con-
tainer for storing, processing, and iterating over large amounts of data.
You will also learn about pointers as explicit object addresses and about
their close relationship with arrays. While the C++ standard library
contains less primitive and generally better alternatives, the concepts be-
hind arrays and pointers are of fundamental importance.

In Section 2.4 on control statements, we have learned about the concept of iteration.
For example, we can now iterate over the sequence of numbers 1, 2, . . . , n and perform
some operations like adding up all the numbers, or identifying the prime numbers among
them. Similarly, we can iterate over the odd numbers, the powers of two, etc.

In real applications, however, we often have to process (and in particular iterate over)
sequences of data. For example, if you want to identify the movie theaters in town that
show your desired movie tonight, you have to iterate over the sequence of movie theater
repertoires. These repertoires must be stored somewhere, and there must be a way to
inspect them in turn. In C++, we can deal with such tasks by using arrays.

2.6.1 Array types

An array of length n aggregates n objects of the same type T into a sequence. To access
one of the aggregated objects (the elements), we use its index or subscript (position)
in the sequence. All these length-n sequences form an array type whose value range
corresponds to the mathematical type Tn. In the computer's main memory, an array
occupies a contiguous part, with the elements stored side-by-side (see Figure 7).

Let us start by showing an array in action: Eratosthenes' Sieve is a fast method for
computing all prime numbers smaller than a given number n, based on crossing out the
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numbers that are not prime. It works like this: you write down the sequence of numbers
between 2 and n−1. Starting from 2, you always go to the next number not crossed out
yet, report it as prime, and then cross out all its proper multiples.

Let's not dwell on the correctness of this method but go right to the implementation.
If you think about it for a minute, the major question is this: how do we cross out
numbers?

The following program uses an array type variable crossed_out for the list, where
every value crossed_out[i] is of type bool and represents the (changing) information
whether the number i has already been crossed out or not. Array indices always start
from 0, so in order to get to index n − 1, we need an array of length n. The program
runs Eratosthenes' Sieve for n = 1, 000.

1 // Program: eratosthenes.cpp

2 // Calculate prime numbers in {2,...,n-1} using

3 // Eratosthenes ’ sieve.

4

5 #include <iostream >
6

7 int main()
8 {
9 const unsigned int n = 1000;
10

11 // definition and initialization: provides us with

12 // Booleans crossed_out [0],..., crossed_out[n-1]

13 bool crossed_out[n];
14 for (unsigned int i = 0; i < n; ++i)
15 crossed_out[i] = false;
16

17 // computation and output

18 std::cout << "Prime numbers in {2,...," << n-1 << "}:\n";
19 for (unsigned int i = 2; i < n; ++i)
20 if (! crossed_out[i]) {
21 // i is prime

22 std::cout << i << " ";
23 // cross out all proper multiples of i

24 for (unsigned int m = 2*i; m < n; m += i)
25 crossed_out[m] = true;
26 }
27 std::cout << "\n";
28

29 return 0;
30 }

Program 14: progs/lecture/eratosthenes.cpp
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Definition. An array variable (or simply array) a with n > 0 elements of underlying
type T is de�ned through the following declaration.

T a[expr]

Here, expr must be a constant expression of integral type whose value is n. For ex-
ample, literals like 1000, arithmetic expressions over literals (like 1+1), and constants
(Section 2.1.9) are constant expressions; all of them have the property that their value
is known at compile time. This allows the compiler to �gure out how much memory the
array variable needs.

The type of a is \T[n]", but we put this in double quotes here (only to omit them
later). The reason is that T[n] is not the o�cial name: we can't write int[5] a, for
example, to declare an array a of type int[5].

The value range of T[n] is Tn, the set of all sequences (t1, t2, . . . , tn) with all ti being
of type T.

The fact that the array length must be known at compile time clearly limits the
usefulness of array variables. For example, this limitation does not allow us to write a
version of Eratosthenes' sieve in which the number n is read from the input. But we will
shortly see how this restriction can be overcome|for the time being, let's simply live
with it.

2.6.2 Initializing arrays

The de�nition of an array with underlying fundamental type does not initialize the values
of the array elements. We can assign values to the elements afterwards (like we do it in
Program 14), but we can also provide the values directly, as in the following declaration
statement.

int a[5] = {4,3,5,2,1};

Since the number of array elements can be deduced from the length of the initializer
list, we can also write

int a[] = {4,3,5,2,1};

The declaration int a[] without any initialization is invalid, though, since it does not
fully determine the type of a. We say that a has incomplete type in this case.

2.6.3 Random access to elements

The most common and useful way of accessing and modifying the elements of an array
is by random access. If expr is of integral type and has value i, the lvalue

a[expr]
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is of the type underlying the array a and refers to the i-th element (counting from 0) of
a. The number i is called the index or subscript of the element. If n is the length of a,
the index i must satisfy 0 � i < n. The operator [] is called the subscript operator.

The somewhat strange declaration format of an array is motivated by the subscript
operator. Indeed, the declaration

T a[expr]

can be read as \a[expr] is of type T". In this sense, it is an implicit de�nition of a's type.

Watch out! You as a programmer are responsible for making sure that a given
array index i indeed satis�es 0 � i < n, where n is the length of the array.
Indices that are not in this range are called out of bound. Unless your com-
piler o�ers speci�c debugging facilities, the usage of out-of-bound indices in the
subscript operator is not checked at runtime and leads to unde�ned behavior
of the program.

We have already discussed the term random access in connection with the computer's
main memory (Section 1.2.3); random access means that every array element can be
accessed in the same uniform way, and with (almost) the same access time, no matter
what its index is. Evaluating the expression a[0] is as fast as evaluating a[10000].
In contrast, the thick pile of pending invoices, bank transfers and various other papers
on your desk does not support random access: the time to �nd an item is roughly
proportional to its depth within the pile.

In fact, random access in an array directly reduces to random access in the computer's
main memory, since an array always occupies a contiguous set of memory cells, see
Figure 7.

{a[0] a[1] a[2] a[n-1]

s cells

Figure 7: An array occupies a contiguous part of the main memory. Every element
in turn occupies s memory cells, where s is the number of memory cells
required to store a single value of the underlying type T.

To access the element of index i in the array a, a simple computation with addresses
therefore su�ces. If p is the address (position) where the �rst element of a \starts", and
s is the number of memory cells that a single value of the underlying type T occupies,
then the element of index i starts at the memory cell whose address is p+si, see Figure 8.

2.6.4 Arrays are primitive

Array types are exceptional in C++. The following code fragment illustrates this:
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a[0] a[1] a[2] a[n-1]

p p + s p + 2s p + (n− 1)s

0 1 2 n− 1

address

index

Figure 8: The array element of index i starts at the address p + si.

int a[5] = {4,3,5,2,1}; // array of type int [5]

int b[5];
b = a; // error: we cannot assign to an array

We also cannot initialize an array from another array. Why is this? Arrays are a dead
hand from the programming language C, and the design of arrays in C is quite primitive.
C was designed to compete with machine language in e�ciency, and this didn't leave
room for luxury. We can of course copy one array into another manually via a simple
loop, and early C programmers were not yet spoiled enough to complain about this bit
of extra work.

When C++ was developed much later, one design goal was to have C as a subset.
As a consequence, arrays are still around in C++, in their original form. Internally, an
array is represented by the address of its �rst memory cell, and by its memory size in
bytes, see Section 1.2.3. In general, if obj is any object of any type, the expression

sizeof(obj )

returns the number of memory cells used by its argument, under the agreement that one
memory cell is required to store an object of type char.

The argument of sizeof can also be the name of a type, in which case the number of
memory cells occupied by one object of this type is returned (the number s in Figure 7).
Thus, to �nd out how many elements an array a of underlying type int has, we may use
the somewhat clumsy expression

sizeof(a) / sizeof(int)

2.6.5 Iteration over a container

Let's take a step back, forget about the technicalities of arrays for a moment, and go for
a bigger picture.

We have already indicated in the introduction to this section that the process of
iterating over a sequence of data is ubiquitous. Typically, the data are stored in some
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container, and we need to perform a certain operation for all elements in the container.
In general, a container is an object that can store other objects (its elements), and that
o�ers some ways of accessing these elements. The only \hard" requirement here is that
a container must o�er the possibility of iterating over all its elements. In this informal
sense, an array is indeed a container, since the random access functionality can be used
to iterate over the elements.

Iteration by random access. Let's get back to arrays. Iterating over an array of length n

can be done by random access like in lines 14{15 of Program 14. We have seen that the
random access functionality of arrays is internally based on address arithmetic. During
the iteration, the following sequence of addresses is computed: p, p + s, p + 2s, . . . , p +

(n − 1)s, where p and s have the usual meanings.
This requires one multiplication and one addition for every address except the �rst.

But if you think about it, the multiplication only comes in because we compute each
address from scratch, independently from the previous ones. In fact, the same set of
addresses could more e�ciently and more naturally be computed by starting with p and
repeatedly adding s (\going to the next element").

Using random access, we can simulate array iteration, but we are missing the opera-
tion of \going to the next element"; only this operation makes iteration over a container
natural and e�cient. The following analogy illustrates the point: you can of course read
a book by starting with page 1, then closing the book, opening it again on pages 2 − 3,
closing it, opening it on pages 4 − 5, etc. But unless you're somewhat eccentric, you
probably prefer to just turn the pages in between.

Iteration by pointers. Arrays o�er natural and e�cient iteration through pointers. Pointer
values can be thought of as actual addresses, and they allow operations like \adding s"
in order to go to the next element in the array. Here is how we could equivalently write
the iteration in lines 14{15 of Program 14 with pointers.

bool* const begin = crossed_out; // pointer to first element

bool* const end = crossed_out + n; // past -the -end pointer

// in the loop , pointer p successively points to all elements

for (bool* p = begin; p != end; ++p)
*p = false; // *p is the element pointed to by p

Admittedly, this looks more complicated at �rst sight than the random access version,
but we'll explain what's going on in detail in the next sections. In terms of Figure 8, we
have replaced iteration by index with iteration by address.

2.6.6 Pointer types and functionality

For every type T the corresponding pointer type is

T�
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We call T the underlying type of T*. An expression of type T* is called a pointer (to
T).

The value of a pointer to T is the address of (the �rst memory cell of) an object of
type T. We call this the object pointed to by the pointer.

We can visualize a pointer p as an arrow pointing to a cell in the computer's main
memory|the cell where the object pointed to starts, see Figure 9.

p

Figure 9: A pointer to T represents the address of an object of type T in the com-
puter's main memory.

Initialization, the assignment operator =, and the comparison operators == and !=

are de�ned for every pointer type T*. The latter simply test whether the addresses in
question are the same or not.

Initialization and assignment copy the value (as usual), which in this case means to
copy an address; thus, if j points to some object, the assignment i = j has the e�ect
that i now also points to this object. The object itself is not copied. We remark that
pointer initialization and assignment require the types of both operands to be exactly
the same|implicit conversions don't work. If you think about it, this is clear. Imagine
that the variable i is of type int*, and that you could write

double* j = i

Since double objects usually require more memory cells than int objects, j would now
be a pointer to a double object that includes memory cells originally not belonging to i.
This can hardly be called a \conversion". In fact, since we only copy an address, there
cannot be any physical conversion of the stored value, even if the memory requirements
of the two types happen to be the same.

The address operator. We can obtain a pointer to a given object by applying the unary
address operator to an lvalue that refers to the object. If the lvalue is of type T, then
the result is an rvalue of type T*. The syntax of an address operator call is

&lvalue

In the following code fragment we use the address operator to initialize a variable iptr

of type int* with the address of an object of type int named i.

int i = 5;
int* iptr = &i; // iptr initialized with the address of i
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The dereference operator. From a pointer, we can get back to the object pointed to
through dereferencing or indirection. The unary dereference operator * applied to an
rvalue of pointer type yields an lvalue referring to the object pointed to. If the rvalue is
of type T*, then the result is of type T. The syntax of a dereference operator call is

�rvalue

Following up on our previous code fragment, we can therefore write

int i = 5;
int* iptr = &i; // iptr initialized with the address of i

int j = *iptr; // j == 5

The naming scheme of pointer types is motivated by the dereference operator. The
declaration

T� p

can also be read (and in fact legally be written; we don't do this, though) as

T �p

The second version implicitly de�nes the type of p by saying that *p is of type T. This
is the same kind of implicit de�nition that we already know from array declarations.

Figure 10 illustrates address and dereference operator.

pointer (given as rvalue)

object (given as lvalue)

& *

Figure 10: The address operator (left) and its inverse, the dereference operator
(right)

The null pointer. For every pointer type there is a value distinguishable from any other
pointer value. This value is called the null pointer value. The integer value 0 can be
converted to every pointer type, and the value after conversion is the null pointer value.
In the declaration int* iptr = 0, for example, the variable iptr gets initialized with
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the null pointer value. We also say that iptr is a null pointer. The null pointer value
must not be dereferenced, since it does not correspond to any existing address.

Using the null pointer value is the safe way of indicating that there is no object (yet)
to point to. The alternative of leaving the pointer uninitialized is bad: there is no way
of testing whether a pointer that is not a null pointer holds the address of a legitimate
object, or whether it holds some \random" address resulting from leaving the pointer
uninitialized.

In the latter case, dereferencing the pointer usually crashes the program. Consider
this code:

int* iptr; // uninitialized pointer

int j = *iptr; // trouble!

After its declaration, the pointer iptr has unde�ned value, which in practice means that
it may correspond to an arbitrary address in memory; dereferencing it means to access
the memory content at this address. In general, this address will not belong to the part
of memory to which the program has access; the operating system will then deny access
to it and terminate the program with a segmentation fault.

2.6.7 Array-to-pointer conversion

Any array of type T[n] can implicitly be converted to type T*. The resulting value is
the address of the �rst element of the array. For example, we can write

int a[5];
int* begin = a; // begin points to a[0]

The declaration

int* begin = &a[0]; // address of the first element

is equivalent as far as the resulting value of begin is concerned, but there is a subtle
di�erence: the latter declaration evaluates a[0], while the former does not.

The pointer-style replacement code for the loop in lines 14{15 of Program 14 that we
have presented at the end of Section 2.6.5 makes use of array-to-pointer conversion in
the �rst line:

bool* const begin = crossed_out; // pointer to first element

The array-to-pointer conversion is trivial on the machine side. For this, we recall
from our earlier discussion in Section 2.6.4 that in C and therefore also in C++, the
address of the �rst element is part of the array's internal representation. It is important
to understand, though, that the length of the array gets lost during array-to-pointer
conversion: the resulting pointer is just a pointer, and nothing else.

Array-to-pointer conversion automatically takes place when an array appears in an
expression. The only exception are expressions of the form sizeof(a), where a is an
array. Bjarne Stroustrup, the designer of C++, illustrates this by saying that the name
of an array converts to a pointer to its �rst element at the slightest provocation.
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In still other words, there are no operations on arrays, except the length computations
through sizeof: everything that we conceptually do with an array is in reality done with
a pointer to its �rst element; this in particular applies to the random access operation,
see the paragraph called \Pointer subscripting, or the truth about random access" in
Section 2.6.9 below.

2.6.8 Pointers and const

Let us discuss the strange placement of the const keyword in the line

bool* const begin = crossed_out; // pointer to first element

This declares the pointer variable begin to be a constant pointer (Section 2.1.9)
whose value is the address of the �rst element of the array crossed_out. So far, we have
declared constants by putting const in front of the declaration. With pointers, this can
also be done but it has a di�erent meaning. The declaration

const bool* begin = crossed_out;

would make begin a (non-constant) pointer with underlying type const bool. This
would mean that not the pointer begin itself, but the object pointed to by begin is
constant. In this case, begin is called a const pointer. We don't want this meaning, as
it would not allow us to write anything into the array crossed_out. Here is why.

If the object pointed to by begin is constant, a direct assignment

*begin = false;

that tries to set the �rst element of crossed_out to false would lead to an error message.
In our pointer-style initialization loop on page 138, we are doing the assignments with a
running pointer p that initially has value begin. Since p has underlying type bool and
not const bool, shouldn't it be possible to assign false to *p? Yes, but in code such as

const bool* begin = crossed_out;
...
for (bool* p = begin; ... )
...

the compiler will already reject the loop's init-statement bool* p = begin; with an
error message telling us that it cannot convert from type const bool* to bool*, since
this would make the object pointed to by begin non-constant through the backdoor.
(The conversion in the other direction is no problem, since it only \adds constness".)

Const-quali�ed types should be used as underlying types of arrays (and pointers to
array elements) if and only if the program does not intend to modify the values of the
array elements. In the program eratosthenes.cpp, we do want to modify the array, but
the pointers begin and end that tell us \where the array lives" won't change. Following
the Const Guideline (Page 2.1.9), we thus use the keyword const here to make these
pointers themselves constant and obtain const-correct code.
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What exactly is constant? With a pointer p of type constT*, we cannot achieve \absolute
constness" of the object pointed to by p. We only achieve that the object can neither
directly nor indirectly be modi�ed through the pointer p. But we could modify it
through another pointer. Consider the code fragment

const bool* begin1 = crossed_out;
bool* begin2 = crossed_out;
*begin1 = false; // error

*begin2 = false; // ok

Here, begin1 and begin2 are two pointers to the same object, namely the �rst element
of the array crossed_out. With respect to the pointer begin1, this element is constant,
but with respect to begin2, it is not.

2.6.9 Pointer arithmetic

In order to understand why the code fragment

bool* const begin = crossed_out; // pointer to first element

bool* const end = crossed_out + n; // past -the -end pointer

// in the loop , pointer p successively points to all elements

for (bool* p = begin; p != end; ++p)
*p = false; // *p is the element pointed to by p

indeed sets all elements of the array crossed_out to false, we have to understand pointer
arithmetic, the art of computing with addresses. We deliberately call this an \art",
since pointer arithmetic comes with a lot of pitfalls, but without a safety net. On the
other hand, the authors feel that there is also a certain beauty in the minimalism of
pointer arithmetic. It's like driving an oldtimer: it's loud, it's di�cult to steer, seats
are uncomfortable, and there's no heating. But the heck with it! The oldtimer looks so
much better than a modern car. Nevertheless, after driving the oldtimer for a while, it
will probably turn out that beauty is not enough, and that safety and usability are more
important factors in the long run.

Adding integers to pointers. The binary addition operators +, - are de�ned for left operands
of any pointer type T* and right operands of any integral type. Recall that if an ar-
ray is provided as the left operand, it will implicitly be converted to a pointer using
array-to-pointer conversion.

For the behavior of + to be de�ned, there must be an array of some length n, such
that the left operand ptr is a pointer to the element of some index k, 0 � k � n, in the
array. The case k = n is allowed and corresponds to the situation where ptr is a pointer
one past the last element of the array (we call this a past-the-end pointer ; note that
such a pointer must not be dereferenced).

If the second operand expr has some value i such that 0 � k + i � n, then

ptr + expr
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is a pointer to the (k + i)-th element of the same array. Informally, we get a pointer
that has been moved \i elements to the right" (which actually means to the left if i is
negative). Therefore, if p is the value of ptr (an address), then the value of ptr + expr

is the address p + si, assuming that a value of the underlying type occupies s memory
cells. The pleasing fact is that we don't have to care about s; the operation ptr + expr

(which knows s from the type of ptr) does this for us and o�ers a type-independent way
of moving a pointer i elements to the right.

As before, if k + i = n, we get a past-the-end pointer. Values of i such that k + i is
not between 0 and n lead to unde�ned behavior.

Let us repeat the point that we have made before in connection with random access
in Section 2.6.3: by default, there are absolutely no checks that the above requirements
indeed hold, and it is entirely your responsibility to make sure that this is the case.
Failure to do so will result in program crashes, strange behavior of the program, or
(probably the worst scenario) seemingly normal behavior, but with the potential of
turning into strange behavior at any time, or on any other machine.

Therefore, let us summarize the requirements once more:

� ptr must point to the element of index k in some array of length n, where 0 � k � n,
and

� expr must have some value i such that 0 � k + i � n.

Binary subtraction is similar. If expr has value i such that 0 � k − i � n, then

ptr − expr

yields a pointer to the array element of index k − i.
The assignment versions += and -= of the two operators can be used with left operands

of pointer type as well, with the usual meaning. Similarly, the unary increment and decre-
ment operators ++ and -- are available for pointers. Since precedences and associativities
are tied to the operator symbols, they are as in Table 1 on page 51.

Now we can understand the second line of the above code fragment:

bool* const end = crossed_out + n; // pointer after last element

First, the array crossed_out is converted to a pointer to its �rst element (the one of
index 0). Since the array has n elements, adding n yields a past-the-end pointer end for
the array. The subsequent loop

for (bool* p = begin; p != end; ++p)
*p = false; // *p is the element pointed to by p

is clear now as well: starting with a pointer p to the �rst element (p = begin), the
element pointed to is set to false (*p = false). Then we increment p so that it points
to the next element (++p). We repeat this as long as p is di�erent from the past-the-end
pointer named end.
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Pointer comparison. We have already discussed the relational operators == and != that
simply test whether the two pointers in question point to the same object. But we can
also compare two pointers using the operators <, <=, >, and >=. Again, precedences and
associativities of all relational operators are as in Table 2 on page 72.

For the result to be speci�ed, there must be an array of some length n, such that the
left operand ptr1 is a pointer to the element of some index k1, 0 � k1 � n in the array,
and the second operand ptr2 is a pointer to the element of some index k2, 0 � k2 � n in
the same array. Again, k1 = n and k2 = n are allowed and correspond to the past-the-end
case.

Given this, the result of the pointer comparison is determined by the integer com-
parison of k1 and k2. In other words (and quite intuitively), the pointer to the element
that comes �rst in the array is the smaller one.

In our code fragment, the comparison p != end could equivalently be replaced by
the expression p < end which yields true as long as p points to an actual array element,
equivalently as long as p is not a past-the-end pointer.

Comparing two pointers that do not meet the above requirements leads to unspeci�ed
results in the four operators <, <=, >, and >=.

Pointer subtraction. There is one more arithmetic operation on pointers. Assume that
ptr1 is a pointer to the element of some index k1, 0 � k1 � n in some array of length
n, and the second operand ptr2 is a pointer to the element of some index k2, 0 � k2 �
n in the same array (past-the-end pointers allowed). Then the result of the pointer
subtraction

ptr1 − ptr2

is the integer k1 − k2. Thus, pointer subtraction tells us \how far apart" the two array
elements are. The behavior of pointer subtraction is unde�ned if ptr1 and ptr2 are not
pointers to elements in (or past-the-end pointers of) the same array.

Pointer subtraction (which employs the binary subtraction operator, see Table 1 on
page 51 for its speci�cs) does not occur in the code fragment from the beginning of this
section. A typical use is to determine the number of elements in an array that is given
by a pointer to its �rst element and a past-the-end pointer.

Pointer subscripting, or the truth about random access. In reality, the subscript operator []
as introduced in Section 2.6.3 does not operate on arrays, but on pointers. Invoking this
operator on an array constructs an expression and therefore triggers an array-to-pointer
conversion.

Given a pointer ptr and an expression expr of integral type, the expression

ptr[expr]

is equivalent (also in its requirements on ptr and expr) to
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�(ptr + expr)

If expr has value i, the latter expression yields the array element i places to the right of
the one pointed to by ptr. In particular, if ptr results from an array-to-pointer conversion,
this agrees with the semantics of random access for arrays as introduced in Section 2.6.3.

Table 4 summarizes the new pointer-speci�c binary operators.

Description Operator Arity Prec. Assoc.

subscript [] 2 17 left
dereference * 1 16 right
address & 1 16 right

Table 4: Precedences and associativities of pointer operators. The subscript operator
expects rvalues as operands and returns an lvalue. The dereference operator
expects an rvalue and returns an lvalue, while the address operator expects
an lvalue and returns an rvalue.

What have we gained with pointers? So far it seems that the only use of pointers is to
make iteration through an array a little more e�cient than iteration by index. But
unless we are in the realm of extremely time-critical loops, the savings are marginal. For
the sake of readability, we therefore often still use iteration by index. So what is the real
justi�cation for the pointer concept?

There are actually two justi�cations, and one of them will be discussed right away
in the next section: pointers are indispensable for getting \practical" arrays with length
not known at compile time.

The second justi�cation is not yet around the corner, so we will only briey touch
it here. Arrays are by far not the only containers for sets of data. When we implement
data processing algorithms, we should therefore make sure that they work not only for
arrays.

For example, �nding a container element with a given property (movie theater that
plays your desired movie) should be possible for every container that o�ers the func-
tionality of iterating over its elements. The only uniformity we need is in the iteration
process itself.

Every data-processing algorithm of the C++ standard library (we will see some of
them later) works in this way: it expects the underlying container to o�er iterators
conforming to some well-de�ned iterator concept. The speci�cs of the container itself
are irrelevant for the algorithm.

Here is where pointers come in: they are the iterators o�ered by arrays. Therefore,
even if we don't use pointers in our own code, we have to know about them in order to
be able to apply standard library algorithms to arrays.



2.6. ARRAYS AND POINTERS 147

2.6.10 Dynamic memory allocation

Let us go back to Program 14 now. Its main drawback is that the number n is hardwired
as 1, 000 in this program, just because the length of an array has to be known at compile
time.

At least in this respect, arrays are nothing special, though. All types that we have
met earlier (int, unsigned int, and bool) have the property that a single object of the
type occupies a �xed amount of memory known to the compiler (for example, 32 bits for
an int object on many platforms). With arrays, an obvious need arises to circumvent
this restriction.

In C++, arrays whose length is determined at runtime can be obtained through
dynamic memory allocation. Through such an allocation, we create an object with
dynamic storage duration.

Objects that we have seen so far were all tied to variables, in which case memory
gets assigned to them (and is freed again) at predetermined points during program
execution (automatic and static storage duration, Section 2.4.3). Objects of dynamic
storage duration are not tied to variables, and they may \start to live" (get memory
assigned to them) and \die" (get their memory freed) at any point during program
execution. The programmer can determine these points via new and delete expressions.

The program has some (typically quite large) region of the computer's main memory
available to store dynamically allocated objects. This region is called the heap. It is
initially unused, but when an object is dynamically allocated, it is being stored on the
heap, so that the memory actually used by the program grows.

Here is how this works for Eratosthenes' Sieve. Remember that we want the list of
prime numbers between 2 and n − 1. The following variant reads the number n from
standard input and dynamically allocates an array of length n. The remainder of the
program is as before, except that we explicitly have to free the dynamically allocated
storage in the end.

1 // Program: eratosthenes2.cpp

2 // Calculate prime numbers in {2,...,n-1} using

3 // Eratosthenes ’ sieve.

4

5 #include <iostream >
6

7 int main()
8 {
9 // input

10 std::cout << "Compute prime numbers in {2,...,n-1} for n =? ";
11 unsigned int n;
12 std::cin >> n;
13

14 // definition and initialization: provides us with

15 // Booleans crossed_out [0],..., crossed_out[n-1]
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16 bool* const crossed_out = new bool[n]; // dynamic allocation

17 for (unsigned int i = 0; i < n; ++i)
18 crossed_out[i] = false;
19

20 // computation and output

21 std::cout << "Prime numbers in {2,...," << n-1 << "}:\n";
22 for (unsigned int i = 2; i < n; ++i)
23 if (! crossed_out[i]) {
24 // i is prime

25 std::cout << i << " ";
26 // cross out all proper multiples of i

27 for (unsigned int m = 2*i; m < n; m += i)
28 crossed_out[m] = true;
29 }
30 std::cout << "\n";
31

32 delete [] crossed_out; // free dynamic memory

33

34 return 0;
35 }

Program 15: progs/lecture/eratosthenes2.cpp

Note that the variable crossed_out is now a pointer rather than an array; after the
new declaration, it points to the �rst element of a dynamically allocated array of length
n.

The new expression. For every type T, a new expression can come in any of the following
three variants.

new T

new T(...)
new T[expr]

In all cases, the expression returns an rvalue of type T*. Its value is the address
of an object of type T that has been dynamically allocated on the heap. The object
itself is anonymous, but we usually store the resulting address under a variable name.
In Program 15, we call it crossed_out.

In the �rst and second variant, the e�ect of the new expression is to dynamically
allocate a single object of type T on the heap. Variant 1 leaves the object uninitialized if
T is a fundamental type, while variant 2 initializes the new object with whatever appears
in parentheses. For example, the following declarations initialize the variables i and j,
both of type int*, with the addresses of two new objects of type int.

int* i = new int; // *i is undefined

int* j = new int (6); // *j is 6
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Right now, if we wanted two such objects of type int, we'd rather use variables with
automatic storage duration and write

int i; // i is undefined

int j = 6; // j is 6

More interesting for us is the third variant. If expr has integer value n � 0, the e�ect
of the new expression is to dynamically allocate an array of length n with underlying
type T on the heap. The return value is the address of the �rst element. This is what
we see in line 16 of Program 15.

As usual, the n array elements remain uninitialized if T is a fundamental type.

The delete expression. Dynamically allocated memory that is no longer needed should
be freed. In C++, the programmer decides at which point this is the case. There are
programming languages (Java, for example) that automatically detect and free unused
memory on the heap. This automatic process is called garbage collection. It is gener-
ally more user-friendly than the manual deletion process in C++, but requires a more
sophisticated implementation.

Dynamic storage duration implies that dynamically allocated objects live until the
program terminates, unless they are explicitly freed. Dynamically allocated memory
is more exible than static memory, but in return it also involves some administrative
e�ort.

The delete expressions take care of freeing memory. They come in two variants.

delete expr

delete[] expr

In both variants, expr may be a null pointer, in which case the delete expression has
no e�ect.

Otherwise, in the �rst variant, expr must be a pointer to a single object that has pre-
viously been dynamically allocated with the �rst or second variant of the new expression.
The e�ect is to make the corresponding memory available again for subsequent dynamic
allocations on the heap.

For example, at a point in the program where the two int objects dynamically allo-
cated through

int* i = new int; // *i is undefined

int* j = new int (6); // *j is 6

are no longer needed, we would write

delete j;
delete i;

The order of deletion does not matter here, but many programmers consider it logical
to delete pointers in the inverse order of dynamic allocation: If you need to undo two
steps, you �rst undo the second step.
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In the second variant of the delete expression, expr must be a pointer to the �rst
element of an array that has previously been dynamically allocated with the third variant
of the new expression. The whole memory occupied by the array is put back on the heap
for reuse. This happens in line 32 of Program 15.

If the plain delete is applied to a non-null pointer that does not point to a dynam-
ically allocated single object, the behavior is unde�ned. The same is true if one tries
to delete[] an array where there is only a single object. As always with pointers, the
C++ language does not o�er any means of detecting such errors.

Memory leaks. Although all memory allocated by a program is automatically freed when
the program terminates normally, it is very bad practice to rely on this fact for freeing
dynamically allocated memory. If a program does not explicitly free all dynamically
allocated memory it is said to have a memory leak. Such leaks are often a sign of
bad coding. They usually have no immediate consequences, but without freeing unused
storage, a program running for a long time (think of operating system routines) may at
some point simply exhaust the available heap storage.

Therefore, we have the following guideline.

Dynamic Storage Guideline: new and delete expressions always come in matching pairs.

2.6.11 Arrays of characters

Sequences of characters enclosed in double quotes as in

std::cout << "Prime numbers in {2,...,"

are called string literals.
So far we have used string literals only within output expressions, but we can work

with them in other contexts as well. Most notably, a string literal can be used to initialize
an array of characters. Characters are the building blocks of text as we know it. In
C++, they are modeled by the fundamental type char that we briey discuss next.

The type char. The fundamental type char represents characters. Characters include
the letters a through z (along with their capital versions A through Z), the digits 0

through 9, as well as numerous other special characters like % or $. The line

char c = ’a’;

de�nes a variable c of type char and value ’a’, representing the letter a. The expression
’a’ is a literal of type char. The quotes around the actual character symbol are necessary
in order to distinguish the literal ’a’ from the identi�er a.

Formally, the type char is an integral type: it has the same operators as the types
int or unsigned int, and the C++ standard even postulates a promotion from char to
int or unsigned int. It is not speci�ed, though, to which integer the character ’a’,
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say, will be promoted. Under the widely used ASCII code (American Standard Code for
Information Interchange), it is the integer 97.

This setting may not seem very useful, and indeed it makes little sense to divide one
character by another. On the other hand, we can for example print the alphabet through
one simple loop (assuming ASCII encoding). Execution of the for-loop

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c;

writes the character sequence

abcdefghijklmnopqrstuvwxyz

to standard output. Given this, you may think that the line

std::cout << ’a’ + 1;

prints ’b’, but it doesn't. Since the operands of the composite expression ’a’+1 are
of di�erent types, the left operand of type char will automatically be promoted to the
more general type int of the right operand. Therefore, the type of the expression ’a’+1

is int, and its value is 98 (assuming ASCII encoding); and that's what gets printed. If
you want ’b’ to be printed, you must use the explicit conversion char(’a’+1).

The category of special characters also includes control characters that do something
when printed. These are written with a leading backslash, and the most important
control character for us is ’\n’, which causes a line break.

A char value occupies 8 bits (one byte) of memory; whether the value range corre-
spond to the set of integers {−128, . . . , 127} (the signed case) or the set {0, . . . , 255} (the
unsigned case) is implementation de�ned. Since all ASCII characters have integer values
in {0, . . . , 127}, they can be represented in both cases.

From characters to text. A text is simply a sequence of characters and can be modeled in
C++ through an array with underlying type char. For example, the declaration

char text[] = {’b’, ’o’, ’o’, ’l’}

de�nes an array of length 4 that represents the text bool.
Alternatively (and more conveniently), we can write

char text[] = "bool"

This, however, is not equivalent to the former declaration. When an array of characters
is initialized with a string literal, the terminating zero character ’\0’ (of integer value
0) is automatically appended to the array. This character does not correspond to any
printable character. After the latter declaration, the array text therefore has length 5.
The �rst four elements are ’b’, ’o’, ’o’, and ’l’, and the �fth element is the zero
character ’\0’.

We call such an array zero-terminated. Unlike normal arrays, zero-terminated arrays
\contain" their length. To get this length, we simply have to iterate over the array and
count the number of elements before the terminating ’\0’.
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Here is an application of (arrays of) characters. String matching is the problem of
�nding the �rst or all occurrences of a given search string (usually short) in a given text
(usually long).

The obvious solution is the following: assuming that the search string has length m,
we compare it characterwise with the elements 1, 2, ...,m of the text. If a mismatch is
found for some element, we stop and next compare the search string with the elements
2, 3, . . . ,m+1 of the text, and so on. Sets of m consecutive elements i, i+1, . . . , i+m−1

in the text are called a window.

This algorithm is fast as long as the search string is short, but it may become ine�-
cient for long search strings (see Exercise 84). There is a more sophisticated algorithm
(the Knuth-Morris-Pratt algorithm) that is always fast.

The following Program 16 implements the obvious algorithm. It maintains two arrays
of characters, one for the search string, and one for the current window. We impose a
cyclic order on the window (the �rst element directly follows the last one); this makes
it easy to shift the window one place, by simply replacing element i of the text with
element i + m (and at the same time advancing the logical �rst position of the window
by one).

1 // Program: string_matching.cpp

2 // find the first occurrence of a fixed string within the

3 // input text , and output the text so far

4

5 #include <iostream >
6 #include <ios > // for std:: noskipws

7

8 int main ()
9 {
10 // search string

11 const char s[] = "bool";
12

13 // determine search string length m

14 unsigned int m = 0;
15 for (const char* p = s; *p != ’\0’; ++p) ++m;
16

17 // cyclic text window of size m

18 char* const t = new char[m];
19

20 unsigned int w = 0; // number of characters read so far

21 unsigned int i = 0; // index where t logically starts

22

23 // find pattern in the text being read from std::cin

24 std::cin >> std:: noskipws; // don’t skip whitespaces!

25

26 for (unsigned int j = 0; j < m;)
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27 // compare search string with window at j-th element

28 if (w < m || s[j] != t[(i+j)%m])
29 // input text still too short , or mismatch:

30 // advance window by replacing first character

31 if (std::cin >> t[i]) {
32 std::cout << t[i];
33 ++w; // one more character read

34 j = 0; // restart with first characters

35 i = (i+1)%m; // of string and window

36 } else break; // no more characters in the input

37 else ++j; // match: go to next character

38

39 std::cout << "\n";
40 delete [] t;
41 return 0;
42 }

Program 16: progs/lecture/string matching.cpp

When we apply the program to the text of the �le eratosthenes.cpp, the program
outputs Program 14 up to the �rst occurrence of the string "bool":

// Program: eratosthenes.cpp

// Calculate prime numbers in {2,...,n-1} using

// Eratosthenes ’ sieve.

#include <iostream >

int main()
{

const unsigned int n = 1000;

// definition and initialization: provides us with

// Booleans crossed_out [0],..., crossed_out[n-1]

bool

A few comments need to be made with respect to the handling of standard input
here. The program reads the text character by character from std::cin, until this
stream becomes \empty". To test this, we use the fact that stream values can implicitly
be converted to bool, with the result being true as long as there was no attempt at
reading past the end of the stream. Since the value of std::cin >> t[i] is the stream
after removal of one character, the conversion to bool exactly tells us whether there still
was a character in the stream, or not.

Most conveniently, the program is run by redirecting standard input to a �le contain-
ing the text. In this case, the stream std::cin will become empty exactly at the end of
the �le. The line

std::cin >> std:: noskipws; // don’t skip whitespaces!
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is necessary to tell the stream that whitespaces (blanks, newlines, etc.) should not
be ignored (by default, they are). This allows us to search for strings that contain
whitespaces, and it allows us to output the text (up to the �rst occurrence of the search
string) in its original layout.

2.6.12 Multidimensional arrays

In C++, we can have arrays of arrays. For example, the declaration

int a[2][3]

declares a to be an array of length 2 whose elements are arrays of length 3 with underlying
type int. We also say that a is a multidimensional array (in this case of dimensions
2 and 3). The type of a is \int[2][3]", and the underlying type is int[3]. In general,
the declaration

T a[expr1]...[exprk]

de�nes an array a of length n1 (value of expr1) whose elements are arrays of length
n2 (value of expr2) whose elements are. . . you get the picture. The values n1, . . . , nk

are called the dimensions of the array, and the expressions expr1,. . . , exprk must be
constant expressions of integral type and positive value.

Random access in multidimensional arrays works as expected: a[i] is the element
of index i, and this element is an array itself. Consequently, a[i][j] is the element of
index j in the array a[i], and so on.

Although we usually think of multidimensional arrays as tables or matrices, the mem-
ory layout is \at" like for one-dimensional arrays. For example, the twodimensional
array declared through int a[2][3] occupies a contiguous part of the memory, with
space for 6 = 2� 3 objects of type int, see Figure 11.

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

a[0] a[1]

Figure 11: Memory layout of a twodimensional array

Multidimensional arrays can be initialized in a way similar to onedimensional arrays;
the value for the �rst (and only the �rst) dimension may be omitted:

int a[][3] = { {2,4,6}, {1,3,5} };

This de�nes an array of type int[2][3] where {2,4,6} is used to initialize the element
a[0], and {1,3,5} is used for a[1].
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Dynamic allocation of multidimensional arrays. The required dimensions of a multidimen-
sional array may not be known at compile time in which case dynamic allocation is called
for. Let us start with the case where all dimensions but the �rst are known at compile
time. If expr has value n � 0, a pointer to a dynamically allocated array of length n

with underlying type T[n2]...[nk] is obtained from a new expression

new T[expr][expr2]...[exprk]

where expri has value ni, i = 1, . . . , k. All dimensions but the �rst must be constant
expressions. If you think about it for a minute, this is not surprising. For example, in
order to generate machine language code for random access operations on the dynamically
allocated array, the compiler must know how many memory cells a single element of the
underlying type T[n2]...[nk] occupies (see Section 2.6.3). But this is only possible if the
values n2,. . . ,nk are known at compile time.

Pointers to arrays. If we want to use the above new expression to initialize a pointer
variable (with the address of the �rst element of the multidimensional array), we need
the type \pointer to T[n2]...[nk]". As you may suspect, we informally call this type
\T[n2]...[nk]*", but we can't write it like that in C++, since T[n2]...[nk] is not a type
name. Again, we have to resort to an implicit de�nition of the desired pointer variable
p, as in the following code fragment.

int n = 2;
int (*p)[3] = new int[n][3]; // type of *p: int [3] <=> p: int [3]*

The parentheses are necessary here, since int *p[3] (which is the same as int* p[3])
declares p to be an array of pointers to int (see also next paragraph). C++ syntax is
bittersweet.

Arrays of pointers. If you're asking for a multidimensional array with non-constant di-
mensions among n2, . . . , nk, the o�cial answer is: there is none. But under the counter,
you can buy a very good imitation.

One �rst solution that suggests itself when you reconsider the at memory layout
of multidimensional arrays is this: you dynamically allocate a onedimensional array of
length n = n1 � n2 � � � � � nk and arti�cially partition it into subarrays by doing some
juggling with indices.

Let us discuss the twodimensional case only to avoid lengthy formulae. A twodimen-
sional array with dimensions n and m can be simulated by a onedimensional array of
length nm. The element with logical indices i 2 {0, 1, . . . , n− 1} and j 2 {0, 1, . . . ,m− 1}

appears at index mi + j in the onedimensional array. Vice versa, the element of index `

in the onedimensional array has logical indices i = `divm and j = `modm. This works
because the function

(i, j) 7→ mi + j



156 CHAPTER 2. FOUNDATIONS

bijectively maps the set of logical indices (i, j) to the set of numbers {0, 1, . . . , nm − 1}.
Intuitively, this mapping attens the imaginary table of n rows and m columns by simply
putting one row after another. As you can see from Figure 11, this is exactly what
the compiler is implicitly doing for multidimensional arrays with constant dimensions
n1, . . . , nk.

Doing it explicitly for non-constant dimensions is only a workaround, though, since
we lose the intuitive notation a[i][j]; moreover, this workaround becomes even more
cumbersome with higherdimensional arrays.

A better solution that keeps the notation a[i][j] and that smoothly extends to
higher dimensions is the following (again, we only discuss the case of a twodimensional
array with dimensions n and m): you �rst dynamically allocate one array of n point-
ers, and then you let every single pointer point to the �rst element of an individual,
dynamically allocated array of length m. The following code fragment demonstrates
this.

// a points to the first element of an array of n pointers to int

int** a = new int*[n];
for (int i = 0; i < n; ++i)

// a[i] points to the first element of an array of m int’s

a[i] = new int[m];

The type int** is \pointer to pointer to int". a[i] is therefore a pointer to int (see
the paragraph on pointer subscripting in Section 2.6.9), and a[i][j] is an lvalue of type
int, just like in a \regular" twodimensional array.

The memory layout is di�erent, though: Figure 11 is replaced by Figure 12. This
means, the twodimensional array is patched up from a set of n onedimensional arrays,
but these n arrays are not necessarily consecutively arranged in memory. In fact, the
n arrays may even have di�erent lengths. This is useful for example when you want to
store a lower-triangular matrix; in this case, it su�ces if the row of index i has length
i + 1.

a[0][0] a[0][1] a[0][2]a[1][0] a[1][1] a[1][2]a[0] a[1]

Figure 12: Memory layout of a twodimensional array realized by an array of pointers

Computing shortest paths. Let us conclude this section with an interesting application of
(multidimensional) arrays. Imagine a rectangular factory oor, subdivided into square
cells. Some of the cells are blocked with obstacles (these could for example be machines
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or cupboards, but let us abstractly call them \walls"). A robot is initially located at
some cell S (the source), and the goal is to move the robot to some other cell T (the
target). At any time, the robot can make one step from its current cell to any of the
four adjacent cells, but for obvious reasons it may only use cells that are empty.

Given this setup, we want to �nd a shortest possible robot path from S to T (or �nd
out that no such path exists). Here, the length of a robot path is the number of steps
taken by the robot during its motion from S to T (the initial cell S does not count; in
particular, it takes 0 steps to reach S from S). Figure 13 (left) shows an example with
8� 12 cells.
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Figure 13: Left: What is a shortest robot path from S to T? Right: This one!

In this example, a little thinking reveals that there are essentially two di�erent pos-
sibilities for the robot to reach T : it can pass below the component of walls adjacent to
S, or above. It turns out that passing above is faster, and a resulting shortest path (of
length 21) is depicted in Figure 13 (right). Note that in general there is not a unique
shortest path. In our example, the �nal right turn of the path could also have been made
one or two cells further down.

We want to write a program that �nds a shortest robot path, given the dimensions
n (number of rows) and m (number of columns) of the factory oor, the coordinates
of source and target, and the walls. How can this be done? Before reading further, we
encourage you to think about this problem for a while. Please note that the brute-force
approach of trying all possible paths and selecting the shortest one is not an option,
since the number of such paths is simply too large already for moderate oor dimensions.
(Besides, how do you even generate all these paths?)

Here is an approach based on dynamic programming. This general technique is
applicable to problems whose solutions can quickly be obtained from the solutions to
smaller subproblems of the same structure. The art in dynamic programming is to �nd
the \right" subproblems, and this may require a more or less far-reaching generalization
of the original problem.

Once we have identi�ed suitable subproblems, we solve all of them in turn, from
the smaller to the larger ones, and memorize the solutions. That way, we have all the
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information that we need in order to quickly compute the solution to a given subproblem
from the solutions of the (already solved) smaller subproblems.

In our case, we generalize the problem as follows: for all empty cells C on the oor,
compute the length of a shortest path from S to C (where the value is∞ if no such path
exists). We claim that this also solves our original problem of computing a shortest path
from S to T : Assume that the length of a shortest path from S to T is ` <∞ (otherwise
we know right away that there is no path at all). We also say that T is reachable from
S in ` steps.

Now if T 6= S, there must be a cell adjacent to T that is reachable from S in ` − 1

steps, and adjacent to this a cell reachable in ` − 2 steps etc. Following such a chain of
cells until we get to S gives us a path of length ` which is shortest possible.

Let us rephrase the generalized problem: we want to label every empty cell C with
a nonnegative integer (possibly ∞) that indicates the length of a shortest path from S

to C. Here are the subproblems to which we plan to reduce this: for a given integer
i � 0, label all the cells that are reachable from S in at most i steps. For i = nm − 1

(actually, for some smaller value), this labels all cells that are reachable from S at all,
since a shortest path will never enter a cell twice.

Here is the reduction from larger to smaller subproblems: assume that we have already
solved the subproblem for i − 1, i.e. we have labeled all cells that are reachable from S

within i − 1 or less steps. In order to solve the subproblem for i, we still need to label
the cells that are reachable in i steps (but not less). But this is simple, since these cells
are exactly the unlabeled ones adjacent to cells with label i − 1.

Figure 14 illustrates how the frontier of labeled cells grows in this process, for i =

0, 1, 2, 3.

Continuing in this fashion, we �nally arrive at the situation depicted in Figure 15:
all empty cells have been labeled (and are in fact reachable from S in this example). To
�nd a shortest path from S to T , we start from T (which has label 21) and follow any
path of decreasing labels (20, 19, . . .) until we �nally reach S.

The shortest path program. Let's get to the C++ implementation of the above method.
We represent the oor by a dynamically allocated twodimensional array floor with
dimensions n+ 2 and m+ 2 and entries of type int. (Formally, floor is a pointer to the
�rst element of an array of n + 2 pointers to int, but we still call this a twodimensional
array). These dimensions leave space for extra walls surrounding the oor. Such extra
walls allow us to get rid of special cases: oor cells having less than four adjacent cells.
In general, an arti�cial data item that guards the actual data against special cases is
called a sentinel.

The heart of the program (which appears as Program 17 below) is a loop that com-
putes the solution to subproblem i from the solution to subproblem i−1, for i = 1, 2, . . ..
The solution to subproblem 0 is readily available: we set the floor entry corresponding
to S to 0, and the entries corresponding to the empty cells to −1 (this is meant to indicate
that the cell has not been labeled yet). Walls are always labeled with the integer −2.



2.6. ARRAYS AND POINTERS 159

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

TT

TT

00

00

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

i = 0 i = 1

i = 2 i = 3

Figure 14: The solution to subproblem i labels all cells C reachable from S within at
most i steps with the length of the shortest path from S to C.

In iteration i of the loop, we simply go through all the yet unlabeled cells and label
exactly the ones with i that have an adjacent cell with label i − 1. The loop terminates
as soon as no progress is made anymore, meaning that no new cell could be labeled in
the current iteration. Here is the code.

// main loop: find and label cells reachable in i=1,2,... steps

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue; // wall , or labeled before

// is any neighbor reachable in i-1 steps?

if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||
floor[r][c-1] == i-1 || floor[r][c+1] == i-1 ) {

floor[r][c] = i; // label cell with i

progress = true;
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Figure 15: The solution to subproblem i = 23 solves the generalized problem and
the original problem (a shortest path is obtained by starting from T and
following a path of decreasing labels).

}
}

if (! progress) break;
}

The other parts of the main function are more or less straightforward. Initially, we
read the dimensions from standard input and do the dynamic allocation.

// read floor dimensions

int n; std::cin >> n; // number of rows

int m; std::cin >> m; // number of columns

// dynamically allocate twodimensional array of dimensions

// (n+2) x (m+2) to hold the floor plus extra walls around

int** const floor = new int*[n+2];
for (int r=0; r<n+2; ++r)

floor[r] = new int[m+2];

Next, we read the oor plan from standard input. We assume that it is given rowwise
as a sequence of nm characters, where ’S’ and ’T’ stand for source and target, ’X’
represents a wall, and ’-’ an empty cell. The input �le for our initial example from
Figure 13 would then look as in Figure 16

If other characters are found in the input (or if the input prematurely becomes empty),
we generate empty cells. While reading the oor plan, we put the appropriate integers
into the entries of floor, and we remember the target position for later.

// target coordinates , set upon reading ’T’

int tr = 0;
int tc = 0;
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8 12
------X-----
-XXX --X-----
--SX --------
---X---XXX --
---X---X----
---X---X----
---X---X-T--
-------X----

Figure 16: Input for Program 17 corresponding to the example of Figure 13

// assign initial floor values from input:

// source: ’S’ -> 0 (source reached in 0 steps)

// target: ’T’ -> -1 (number of steps still unknown)

// wall: ’X’ -> -2

// empty cell: ’-’ -> -1 (number of steps still unknown)

for (int r=1; r<n+1; ++r)
for (int c=1; c<m+1; ++c) {

char entry = ’-’;
std::cin >> entry;
if (entry == ’S’) floor[r][c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floor[r][c] = -2;
else if (entry == ’-’) floor[r][c] = -1;

}

Now we add the surrounding walls as sentinels.

// add surrounding walls

for (int r=0; r<n+2; ++r)
floor[r][0] = floor[r][m+1] = -2;

for (int c=0; c<m+2; ++c)
floor [0][c] = floor[n+1][c] = -2;

Next comes the main loop that we have already discussed above. It labels all reachable
cells, so that we obtain a labeling as in Figure 15. From this labeling, we must now extract
the shortest path from S to T . As explained above, this can be done by following a chain
of adjacent cells with decreasing labels. For every cell on this path (except S), we put
the integer −3 into the corresponding floor entry; this allows us to draw the path in
the subsequent output. If no path was found (or if there is no target), the body of the
while statement in the following code fragment is (correctly) not executed at all.

// mark shortest path from source to target (if there is one)
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int r = tr; int c = tc; // start from target

while (floor[r][c] > 0) {
const int d = floor[r][c] - 1; // distance one less

floor[r][c] = -3; // mark cell as being on shortest path

// go to some neighbor with distance d

if (floor[r-1][c] == d) --r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r][c-1] == d) --c;
else ++c; // (floor[r][c+1] == d)

}

Finally, the output: we map the integer entries of floor back to characters, where
−3 becomes ’o’, our path symbol. Inserting ’\n’ at the right places, we obtain a copy
of the input oor, with the shortest path appearing in addition. We must also not forget
to delete the dynamically allocated arrays in the end.

// print floor with shortest path

for (int r=1; r<n+1; ++r) {
for (int c=1; c<m+1; ++c)

if (floor[r][c] == 0) std::cout << ’S’;
else if (r == tr && c == tc) std::cout << ’T’;
else if (floor[r][c] == -3) std::cout << ’o’;
else if (floor[r][c] == -2) std::cout << ’X’;
else std::cout << ’-’;

std::cout << "\n";
}

// delete dynamically allocated arrays

for (int r=0; r<n+2; ++r)
delete [] floor[r];

delete [] floor;

return 0;

In case of our initial example, the output looks like in Figure 17. Program 17 shows
the complete source code.

1 #include <iostream >
2

3 int main()
4 {
5 // read floor dimensions

6 int n; std::cin >> n; // number of rows

7 int m; std::cin >> m; // number of columns

8

9 // dynamically allocate twodimensional array of dimensions

10 // (n+2) x (m+2) to hold the floor plus extra walls around
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ooooooX -----
oXXX -oX -----
ooSX -oooooo -
---X---XXXo -
---X---X-oo -
---X---X-o--
---X---X-T--
-------X----

Figure 17: Output of Program 17 on the input of Figure 16

11 int** const floor = new int*[n+2];
12 for (int r=0; r<n+2; ++r)
13 floor[r] = new int[m+2];
14

15 // target coordinates , set upon reading ’T’

16 int tr = 0;
17 int tc = 0;
18

19 // assign initial floor values from input:

20 // source: ’S’ -> 0 (source reached in 0 steps)

21 // target: ’T’ -> -1 (number of steps still unknown)

22 // wall: ’X’ -> -2

23 // empty cell: ’-’ -> -1 (number of steps still unknown)

24 for (int r=1; r<n+1; ++r)
25 for (int c=1; c<m+1; ++c) {
26 char entry = ’-’;
27 std::cin >> entry;
28 if (entry == ’S’) floor[r][c] = 0;
29 else if (entry == ’T’) floor[tr = r][tc = c] = -1;
30 else if (entry == ’X’) floor[r][c] = -2;
31 else if (entry == ’-’) floor[r][c] = -1;
32 }
33

34 // add surrounding walls

35 for (int r=0; r<n+2; ++r)
36 floor[r][0] = floor[r][m+1] = -2;
37 for (int c=0; c<m+2; ++c)
38 floor [0][c] = floor[n+1][c] = -2;
39

40 // main loop: find and label cells reachable in i=1,2,... steps

41 for (int i=1;; ++i) {
42 bool progress = false;
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43 for (int r=1; r<n+1; ++r)
44 for (int c=1; c<m+1; ++c) {
45 if (floor[r][c] != -1) continue; // wall , or labeled before

46 // is any neighbor reachable in i-1 steps?

47 if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||
48 floor[r][c-1] == i-1 || floor[r][c+1] == i-1 ) {
49 floor[r][c] = i; // label cell with i

50 progress = true;
51 }
52 }
53 if (! progress) break;
54 }
55

56 // mark shortest path from source to target (if there is one)

57 int r = tr; int c = tc; // start from target

58 while (floor[r][c] > 0) {
59 const int d = floor[r][c] - 1; // distance one less

60 floor[r][c] = -3; // mark cell as being on shortest path

61 // go to some neighbor with distance d

62 if (floor[r-1][c] == d) --r;
63 else if (floor[r+1][c] == d) ++r;
64 else if (floor[r][c-1] == d) --c;
65 else ++c; // (floor[r][c+1] == d)

66 }
67

68 // print floor with shortest path

69 for (int r=1; r<n+1; ++r) {
70 for (int c=1; c<m+1; ++c)
71 if (floor[r][c] == 0) std::cout << ’S’;
72 else if (r == tr && c == tc) std::cout << ’T’;
73 else if (floor[r][c] == -3) std::cout << ’o’;
74 else if (floor[r][c] == -2) std::cout << ’X’;
75 else std::cout << ’-’;
76 std::cout << "\n";
77 }
78

79 // delete dynamically allocated arrays

80 for (int r=0; r<n+2; ++r)
81 delete [] floor[r];
82 delete [] floor;
83

84 return 0;
85 }

Program 17: progs/lecture/shortest path.cpp
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2.6.13 Beyond arrays and pointers

Arrays are very useful for many tasks and allow us to solve nontrivial problems like
�nding shortest paths in the previous section. From a theoretical point of view, arrays
are in fact the only containers that we need.

On the other hand, there are two main drawbacks of arrays that we want to recapit-
ulate here.

Arrays have fixed length. Any array, even if it is dynamically allocated, has a �xed length.
In other words, we have to know before de�ning or dynamically allocating an array how
many elements we need to store in it. Often, this is unrealistic. For example, in some
application we might need to store a sequence of input numbers, but we don't know in
advance how many numbers we will get. A typical \solution" is to dynamically allocate
a very large array and just hope that the sequence �ts in. The problems with this and
a better (but still cumbersome) solution are outlined in Exercise 87.

A \real" solution is possible in C++ through the use of vectors. These are con-
tainers from the standard library that combine the classical array functionality (and its
e�ciency) with the possibility of growing (and shrinking) in length. Vectors can be im-
plemented on top of arrays, and they have something similar to the mechanism outlined
in Exercise 87 \built in". Vectors also largely remove the necessity of working with
pointers. We will get to vectors (and their realization) later in this book.

Arrays are insecure. The usage of out-of-bound array indices is not detected in C++,
and the same holds for pointers to addresses where no object lives. With some care,
you can write small programs that use arrays and pointers in a correct manner, but in
complex programs, this is not easy at all. Debugging facilities of modern compilers can
help, but even well-tested and frequently used large programs do not necessarily get it
right. In fact, some people (let's call them attackers) are making a business of exploiting
programming errors related to arrays and pointers in order to create malicious software.

Suppose that the attacker knows that some program|think of an operating system
routine or a webserver|may (unintentionally) write input data beyond the bounds of
an array. Due to the von-Neumann architecture, the part of the main memory being
accidentally modi�ed in this way may contain the actual program instructions. The
attacker may then be able to prepare an input to the program in such a way that the
program modi�es itself to do whatever the attacker wants it to do. This modi�cation
runs with the same access rights as the original one, and these might be administrator
rights in the worst case.

In this way, an attacker could \hijack" the computer that runs the program, and
subsequently misuse it for illegal activities like sending spam, or paralyzing web servers
by ooding them with requests.

For us that we are not (yet) professional programmers, the security aspect is less of a
concern here. More important is that programming errors due to improper use of arrays
and pointers can be very hard to �nd and often remain undetected until they suddenly



166 CHAPTER 2. FOUNDATIONS

result in strange and seemingly inexplicable behavior of the program. Also here, using
vectors instead of arrays helps, since there are many potential errors related to arrays
and pointers that you simply cannot make with vectors.

Why arrays, after all? Now you may ask why we have introduced arrays and pointers at
all when there are more exible and safer alternatives. Here are the three reasons.

1. Arrays and pointers are the simplest models of important standard library concepts
(container and iterator).

2. Unlike vectors, arrays can be introduced without the need to discuss syntactical
and semantical aspects of C++ functions and classes (that we simply don't have
at our disposal at this point);

3. In order to really understand later how standard library containers and iterators
are realized, it is necessary to know about arrays and pointers.

The take-home message here is this: it is important to get familiar with the concepts
behind arrays and pointers, but it is less important to be able to actually program with
arrays and pointers on a large scale.

2.6.14 Details

Command line arguments. In Program 16 for string matching, it is not very convenient
that the search string is �xed. We then have to recompile the program every time we
want to search for another string.

A more exible alternative is to pass the search string as a command line argument
that we provide upon calling the program.

The main function can access such command line arguments if we provide suitable
parameters. Here is how the �rst ten lines of Program 16 have to be changed in order
to make this work.

1 // Program: string_matching2.cpp

2 // find the first occurrence of a string (provided as command

3 // line argument) within the input text , and output text so far

4

5 #include <iostream >
6 #include <ios > // for std:: noskipws

7

8 int main (int argc , char* argv [])
9 {
10 if (argc < 2) {
11 // no command line arguments (except program name)

12 std::cout << "Usage: string_matching2 <string >\n";
13 return 1;
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14 }
15

16 // search string: second command line argument

17 const char* const s = argv [1];

The values of argc and and argv[] (which is an array of pointers each of which in turn
points to the �rst elements of a zero-terminated array of characters) are initialized by the
operating system when it calls the main function. We will explain function parameters in
detail later, here we will be satis�ed with an example. Suppose that we call the program
like this (assuming a Unix-type system):

./ string_matching2 bool

Then argc (which counts the number of command line arguments) gets initialized
with value 2. This count includes the program name itself ("string_matching2" in this
case), and any additional strings provided on the command line (just the single string
"bool" in this case). The 2 arrays argv[0] and argv[1] get initialized with the strings
"string_matching2" and "bool" as described in Section 2.6.11 above. Consequently,
after its de�nition, the pointer variable s in the above piece of code points to the �rst
element of a zero-terminated array of characters that corresponds to the string "bool".
This gets us back to the situation in Program 16 after line 10, and the remainders of
both programs are identical.

2.6.15 Goals

Dispositional. At this point, you should . . .

1) know what an array is, and what random access and iteration mean in the context
of arrays;

2) understand the pointer concept, and how to compute with addresses;

3) be aware that (and understand why) arrays and pointers must be used with care;

4) know that characters and arrays of characters can be used to perform basic text
processing tasks;

5) know that (multidimensional) arrays of variable length can be obtained by dynamic
memory allocation;

Operational. In particular, you should be able to . . .

(G1) read, understand, and argue about simple programs involving arrays and pointers;
relevant aspects are in particular pointer arithmetic and const-correctness

(G2) write programs that de�ne array variables or dynamically allocate (multidimen-
sional) arrays;

(G3) write programs that read a sequence of data into a (dynamically allocated /
multidimensional) array;



168 CHAPTER 2. FOUNDATIONS

(G4) write programs that perform simple data processing tasks by using random access
in (multidimensional) arrays as the major tool;

(G5) within programs, iterate over a (dynamically allocated / multidimensional) array
by using pointer arithmetic;

(G6) write programs that perform simple text processing tasks with arrays of charac-
ters;

2.6.16 Exercises

Exercise 76

a) What does the following program output, and why?

#include <iostream >

int main()
{

int a[] = {5, 6, 2, 3, 1, 4, 0};
int* p = a;
do {

std::cout << *p << " ";
p = a + *p;

} while (p != a);

return 0;
}

b) More generally, suppose that in the previous program, a is initialized with
some sequence of n di�erent numbers in {0, . . . , n− 1} (we see this for n = 7 in
the previous program). Prove that the program terminates in this case.

(G1)

Exercise 77 Assume that in some program, a is an array of underlying type int and
length n.

a) Given a variable i of type int with value 0 � i � n, how can you obtain a
pointer p to the element of index i in a? (Note: if i = n, this is asking for a
past-the-end pointer.)

b) Given a pointer p to some element in a, how can you obtain the index i of
this element? (Note: if p is a past-the-end pointer, the index is de�ned as n.)

Write code fragments that compute p from i in a) and i from p in b). (G1)
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Exercise 78 Find and �x at least 5 problems in the following program. The �xed
program should indeed correctly do what it claims to do. Is the �xed program const-
correct? If not, make it const-correct! (This is a theory exercise, but you may of
course use the computer to help you.)

#include <iostream >

int main()
{

int a[7] = {0, 6, 5, 3, 2, 4, 1}; // static array

int* const b = new int [7];

// copy a into b using pointers

for (int* p = a; p <= a+7; ++p)
*b++ = *p;

// cross -check with random access

for (int i = 0; i <= 7; ++i)
if (a[i] != b[i])

std::cout << "Oops , copy error ...\n";

delete b;

return 0;
}

Exercise 79 Let us call a natural number k-composite if and only if it is divisible by
exactly k di�erent prime numbers. For example, prime powers are 1-composite, and
6 = 2 � 3 as well as 20 = 2 � 2 � 5 are 2-composite. Write a program k_composite.cpp

that reads numbers n � 0 and k � 0 from the input and then outputs all k-
composite numbers in {2, . . . , n − 1}. How many 7-composite numbers are there
for n = 1, 000, 000? (G2)(G4)

Exercise 80 Write a program inverse_matrix.cpp that inverts a 3� 3 matrix A with
real entries. The program should read the nine matrix entries from the input, and
then output the inverse matrix A−1 (or the information that the matrix A is not
invertible). In addition, the program should output the matrix AA−1 in order to let
the user check whether the computation of the inverse was accurate (in the fully
accurate case, the latter product is the identity matrix).

Hint: For the computation of the inverse, you can employ Cramer's rule. Applied
to the computation of the inverse, it yields that A−1

ij (the entry of A−1 in row i and
column j) is given by

A−1
ij =

(−1)i+j det(Aji)

det(A)
,
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where det(M) is the determinant of a square matrix M, and Aij is the 2� 2 matrix
obtained from A by deleting row j and column i.

To compute the determinant of a 3� 3 matrix, you might want to use the well-
known Sarrus' rule. (G2)(G3)(G4)

Exercise 81 Write a program read_array that reads a sequence of n integers from
standard input into an array. The number n is the �rst input, and then the program
expects you to input another n values. After reading the n values, the program
should output them in the same order. (If you can do this, you have proven that
you are no longer a complete novice, according to Stroustrup.) For example, on
input 5 4 3 6 1 2 the program should output 4 3 6 1 2. (G2)(G3)

Exercise 82 Enhance the program read_array.cpp from Exercise 81 so that the result-
ing program sort_array.cpp sorts the array elements into ascending order before
outputting them. Your sorting algorithm does not have to be particularly e�cient,
the main thing here is that it works correctly. Test your program on some larger
inputs (preferably read from a �le, after redirecting standard input). For example,
on input 5 4 3 6 1 2 the program should output 1 2 3 4 6. (G2)(G3)(G4)

Exercise 83 Enhance the program read_array.cpp from Exercise 81 so that the result-
ing program cycles.cpp interprets the input sequence of n integers as a permutation
π of {0, . . . , n − 1}, and that it outputs the cycle decomposition of π.

Some explanations are in order: a permutation π is a bijective mapping from
the set {0, . . . , n− 1} to itself; therefore, the input sequence can be interpreted as the
sequence of values π(0), . . . , π(n − 1) of a permutation π if and only if it contains
every number from {0, . . . , n − 1} exactly once.

The program cycles.cpp should �rst check whether the input sequence satis�es
this condition, and if not, terminate with a corresponding message. If the input
indeed encodes a permutation π, the program should output the cycle decomposition
of π. A cycle in π is any sequence of the form ( n1 n2 � � � nk ) such that

� n2 = π(n1), n3 = π(n2), . . . , nk = π(nk−1), and n1 = π(nk), and

� n1 is the smallest element among n1, . . . , nk.

Any cycle uniquely determines the π-values of all its elements; on the other hand,
every element appears in some cycle (which might be of the trivial form (n1), mean-
ing that π(n1) = n1). This implies that the permutation decomposes into a unique
set of cycles. For example, the permutation π given by

π(0) = 4, π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 0

decomposes into the two cycles ( 0 4 ) and ( 1 2 3 ). (G2)(G3)(G4)



2.6. ARRAYS AND POINTERS 171

Exercise 84 Consider the string matching algorithm of Program 16. Prove that for
all m > 1, n � m, there exists a search string s of length m and a text t of length n

on which the algorithm in Program 16 performs m(n−m+ 1) comparisons between
single characters. (G1)

Exercise 85 Consider the following program that de�nes and initializes a threedimen-
sional array.

#include <iostream >

int main()
{

int a[4][2][3] =
{ // the 4 elements of a:

{ // the 2 elements of a[0]:

{2, 4, 5}, // the three elements of a[0][0]

{4, 6, 7} // the three elements of a[0][1]

},
{ // the 2 elements of a[1]:

{1, 5, 9}, // the three elements of a[1][0]

{4, 6, 1} // the three elements of a[1][1]

},
{ // the 2 elements of a[2]:

{5, 9, 0}, // the three elements of a[2][0]

{1, 5, 3} // the three elements of a[2][1]

},
{ // the 2 elements of a[3]:

{6, 7, 7}, // the three elements of a[3][0]

{7, 8, 5} // the three elements of a[3][1]

}
};

return 0;

}

Write a program threedim_array.cpp that enhances this program by a (nested)
loop that iterates over the array a and its subarrays to output all the 24 int values
that are stored in a and its subarrays. Do not use random access to do this but
pointer arithmetic. (G5)

Exercise 86 Write a program frequencies.cpp that reads a text from standard input
(like in Program 16) and outputs the frequencies of the letters in the text, where
we do not distinguish between lower and upper case letters. For this exercise, you
may assume that the type char implements ASCII encoding. This means that all
characters have integer values in {0, 1, . . . , 127}. Moreover, in ASCII, the values of
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the 26 upper case literals ’A’ up to ’Z’ are consecutive numbers in {65, . . . , 90}; for
the lower case literals ’a’ up to ’z’, the value range is {97, . . . , 122}. (G6)

Running this on the lyrics of Yesterday (The Beatles) for example should yield the
following output.

Frequencies:
a: 45 of 520
b: 5 of 520
c: 5 of 520
d: 28 of 520
e: 65 of 520
f: 4 of 520
g: 13 of 520
h: 27 of 520

i: 27 of 520
j: 0 of 520
k: 3 of 520
l: 20 of 520
m: 10 of 520
n: 30 of 520
o: 43 of 520
p: 4 of 520
q: 0 of 520

r: 19 of 520
s: 36 of 520
t: 31 of 520
u: 9 of 520
v: 6 of 520
w: 19 of 520
x: 0 of 520
y: 34 of 520
z: 0 of 520
Other: 37 of 520

2.6.17 Challenges

Exercise 87 The fact that an array has �xed length is often inconvenient. For exam-
ple, in Exercise 81 and in Exercise 82, the number of elements to be read into the
array had to be provided as the �rst input in order for the program to be able to
dynamically allocate an array of the appropriate length. But in practice, the length
of the input sequence is often not known a priori.

We would therefore like to write a program that reads a sequence of integers
from standard input into an array, where the length of the sequence is not known
beforehand (and not part of the input)|the program should simply read one number
after another until the stream becomes empty.

One possible strategy is to dynamically allocate an array of large length, big
enough to store any possible input sequence. But if the sequence is short, this is a
huge waste of memory, and if the sequence is very long, the array might still not
be large enough.

a) Write a program read_array2.cpp that reads a sequence of integers of un-
known length into an array, and then outputs the sequence. The program
should satisfy the following two properties.

(i) The amount of dynamically allocated memory in use by the program
should at any time be proportional to the number of sequence elements that
have been read so far. To be concrete: there must be a positive constant a

such that no more than ak cells of dynamically allocated memory are in
use when k elements have been read, k � 1. We refer to this property as
space e�ciency. It ensures that even very long sequences can be read (up
to the applicable memory limits), but that short sequences consume only
little memory.
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(ii) The number of assignments (of values to array elements) performed so
far should at any time be proportional to the number of sequence elements
that have been read so far, with the same meaning of proportionality as
above. We refer to this property as time e�ciency. It ensures that the pro-
gram is only by a constant factor slower than the program read_array.cpp

that knows the sequence length in advance.

b) Determine the constants of proportionality a for properties (i) and (ii) of your
program.

Exercise 88 For larger oors, Program 17 can become quite ine�cient, since every
step i examines all cells of the oor in order to �nd the (possibly very few) ones
that have to be labeled with i in that step. A better solution would be to examine
only the neighbors of the cells that are already labeled with i − 1, since only these
are candidates for getting label i.

Write a program shortest_path_fast.cpp that realizes this idea, and measure
the performance gain on some larger oors of your choice.

Exercise 89 In 1772, Leonhard Euler discovered the quadratic polynomial

n2 + n + 41

with the following remarkable property: if you evaluate it for n = 0, 1, . . . , 39, you
always get a prime number, and moreover, all these prime numbers are di�erent.
Here is the list of all the 40 prime numbers generated by Euler's polynomial:

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281,
313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

Here we are concerned with the question whether there are still better quadratic
polynomials in the sense that they generate even more prime numbers. We say
that a quadratic polynomial an2 + bn + c has Euler quality p if the p numbers

|an2 + bn + c|, n = 0, ..., p − 1

are di�erent prime numbers. By taking absolute values, we therefore also allow
\negative primes". As an example, let us look at the polynomial n2 − 10n + 2. For
n = 0, we get 2 (prime), for n = 1 we obtain −7 (negative prime), and n = 2 gives
−14 (no (negative) prime). The Euler quality of n2 − 10n + 2 is therefore 2 but not
higher.

Here is the challenge: write a program that systematically searches for a quadratic
polynomial with high Euler quality. The goal is to �nd a polynomial with Euler qual-
ity larger than 40, in order to \beat" n2 + n + 41. What is the highest Euler quality
that you can �nd?

For this challenge, it can be useful to read the paragraph on constant expressions
in the Details section.
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Exercise 90 The XBM �le format is a format for storing monochrome (black & white)
images. The format is somewhat outdated, but many browsers (Internet Explorer
is a notable exception) can still display images in XBM format.

An XBM image �le for an image named test might look like this (taken from
Wikipedia's XBM page).

#define test_width 16
#define test_height 7
static unsigned char test_bits [] = {

0x13 , 0x00 , 0x15 , 0x00 , 0x93 , 0xcd , 0x55 ,
0xa5 , 0x93 , 0xc5 , 0x00 , 0x80 , 0x00 , 0x60};

As you can guess from this, XBM �les are designed to be integrated into C and
C++ source code which makes it easy to process them (there is no need to read in
the data; simply include the �le from the C++ program that needs to process the
image). In our example, test_width and test_height denote the width and height
of the image in pixels. Formally, these names are macros, but in the program they
can be used like constant expressions. test_bits is an array of characters that
encodes the colors of the 16 � 7 pixels in the image. Every hexadecimal literal of
the form 0xd1d2 encodes eight pixels, where the order is row by row. In our case,
0x13 and 0x00 encode the 16 pixels of the �rst row, while 0x15 and 0x00 are for the
second row, etc.

Here is how a two-digit hexadecimal literal encodes the colors of eight consecutive
pixels within a row. If the width is not a multiple of 8, the superuous color values
from the last hexadecimal literal of each row are being ignored.

Every hexadecimal digit di is from the set {0, ..., 9, a, . . . , f} where a up to f stand
for 10, . . . , 15. The actual number encoded by a hexadecimal literal is 16d1 + d2 2
{0, . . . , 255}. If the type char has value range {−128, . . . , 127}, the silent assumption
is that a literal value α larger than 127 converts to α − 256, which has the same
representation under two's complement. For example, 0x13 has value 1 �16+3 = 19.

Now, any number in {0, . . . , 255} has a binary representation with 8 bits. 19,
for example, has binary representation 00010011. The pixel colors are obtained by
reading this backwards, and interpreting 1 as black and 0 as white. Thus, the �rst
eight pixels in row 1 of the test image are black, black, white, white, black, white,
white, white. The complete test image looks like this:

Write a program xbm.cpp that #includes an XBM �le of your choice (you may
search the web to �nd suitable XBM �les, or you may use an image manipulation
program such as gimp to convert your favorite image into XBM format), and that
outputs an XBM �le for the same image, rotated by 90 degrees. The program may
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write the resulting �le to standard output. In case of the test image, the resulting
XBM �le and the resulting rotated image are as follows.

#define rotated_width 7
#define rotated_height 16
static unsigned char rotated_bits [] = {

0x3c , 0x54 , 0x48 , 0x00 ,
0x04 , 0x1c , 0x00 , 0x1c ,
0x14 , 0x08 , 0x00 , 0x1f ,
0x00 , 0x0a , 0x15 , 0x1f};

Note that we now have 16 instead of 14 hexadecimal literals. This is due to the
fact that each of the 16 rows needs one literal for its 7 pixels, where the leading bits
of the binary representations are being ignored.

You may extend your program to perform other kinds of image processing tasks
of your choice. Examples include color inversion (replace black with white, and
vice versa), computing a mirror image, scaling the image (so that it occupies less
or more pixels), etc.
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3.1 A first C++ function

Garbage in, garbage out.

Attributed to George Fuechsel, IBM, late 1950's

This section introduces C++ functions as a means to encapsulate and
reuse functionality, and to subdivide a program into subtasks. You will
learn how to add functions to your programs, and how to call them. We
also explain how functions can e�ciently be made available for many
programs at the same time, through separate compilation and libraries.

In many numerical calculations, computing powers is a fundamental operation (see
Section 2.5), and there are many other operations that occur frequently in applications.
In C++, functions are used to encapsulate such frequently used operations, making it
easy to invoke them many times, with di�erent arguments, and from di�erent programs,
but without having to reprogram them every time.

Even more importantly, functions are used to structure a program. In practice, large
programs consist of many small functions, each of which serves a clearly de�ned subtask.
This makes it a lot easier to read, understand, and maintain the program.

We have already seen quite a number of functions, since the main function of every
C++ program is a special function (Section 2.1.4).

Program 18 emphasizes the encapsulation aspect and shows how functions can be
used. It �rst de�nes a function for computing the value be for a given real number b

and given integer e (possibly negative). It then calls this function for several values of b

and e. The computations are performed over the oating point number type double.

1 // Prog: callpow.cpp

2 // Define and call a function for computing powers.

3

4 #include <iostream >
5

6 // PRE: e >= 0 || b != 0.0

7 // POST: return value is b^e

8 double pow (double b, int e)
9 {
10 double result = 1.0;
11 if (e < 0) {
12 // b^e = (1/b)^(-e)

13 b = 1.0/b;
14 e = -e;
15 }
16 for (int i = 0; i < e; ++i) result *= b;
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17 return result;
18 }
19

20 int main()
21 {
22 std::cout << pow( 2.0, -2) << "\n"; // outputs 0.25

23 std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25

24 std::cout << pow( 5.0, 1) << "\n"; // outputs 5

25 std::cout << pow( 3.0, 4) << "\n"; // outputs 81

26 std::cout << pow(-2.0, 9) << "\n"; // outputs -512

27

28 return 0;
29 }

Program 18: progs/lecture/callpow.cpp

Before we explain the concepts necessary to understand this program in detail, let us
get an overview of what is going on in the function pow. For nonnegative exponents e, be

is obtained from the initial value of 1 by e-fold multiplication with b. This is what the
for-loop does. The case of negative e can be handled by the formula be = (1/b)−e: after
inverting b and negating e in the if-statement, we have an equivalent problem with a
positive exponent. The latter only works if b 6= 0, and indeed, negative powers of 0 are
mathematically unde�ned.

3.1.1 Pre- and postconditions

Even a very simple function should document its precondition and its postcondition, in
the form of comments. The precondition speci�es what has to hold when the function is
called, and the postcondition describes value and e�ect of the function. This information
allows us to understand the function without looking at the actual sourcecode; this in
turn is a necessary for keeping track of larger programs. In case of the function pow, the
precondition

// PRE: e >= 0 || b != 0.0

tells us that e must be nonnegative, or (if e is negative) that b 6= 0 must hold. The
postcondition

// POST: return value is b^e

tells us the function value, depending on the arguments. In this case, there is no e�ect.
The pre- and postconditions specify the function in a mathematical sense. At �rst

sight, functions with values and e�ect do not �t into the framework of mathematical func-
tions which only have values. But using the concept of program states (Section 1.2.3),
a C++ function can be considered as a mathematical function that maps program states
(immediately before the function call) to program states (immediately after the function
call).
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Under this point of view, the precondition speci�es the domain of the function,
the set of program states in which the function may be called. In case of pow, these
are all program states in which the arguments b and e are in a suitable relation. The
postcondition describes the function itself by specifying how the (relevant part of the)
program state gets transformed. In case of pow, the return value be will (temporarily)
be put at some memory location.

To summarize, the postcondition tells us what happens when the precondition is
satis�ed. On the other hand, the postcondition gives no guarantee whatsoever for the
case where the precondition is not satis�ed. From a mathematical point of view, this is
�ne: a function is simply not de�ned for arguments outside its domain.

Arithmetic pre- and postconditions. The careful reader of Section 2.5 might have realized
that both pre- and postcondition of the function pow cannot be correct. If e is too
large, for example, the computation might overow, but such e are not excluded by
the precondition. Even if there is no overow, the value range of the type double may
have a hole at be, meaning that this value cannot be returned by the function. The
postcondition is therefore imprecise as well.

In the context of arithmetic operations over the fundamental C++ types, it is often
tedious and even undesirable to write down precise pre- and postconditions; part of
the problem is that fundamental types may behave di�erently on di�erent platforms.
Therefore, we often con�ne ourselves to pre- and postconditions that document our
mathematical intention, but we have to keep in mind that in reality, the function might
behave di�erently.

Assertions. So far, our preconditions are just comments like in

// PRE: e >= 0 || b != 0.0

Therefore, if the function pow is called with arguments b and e that violate the precon-
dition, this passes unnoticed. On the syntactical level, there is nothing we can do about
it: the function call pow (0.0, -1), for example, will compile. But we can make sure
that this blunder is detected at runtime. A simple way to do this uses assertions. An
assertion has the form

assert ( expr )

where expr is a predicate, an expression of a type whose values can be converted to bool.
No comma is allowed in expr, a consequence of the fact that assert is not a function
but a macro. A macro is a piece of meta-code that the compiler replaces with actual
C++ code prior to compilation.

With assertions, pow can be written as follows.

// PRE: e >= 0 || b != 0.0

// POST: return value is b^e
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double pow (double b, int e)
{

assert (e >= 0 || b != 0.0);
double result = 1.0;
// the remainder is as before

...
}

The purpose of an assertion is to check whether a certain predicate holds at a cer-
tain point. The precise semantics of an assertion is as follows. expr is evaluated, and
if it returns false, execution of the program terminates immediately with an error mes-
sage telling us that the respective assertion was violated. If expr returns true, execu-
tion continues normally. In our case, this means that the evaluation of the expression
pow (0.0,-1) leads to a runtime error. This might not be a very polite way of telling
the user that the arguments were illegal but the point will surely come across.

You can argue that it is costly to test the assertion in every function call, just to
catch a few \bad" calls. However, it is possible to tell the compiler to ignore the assert
macro, meaning that an empty piece of C++ code replaces it. The usual way to go is
therefore as follows: during code development, put assertions everywhere you want to be
sure that something holds. When the code is put into use, tell the compiler to remove
the assertions. The machine language code is then as e�cient as if you would never have
written the assertions in the �rst place.

To use the assert macro, we have to include the header cassert.

3.1.2 Function definitions

Lines 8{18 of Program 18 de�ne a function called pow. The syntax of a function de�nition
is as follows.

T fname ( T1 pname1, T2 pname2, ..., Tk pnamek )
block

This de�nes a function called fname, with return type T, and with formal arguments
pname1,. . . , pnamek of types T1,. . . , Tk, respectively, and with a function body block.

Syntactically, T and T1,. . . , Tk are type names, fname as well as pname1,. . . , pnamek
are identi�ers (Section 2.1.10), and block is a block, a sequence of statements enclosed
in curly braces (Section 2.4.3).

We can think of the formal arguments as placeholders for the actual arguments that
are supplied (or \passed") during a function call.

Function de�nitions must not appear inside blocks, other functions, or control state-
ments. They may appear inside namespaces, though, or at global scope, like in callpow.cpp.
A program may contain an arbitrary number of function de�nitions, appearing one af-
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ter another without any delimiters between them. In fact, the program callpow.cpp

consists of two function de�nitions, since the main function is a function as well.

3.1.3 Function calls

In Program 18, pow(2.0,-2) is one of �ve function calls. Formally, a function call is an
expression. The syntax of a function call that matches the general function de�nition
from above is as follows.

fname ( expr1, ..., exprk )

Here, expr1,. . . ,exprk must be expressions of types whose values can be converted to
the formal argument types T1,. . . ,Tk. These expressions are the call arguments. For
all types that we know so far, the call arguments as well as the function call itself are
rvalues. The type of the function call is the function's return type T.

When a function call is evaluated, the call arguments are evaluated �rst (in an order
that is unspeci�ed by the C++ standard). The resulting values are then used to initialize
the formal arguments. Finally, the function body is executed; in this execution, the
formal arguments behave like they were variables de�ned in the beginning of block,
initialized with the values of the call arguments.

In particular, if the formal arguments are of const-quali�ed type, they cannot be
modi�ed within the function body. For example, the following version of the function
pow will not compile.

double pow (const double b, const int e)
{

double result = 1.0;
if (e < 0) {

// b^e = (1/b)^(-e)

b = 1.0/b; // error: b is constant

e = -e; // error: e is constant

}
for (int i = 0; i < e; ++i) result *= b;
return result;

}

Const-correctness extends to formal function arguments: whenever the formal ar-
gument is meant to be kept constant within the function body, this should be docu-
mented by giving it a const-quali�ed type. From what we have said above about how
function calls are evaluated, it follows that the \outside behavior" of the function (as
documented by the pre- and postconditions) does not depend on whether the argument
type is const int or int (see also Section 3.1.5 below). In this case, the e�ect of const
is purely internal and determines whether the formal argument in question acts as a
variable or as a constant within the function body.
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For a fundamental type T, there is no di�erence between return type T and return
type const T.

The evaluation of a function call terminates as soon as a return statement is reached,
see Section 2.1.15. This return statement must be of the form

return expr;

where expr is an expression of a type whose values can be converted to the return type
T. The resulting value is the value of the function call. The e�ect of the function call is
determined by the joint e�ects of the call argument evaluations, and of executing block.

The function body may contain several return statements, but if no return statement
is reached during the execution of block, value and e�ect of the function call are unde�ned
(unless the return type is void, see Section 3.1.4 below).

For example, during the execution of block in pow(2.0,-2), b and e initially have
values 2 and −2. These values are changed in the if-statement to 0.5 and 2, before
the subsequent loop sets result to 0.5 in its �rst and to 0.25 in its second (and last)
iteration. This value is returned and becomes the value of the function call expression
pow(2.0,-2).

3.1.4 The type void

In C++, there is a fundamental type called void, used as return type for functions that
only have an e�ect, but no value. Such functions are also called void functions.

As an example, consider the following program (note that the function print_pair

requires no precondition, since it works for every combination of int values).

1 #include <iostream >
2

3 // POST: "(i, j)" has been written to standard output

4 void print_pair (const int i, const int j)
5 {
6 std::cout << "(" << i << ", " << j << ")\n";
7 }
8

9 int main()
10 {
11 print_pair (3 ,4); // outputs (3, 4)

12 }

The type void has empty value range, and there are no literals, variables, or formal
function arguments of type void. There are expressions of type void, though, for example
print_pair(3,4).

A void function does not require a return statement, but it may contain return
statements with expr of type void, or return statements of the form
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return;

Evaluation of a void function call terminates when a return statement is reached, or
when the execution of block is �nished.

3.1.5 Functions and scope

The parenthesized part of a function de�nition contains the declarations of the formal
arguments. For all of them, the declarative region is the function de�nition, so the formal
arguments have local scope (Section 2.4.3). The potential scope of a formal argument
declaration begins after the declaration and extends until the end of the function body.
Therefore, the formal arguments are not visible outside the function de�nition. Within
the body, the formal arguments behave like variables that are local to block.

In particular, changes made to the values of formal arguments (like in the function
pow) are \lost" after the function call and have no e�ect on the values of the call ar-
guments. This is not surprising, since the call arguments are rvalues, but to make the
point clear, let us consider the following alternative main function in callpow.cpp.

1 int main() {
2 double b = 2.0;
3 int e = -2;
4 std::cout << pow(b,e); // outputs 0.25

5 std::cout << b; // outputs 2

6 std::cout << e; // outputs -2

7

8 return 0;
9 }

The variables b and e de�ned in lines 2{3 are una�ected by the function call, since the
function body of pow is not in the scope of their declarations, for two reasons. First, the
de�nition of pow appears before the declarations of b and e in lines 2{3, so the body
of pow cannot even be in the potential scope of these declarations. Second, even if we
would move the declarations of the variables b and e to the beginning of the program
(before the de�nition of pow, so that they have global scope), their scope would exclude
the body of pow, since that body is in the potential scopes of redeclarations of the names
b and e (the formal arguments), see Section 2.4.3.

But the general scope rules of Section 2.4.3 do allow function bodies to use names of
global or namespace scope; the program on page 183 for example uses std::cout as such
a name. Here is a contrived program that demonstrates how a program may modify a
global variable (a variable whose declaration has global scope). While such constructions
may be useful in certain cases, they usually make the program less readable, since the
e�ect of a function call may then become very non-local.

1 #include <iostream >
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2

3 int i = 0; // global variable

4

5 void f()
6 {
7 ++i; // in the scope of declaration in line 3

8 }
9

10 int main()
11 {
12 f();
13 std::cout << i << "\n"; // outputs 1

14

15 return 0;
16 }

Since the formal arguments of a function have local scope, they also have automatic
storage duration. This means that we get a \fresh" set of formal arguments every time
the function is called, with memory assigned to them only until the respective function
call terminates.

Function declarations. A function itself also has a scope, and the function can only be
called within its scope. The scope of a function is obtained by combining the scopes of
all its declarations. The part of the function de�nition before block is a declaration, but
there may be function declarations that have no subsequent block. This is in contrast
to variables where every declaration is at the same time a de�nition. A function may be
declared several times, but it can be de�ned once only.

The following program, for example, does not compile, since the call of f in main is
not in the scope of f.

#include <iostream >

int main()
{

std::cout << f(1); // f undeclared

return 0;
}

int f (const int i) // scope of f begins here

{
return i;

}

But we can put f into the scope of main by adding a declaration before main, and this
yields a valid program.

#include <iostream >
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int f (int i); // scope of f begins here

int main()
{

std::cout << f(1); // ok , call is in scope of f

return 0;
}

int f (const int i)
{

return i;
}

In declarations, we omit const-quali�cations of arguments of fundamental type. As
explained in Section 3.1.3, such quali�cations are useful only internally, but the declara-
tion is about the outside behavior of the function. For the compiler, the two declarations

int f (int i);

and

int f (const int i);

are identical.
In the previous program, we could get rid of the extra declaration by simply de�ning

f before main, but sometimes, separate function declarations are indeed necessary. Con-
sider two functions f and g such that g is called in the function body of f, and f is called
in the function body of g. We have to de�ne one of the two functions �rst (f, say), but
since we call g within the body of f, g must have a declaration before the de�nition of
f.

3.1.6 Procedural programming

So far, we have been able to \live" without functions only because the programs that we
have written are pretty simple. But even some of these simple ones would bene�t from
functions. Consider as an example the program perfect.cpp from Exercise 49. In this
exercise, we have asked you to �nd the perfect numbers between 1 and n, for a given
input number n. The solution so far uses one \big" double loop (loop within a loop)
that in turn contains two if statements. Although in this case, the \big" loop is still
small enough to be read without di�culties, it doesn't really reect the logical structure
of the solution. Once we get to triple or quadruple loops, the program may become very
hard to follow.

But what is the logical structure of the solution? For every number i between 1 and
n, we have to test whether i is perfect; and to do the latter, we have to compute the sum of
all proper divisors of i and check whether it is equal to i. Thus, we have two clearly de�ned
subtasks that the program has to solve for every number i, and it is best to encapsulate
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these into functions. Program 19 shows how this is done. Note that the program is
now almost self-explanatory: the postconditions can more or less directly be read o� the
function names.

1 // Program: perfect2.cpp

2 // Find all perfect numbers up to an input number n

3

4 #include <iostream >
5

6 // POST: return value is the sum of all divisors of i

7 // that are smaller than i

8 unsigned int sum_of_proper_divisors (const unsigned int i)
9 {
10 unsigned int sum = 0;
11 for (unsigned int d = 1; d < i; ++d)
12 if (i % d == 0) sum += d;
13 return sum;
14 }
15

16 // POST: return value is true if and only if i is a

17 // perfect number

18 bool is_perfect (const unsigned int i)
19 {
20 return sum_of_proper_divisors (i) == i;
21 }
22

23 int main()
24 {
25 // input

26 std::cout << "Find perfect numbers up to n =? ";
27 unsigned int n;
28 std::cin >> n;
29

30 // computation and output

31 std::cout << "The following numbers are perfect .\n";
32 for (unsigned int i = 1; i <= n ; ++i)
33 if (is_perfect (i)) std::cout << i << " ";
34 std::cout << "\n";
35

36 return 0;
37 }

Program 19: progs/lecture/perfect2.cpp

Admittedly, the program is longer than perfect.cpp, but it is more readable, and it
has simpler control ow. In particular, the double loop has disappeared.
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The larger a program gets, the more important is it to subdivide it into small subtasks,
in order not to lose track of what is going on in the program on the whole; this is the
procedural programming paradigm, and in C++, it is realized with functions.

The procedural programming paradigm is not so self-evident as it may seem today.
The �rst programming language that became accessible to a general audience since the
1960's was BASIC (Beginner's All-purpose Symbolic Instruction Code).

In BASIC, there were no functions; in order to execute a code fragment responsible
for a subtask, you had to use the GOTO statement (with a line number)|or GOSUB in
many dialects|to jump to that code, and then jump back using another GOTO (RETURN,
respectively). The result was often referred to as spaghetti code, due to the control
ow meandering like a boiled spaghetti on a plate. Moreover, programmers often didn't
think in terms of clearly de�ned subtasks, simply because the language did not support
it. This usually lowered the code quality even further.

Despite this, BASIC was an extremely successful programming language. It reached
the peak of its popularity in the late 1970's and early 1980's when the proud owners
of the �rst home computers (among them the authors) created programs of fairly high
complexity in BASIC.

3.1.7 Arrays as function arguments

We have seen in Section 2.6.2 that an array cannot be initialized from another array, and
this implies that arrays have to receive special attention in the context of functions. The
usual �rst step in a function call evaluation (the call arguments are evaluated, and their
values are used to initialize the formal arguments) won't work with arrays.

Given this, it might be surprising that formal arguments of array type are allowed.
For example, we could declare a function

// PRE: a[0],...,a[n-1] are elements of an array

// POST: a[i] is set to value , for 0 <= i < n

void fill_n (int a[], int n, int value);

to set all elements of an array to some �xed value. The compiler, however, internally
adjusts this to the completely equivalent declaration

// PRE: a[0],...,a[n-1] are elements of an array

// POST: a[i] is set to value , for 0 <= i < n

void fill_n (int* a, int n, int value);

The same adjustment would happen for the formal argument int a[5], say, meaning
that the array length is ignored. You could in fact (legally, but quite confusingly) have
a formal argument int a[5], and then use an array of length 10 as call argument.

The moral is that in reality, no formal arguments of array type exist, and in order to
avoid confusion, it is better not to pretend otherwise.

If we want to build a function that works with arrays, we therefore have to think
about alternative ways of passing the array to the function. An obvious way is suggested
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by the declaration of fill_n above: we pass a pointer to the �rst element, along with
the number of elements. But the standard way is to pass two pointers, one to the
�rst element, and a past-the-end pointer. This also uniquely describes the array. We
may actually choose the call arguments in such a way that they describe a contiguous
subarray of the original array. This generalization is possible since the array itself never
appears as an argument.

Here is a program that de�nes and uses a �ll function in the standard way (which is
now just called fill since there is no n).

1 // Program: fill.cpp

2 // define and use a function to fill an array

3

4 #include <iostream >
5

6 // PRE: [first , last) is a valid range

7 // POST: *p is set to value , for p in [first , last)

8 void fill (int* first , int* last , const int value) {
9 // iteration by pointer

10 for (int* p = first; p != last; ++p)
11 *p = value;
12 }
13

14 int main()
15 {
16 int a[5];
17 fill (a, a+5, 1); // a == {1, 1, 1, 1, 1}

18 return 0;
19 }

Program 20: progs/lecture/�ll.cpp

In fill, we iterate over all addresses in the range [first, last), and we get the ar-
ray elements by dereferencing. A valid range contains the addresses of a (possibly empty)
set of consecutive array elements, where the halfopen interval notation [first, last)

means that the range is given by the values of first, first+1, . . . ,last-1. In other
words, last is a past-the-end pointer for the subarray described by the range.

Let us make a small digression and try to understand why the \standard way" of
passing an array as a range (as in fill) is preferable to passing it as a pointer to its �rst
element plus its length (as envisioned in the declaration of fill_n). In C++, there are
techniques to make functions like fill or fill_n available not only for arrays, but for
many other containers at the same time. In this general setting, the functions work with
iterators.

As already indicated on page 146 in Section 2.6.9, we may think of iterators as gen-
eralized pointers to container elements, but the operations that we can actually perform
on these \pointers" depend on the container. The way we have de�ned a container in
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Section 2.6.5, we are guaranteed that we can iterate over its elements. By convention,
this is realized through \pointer" increment, using the operator ++. Therefore, the func-
tion fill as above has the potential to work for all containers, since it only requires
\pointer" functionality that is o�ered by all container iterators.

Now, if you think about how to implement fill_n using only the operator ++ on
pointers, you realize that you need an extra counting variable to �nd out when you
are done. You cannot simply construct a past-the-end iterator a+n, since this requires
random access functionality that the container in question may not o�er. Thus, you
either end up with a more complicated, or with a less general �ll function than fill.
There are some situations where array-passing as in fill_n is appropriate, but in the
majority of the cases, you want to do it as in fill.

Mutating functions. There is a substantial di�erence between the function pow on the one
hand, and the function fill on the other hand. A call to the function pow has no e�ect,
since the computations only modify formal argument values; these values are \local" to
the function call and are lost upon termination. With pow, it's the value of a function
call that we are interested in.

Calls to the function fill, on the other hand, have e�ects: they modify the values
of array elements, and these values are not local to the function call. When we write

int a[5];
fill (a, a+5, 0);

the e�ect of the expression fill (a, a+5, 0) is that all elements of a receive value 0.
This is possible since there are formal arguments of pointer type. When the function
call fill (a, a+5, 0) is evaluated, the formal argument first is initialized with the
address of a's �rst element. In the function body, the value at this address is modi�ed
through the lvalue *p, and the same happens for the other four array elements in turn.

Formal arguments of pointer type are therefore a means of constructing functions
with value-modifying e�ects. Such functions are called mutating.

Of course, there are also functions on arrays that are non-mutating, and in this case,
const-correctness requires us to document this in the types of the formal arguments.
As an example, consider the following function for �nding the minimum element in a
nonempty range of integers delimited by two pointers.

// PRE: [first , last) is a valid nonempty range

// POST: the smallest of the values described by [first , last)

// is returned

int min_element (const int* first , const int* last)
{

assert (first != last);
int m = *first ++; // current candidate for the minimum

for (const int *p = first; p < last; ++p)
if (*p < m) m = *p;

return m;
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}

As the function min_element does not intend to modify the objects described by the
range [first, last), the respective pointers have const-quali�ed underlying type const int

(see also Section 2.6.8). For all formal arguments of non-pointer type that we know so
far, the const keyword makes no di�erence outside the function body, since the values
of the call arguments cannot be changed by the function anyway. For formal argu-
ments of pointer type, the di�erence is essential and lets us distinguish mutating from
non-mutating functions.

3.1.8 Modularization

There are functions that are tailor-made for a speci�c program, and it would not make
sense to use them in another program. But there are also general purpose functions that
are useful in many programs. It is clearly undesirable to copy the corresponding function
de�nition into every program that calls the function; what we need is modularization,
a subdivision of the program into independent parts.

The power function pow from Program 18 is certainly general purpose. In order to
make it available to all our programs, we can simply put the function de�nition into a
separate sourcecode �le pow.cpp, say, in our working directory.

1 #include <cassert >
2

3 // PRE: e >= 0 || b != 0.0

4 // POST: return value is b^e

5 double pow (double b, int e)
6 {
7 assert (e >= 0 || b != 0.0);
8 double result = 1.0;
9 if (e < 0) {
10 // b^e = (1/b)^(-e)

11 b = 1.0/b;
12 e = -e;
13 }
14 for (int i=0; i<e; ++i) result *= b;
15 return result;
16 }

Program 21: progs/lecture/pow.cpp

Then we can include this �le from our main program as follows.

1 // Prog: callpow2.cpp

2 // Call a function for computing powers.

3



192 CHAPTER 3. FUNCTIONS

4 #include <iostream >
5 #include "pow.cpp"
6

7 int main()
8 {
9 std::cout << pow( 2.0, -2) << "\n"; // outputs 0.25

10 std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25

11 std::cout << pow( 5.0, 1) << "\n"; // outputs 5

12 std::cout << pow( 3.0, 4) << "\n"; // outputs 81

13 std::cout << pow(-2.0, 9) << "\n"; // outputs -512

14

15 return 0;
16 }

Program 22: progs/lecture/callpow2.cpp

An include directive of the form

#include "�lename"

logically replaces the include directive by the contents of the speci�ed �le. Usually,
�lename is interpreted relative to the working directory.

Separate compilation and object code files. The code separation mechanism from the pre-
vious paragraph has one major drawback: the compiler does not \see" it. Before com-
pilation, pow.cpp is logically copied back into the main �le, so the compiler still has to
translate the function de�nition into machine language every time it compiles a program
that calls pow. This is a waste of time that can be avoided by separate compilation.

In our case, we would compile the �le pow.cpp separately. We only have to tell the
compiler that it should not generate an executable program (it can't, since there is no
main function) but an object code �le, called pow.o, say. This �le contains the machine
language instructions that correspond to the C++ statements in the function body of
pow.

Header files. The separate compilation concept is more powerful than we have seen so
far: surprisingly, even programs that call the function pow can be compiled separately,
without knowing about the source code �le pow.cpp or the object code �le pow.o. What
the compiler needs to have, though, is a declaration of the function pow.

This function declaration is best put into a separate �le as well. In our case, this �le
pow.h, say, is very short; it contains just the lines

// PRE: e >= 0 || b != 0.0

// POST: return value is b^e

double pow (double b, int e);
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Since this is the \header" of the function pow, the �le pow.h is called a header �le. In
the calling Program 22, we simply replace the inclusion of pow.cpp by the inclusion of
pow.h, resulting in the following program.

1 // Prog: callpow3.cpp

2 // Call a function for computing powers.

3

4 #include <iostream >
5 #include "pow.h"
6

7 int main()
8 {
9 std::cout << pow( 2.0, -2) << "\n"; // outputs 0.25

10 std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25

11 std::cout << pow( 5.0, 1) << "\n"; // outputs 5

12 std::cout << pow( 3.0, 4) << "\n"; // outputs 81

13 std::cout << pow(-2.0, 9) << "\n"; // outputs -512

14

15 return 0;
16 }

Program 23: progs/lecture/callpow3.cpp

From this program, the compiler can then generate an object code �le callpow3.o.
Instead of the machine language instructions for executing the body of pow, this object
code contains a placeholder for the location under which these instructions are to be
found in the executable program. It is important to understand that callpow3.o cannot
be an executable program yet: it does contain machine language code for main, but not
for another function that it needs, namely pow.

The linker. Only when an executable program is built from callpow3.o, the object
code �le pow.o comes into play. Given all object �les that are involved, the linker
builds the executable program by gluing together machine language code for function
calls (in callpow3.o) with machine language code for the corresponding function bodies
(in pow.o). Technically, this is done by putting all object �les together into a single
executable �le, and by �lling placeholders for function body locations with the actual
locations in the executable.

Separate compilation is very useful. It allows to change the de�nition of a function
without having to recompile a single program that calls it. As long as the function
declaration remains unchanged, it is only the linker that has to work in the end; and
the linker is usually very fast. It follows that separate compilation also makes sense for
functions that are speci�c to one program only.

Separate compilation reects the \customer" view of the calling program: as long
as a function does what its pre- and postcondition promise in the header �le, it is not
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important to know how it does this. On the other hand, if the function de�nition is
hidden from the calling program, clean pre- and postconditions are of critical importance,
since they may be the only information available about the function's behavior.

Availability of sourcecode. If you have carefully gone through what we have done so far,
you realize that we could in principle delete the sourcecode �le pow.cpp after having
generated pow.o, since later, the function de�nition is not needed anymore. When you
buy commercial software, you are often faced with the absence of sourcecode �les, since
the vendor does not want customers to modify the sourcecode instead of buying updates,
or to discover how much money they have paid for lousy software. (To be fair, we want
to remark that there are also more honest reasons for not giving away sourcecode.)

In academic software, availability of sourcecode goes without saying. In order to
evaluate or reproduce the contribution of such software to the respective area of research,
it is necessary to have sourcecode. Even in commercial contexts, open source software
is advancing. The most prominent software that comes with all sourcecode �les is the
operating system Linux. Open source software can very e�ciently be adapted and
improved if many people contribute. But such a contribution is possible only when the
sourcecode is available.

Libraries. The function pow will not be the only mathematical function that we want
to use in our programs. To make the addition of new functions easy, we can put the
de�nition of pow (and similar functions that we may add later) into a single sourcecode
�le math.cpp, say, and the corresponding declarations into a single header �le math.h.
The object code �le math.o then contains machine language code for all our mathematical
functions.

Although not strictly necessary, it is good practice to include math.h in the begin-
ning of math.cpp. This ensures consistency between function declarations and function
de�nitions and puts the code in math.cpp into the scope of all functions declared in
math.h, see Section 3.1.5. In all function bodies in math.cpp, we can therefore call the
other functions, without having to think about whether these functions have already
been declared.

In general, several object code �les may be needed to generate an executable program,
and it would be cumbersome to tell the linker about all of them. Instead, object code
�les that logically belong together can be archived into a library. Only the name of this
library must then be given to the linker in order to have all library functions available for
the executable program. In our case, we so far have only one object �le math.o resulting
from math.cpp, but we can still build a library �le libmath.a, say, from it.

Figure 18 schematically shows how object code �les, a library and �nally an exe-
cutable program are obtained from a number of sourcecode �les.

Centralization and namespaces It is clear that we do not want to keep header �les and
libraries of general interest in our working directory, since we (and others) may have
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Figure 18: Building object code �les, libraries and executable programs.

many working directories. Header �les and libraries should be at some central place.
We can make our programs independent from the location of header �les by writing

#include <�lename>

but in this case, we have to tell the compiler (when we start it) where to search for �les
to be included. This is exactly the way that headers like iostream from the standard
library are included; their locations are known to the compiler, so we don't have to
provide any information here. Similarly, we can tell the linker where the libraries we
need are to be found. Again, for the various libraries of the standard library, the compiler
knows this. We want to remark that �lename is not necessarily the name of a physical
�le; the mapping of �lename to actual �les is implementation de�ned.

Finally, it is good practice to put all functions of a library into a namespace, in order
to avoid clashes with user-declared names, see Section 2.1.3. Let us use the namespace
ifm here.

Here are the header and implementation �les math.h and math.cpp that result from
these guidelines for our intended library of mathematical functions (that currently con-
tains pow only).

1 // math.h

2 // A small library of mathematical functions.
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3

4 namespace ifm {
5 // PRE: e >= 0 || b != 0.0

6 // POST: return value is b^e

7 double pow (double b, int e);
8 }

Program 24: progs/lecture/math.h

1 // math.cpp

2 // A small library of mathematical functions.

3

4 #include <cassert >
5 #include <IFM/math.h>
6

7 namespace ifm {
8

9 double pow (double b, int e)
10 {
11 assert (e >= 0 || b != 0.0);
12 // PRE: e >= 0 || b != 0.0

13 // POST: return value is b^e

14 double result = 1.0;
15 if (e < 0) {
16 // b^e = (1/b)^(-e)

17 b = 1.0/b;
18 e = -e;
19 }
20 for (int i=0; i<e; ++i) result *= b;
21 return result;
22 }
23

24 }

Program 25: progs/lecture/math.cpp

Finally, the program callpow4.cpp calls our library function ifm::pow. It includes
the header �le math.h from a central directory IFM.

1 // Prog: callpow4.cpp

2 // Call library function for computing powers.

3

4 #include <iostream >
5 #include <IFM/math.h>
6

7 int main()
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8 {
9 std::cout << ifm::pow( 2.0, -2) << "\n"; // outputs 0.25

10 std::cout << ifm::pow( 1.5, 2) << "\n"; // outputs 2.25

11 std::cout << ifm::pow( 5.0, 1) << "\n"; // outputs 5

12 std::cout << ifm::pow( 3.0, 4) << "\n"; // outputs 81

13 std::cout << ifm::pow(-2.0, 9) << "\n"; // outputs -512

14

15 return 0;
16 }

Program 26: progs/lecture/callpow4.cpp

3.1.9 Using library functions

You can imagine that we were not the �rst to put a function like pow into a library.
Indeed, the standard library contains a function std::pow that is even more general
than ours: it can compute be for real exponents e. Accordingly, the arguments of
std::pow and its return value are of type double. In order to use this function, we have
to include the header cmath. This header contains declarations for a variety of other
numerical functions.

Using functions from the standard library can help us to get shorter, better, or more
e�cient code, without having to write a single new line by ourselves. For example,
computing square roots can speed up our primality test in Program 8. You might have
realized this much earlier, but when we are looking for some proper divisor of a natural
number n � 2, it is su�cient to search in the range {2, . . . , bpnc}. Indeed, if n can be
written as a product n = dd 0, then the smaller of d and d 0 must be bounded by

p
n;

since the divisors are integral, we even get a bound of bpnc, pn rounded down.
The primality test could therefore be written more e�ciently; Program 27 does this,

using the function std::sqrt from the library cmath, whose argument and return types
are double.

1 // Program: prime2.cpp

2 // Test if a given natural number is prime.

3

4 #include <iostream >
5 #include <cmath >
6

7 int main ()
8 {
9 // Input

10 unsigned int n;
11 std::cout << "Test if n>1 is prime for n =? ";
12 std::cin >> n;
13
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14 // Computation: test possible divisors d up to sqrt(n)

15 const unsigned int bound = (unsigned int)(std::sqrt(n));
16 unsigned int d;
17 for (d = 2; d <= bound && n % d != 0; ++d);
18

19 // Output

20 if (d <= bound)
21 // d is a divisor of n in {2,...,[ sqrt(n)]}

22 std::cout << n << " = " << d << " * " << n / d << ".\n";
23 else
24 // no proper divisor found

25 std::cout << n << " is prime.\n";
26

27 return 0;
28 }

Program 27: progs/lecture/prime2.cpp

The program is correct: if d <= bound still holds after the loop, we have left the loop
because the other condition n % d != 0 has failed. This means that we have found a
divisor. If d > bound holds after the loop, we have tried all possible divisors smaller
or equal to bound (whose value is bpnc, since the explicit conversion rounds down,
see Section 2.5.3), so we certainly have not missed any divisor. But we have to be a
little careful here: our arguments assume that std::sqrt works correctly for squares.
For example, std::sqrt(121) must return 11 (a little more wouldn't hurt), but not
10.99998, say. In that latter case, (unsigned int)(std::sqrt(121)) would have value
10, and by making this our bound, we miss the divisor 11 of 121, erroneously concluding
that 121 is prime.

It is generally not safe to rely on some precise semantics of library functions, even
if your platform implements oating point arithmetic according to the IEEE standard
754 (see Section 2.5.6). The square root function is special in the sense that the IEEE
standard still guarantees the result of std::sqrt to be the oating point number closest
to the real square root; consequently, our above implementation of the primality test is
safe. But similar guarantees do not necessarily hold for other library functions.

Also in our second prime number application, Eratosthenes's Sieve, we'd better call
a standard library function in order to initialize our list of crossed out numbers, instead
of doing it ourselves with a loop. For this, we would replace the two lines

for (unsigned int i = 0; i < n; ++i)
crossed_out[i] = false;

of Program 15 with the single line

std::fill (crossed_out , crossed_out + n, false);

The pre- and postconditions of this standard library function exactly match the ones of
our own fill function from Page 189. The bene�t here is not the saving of one line of
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code; this saving does not even exist, since we additionally have to #include <algorithm>

in the beginning of the program.
The bene�t is that we eliminate possible sources of error (even a trivial loop has the

potential of being wrong), and that we simplify the control ow (see also Section 2.4.8).

3.1.10 Details

Default arguments. Some functions have the property that there are \natural" values for
one or more of their formal arguments. For example, when �lling an array of underlying
type int, the value 0 is such a natural value. In such a case, it is possible to specify
this value as a default argument ; this allows the caller of the function to omit the
corresponding call argument and let the compiler insert the default value instead. In
case of the function fill from Program 20, this would look as follows.

// PRE: [first , last) is a valid range

// POST: *p is set to value , for p in [first , last)

void fill (int* first , int* last , const int value = 0) {
// iteration by pointer

for (int* p = first; p != last; ++p)
*p = value;

}

This function can now be called with either two or three arguments, as follows.

int a[5];
fill (a, a+5); // means: fill (a, a+5, 0)

fill (a, a+5, 1);

In general, there can be default values for any number of formal arguments, but these
arguments must be at consecutive positions i, i + 1, . . . , k among the k arguments, for
some i. The function can then be called with any number of call arguments between
i−1 and k, and the compiler automatically inserts the default values for the missing call
arguments.

A function may have a separate declaration that speci�es default arguments, like in
the following declaration of fill.

// PRE: [first , last) is a valid range

// POST: *p is set to value , for p in [first , last)

void fill (int* first , int* last , int value = 0);

In this case, the actual de�nition must not repeat the default arguments (the actual rules
are a bit more complicated, but this is the upshot).

Function signatures. In function declarations, the formal argument names pname1,. . . ,
pnamek can be omitted.

This makes sense since these names are only needed in the function de�nition. The
important information, namely domain and range of the function, are already speci�ed
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by the argument types and the return type. All these types together form the signature
of the function.

In math.h, we could therefore equivalently write the declaration

double pow (double , int);

The only problem is that we need the formal argument names to specify pre- and post-
conditions, without going to lengthy formulations involving \the �rst argument" and
\the second argument". Therefore, we usually write the formal argument names even in
function declarations.

Mathematical functions. Many of the mathematical functions that are available on sci-
enti�c pocket calculators are also available from the math library cmath. The following
table lists some of them. All are available for the three oating point number types
float, double and long double.

name function
std::abs |x|

std::sin sin(x)

std::cos cos(x)

std::tan tan(x)

std::asin sin−1(x)

std::acos cos−1(x)

std::atan tan−1(x)

std::exp ex

std::log ln x

std::log10 log10 x

std::sqrt
p

x

3.1.11 Goals

Dispositional. At this point, you should . . .

1) be able to explain the purpose of functions in C++;

2) understand the syntax and semantics of C++ function de�nitions and declarations;

3) know what the term \procedural programming" means;

4) understand the function pow from Program 18 and the functions fill_n and fill

from Program 20;

5) know that formal arguments of pointer type can be used to write array-processing
functions, and mutating functions;

6) know why it makes sense to compile function de�nitions separately, and to put
functions into libraries.
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Operational. In particular, you should be able to . . .

(G1) give two reasons why it is desirable to subdivide programs into functions;

(G2) �nd pre- and postconditions for given functions, where the preconditions should
be as weak as possible, and the postconditions should be as strong as possible;

(G3) �nd syntactical and semantical errors in function de�nitions, and in programs
that contain function de�nitions;

(G4) evaluate given function call expressions;

(G5) understand and write functions that perform simple arrayprocessing tasks;

(G6) write (mutating) functions for given tasks, and write programs for given tasks
that use functions, observing const-correctness;

(G7) subdivide a given task into small subtasks, and write a program for the given task
that uses functions to realize the subtasks;

(G8) build a library on your platform, given that you are told the necessary technical
details.

3.1.12 Exercises

Exercise 91 Find pre- and postconditions for the following functions. (G2)(G4)

a) int f (const double i, const double j, const double k)
{

if (i > j)
if (i > k)

return i;
else

return k;
else

if (j > k)
return j;

else
return k;

}

b) double g (const int i, const int j)
{

double r = 0.0;
for (int k = i; k <= j; ++k)

r += 1.0 / k;
return r;

}
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Exercise 92 What are the problems (if any) with the following functions? Fix them
and �nd appropriate pre- and postconditions. (G2)(G3)

a) bool is_even (const int i)
{

if (i % 2 == 0) return true;
}

b) double inverse (const double x)
{

double result;
if (x != 0.0)

result = 1.0 / x;
return result;

}

Exercise 93 What is the output of the following program, depending on the input
number i? Describe the output in mathematical terms, ignoring possible over- and
underows. (G4)

#include <iostream >

int f (const int i)
{

return i * i;
}

int g (const int i)
{

return i * f(i) * f(f(i));
}

void h (const int i)
{

std::cout << g(i) << "\n";
}

int main()
{

int i;
std::cin >> i;
h(i);

return 0;
}
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Exercise 94 Find three problems in the following program. (G3)(G4)

#include <iostream >

double f (const double x)
{

return g(2.0 * x);
}

bool g (const double x)
{

return x % 2.0 == 0;
}

void h ()
{

std::cout << result;
}

int main()
{

const double result = f(3.0);
h();

return 0;
}

Exercise 95 Simplify the program from Exercise 70 by using the library function
std::pow. (G6)

Exercise 96 Assume that on your platform, the library function std::sqrt is not very
reliable. For x a value of type double (x � 0), we let s(x) be the value returned by
std::sqrt(expr), if expr has value x, and we assume that we only know that for
some positive value ε � 1/2, the relative error satis�es

|s(x) −
p

x|p
x

� ε, 8x.

How can you change Program 27 such that it correctly works under this relative
error bound? You may assume that the oating point number system used on your
platform is binary, and that all values of type unsigned int are exactly representable
in this system. (This is a theory exercise.) (G6)

Exercise 97
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a) Write a function

// POST: return value is true if and only if n is prime

bool is_prime (unsigned int n);

and use this function in a program to count the number of twin primes in the
range {2, . . . , 10000000} (two up to ten millions). A twin prime is a pair of
numbers (i, i + 2) both of which are prime.

b) Is the approach of a) the best (most e�cient) one to this problem? If you
can think of a better approach, you are free to implement it instead of the one
outlined in a).

(G6)

Exercise 98 The function pow in Program 18 needs |e| multiplications to compute be.
Change the function body such that less multiplications are performed. You may
use the following fact. If e � 0 and e has binary representation

e =

∞∑
i=0

bi2
i,

then

be =

∞∏
i=0

�
b2i
�bi

.

(G6)

Exercise 99 Write a program swap.cpp that de�nes and calls a function for inter-
changing the values of two int objects. The program should have the following
structure.

#include <iostream >

// your function definition goes here

int main() {
// input

std::cout << "i =? ";
int i; std::cin >> i;

std::cout << "j =? ";
int j; std::cin >> j;

// your function call goes here
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// output

std::cout << "Values after swapping: i = " << i
<< ", j = " << j << ".\n";

return 0;
}

Here is an example run of the completed program:

i =? 5
j =? 8
Values after swapping: i = 8, j = 5.

(G6)

Exercise 100 Write a program unique.cpp that implements and tests the following
function.

// PRE: [first , last) is a valid range and describes a sequence

// of elements that are sorted in nondecreasing order

// POST: the return value is true if and only if no element

// occurs twice in the sequence

bool unique (const int* first , const int* last);

(G5)(G6)

Exercise 101 Modify the program sort_array.cpp from Exercise 82 in such way that
the resulting program sort_array2.cpp de�nes and calls a function

// PRE: [first , last) is a valid range

// POST: the elements *p, p in [first , last) are

// in ascending order

void sort (int* first , int* last);

to perform the sorting of the array into ascending order. It may be tempting (but
not allowed for obvious reasons) to use std::sort or similar standard library func-
tions in the body of the function sort that is to be de�ned. It is allowed, though,
to compare the e�ciency of your sort function with that of std::sort (which has
the same pre- and postconditions and can be used after include<algorithm>).

For this exercise, it is desirable (but not strictly necessary) to use pointer incre-
ment (++p) as the only operation on pointers (apart from initialization and assign-
ment, of course). If you succeed in doing so, your sorting function has the potential
of working for containers that do not o�er random access (see also Section 3.1.7).
(G5)(G6)

Exercise 102 Provide the postcondition for the following function. The postcondition
must completely describe the behavior of the function for all valid inputs.(G2)(G5)
(G6)



206 CHAPTER 3. FUNCTIONS

a) // PRE: [b, e) and [o, o+(e-b)) are disjoint valid ranges

void f (int* b, int* e, int* o)
{

while (b != e) *(o++) = *(--e);
}

b) Which of the three following function calls are valid according to the precondition?

int a[5] = {1,2,3,4,5};

f(a, a+5, a+5);
f(a, a+2, a+3);
f(a, a+3, a+2);

c) Is the function f implemented in a const-correct fashion? If not, where are const's
to be added?

Exercise 103 What does the following function do if e - b has value 5? To answer
this, write down the values of b[0], b[1],. . . , b[4] after a call to f(b, b+5).

// PRE: [b, e) is a valid range

void f(unsigned int* b, unsigned int* e)
{

int n = e - b;
for (int i = 0; i < n; ++i) {

b[i] = 1;
for (int j = i - 1; j > 0; --j)
b[j] += b[j - 1];

}
}

Can you describe the behavior (and thus provide a postcondition) for general
value of e-b? (G2)(G5)

Exercise 104 A perpetual calendar can be used to determine the weekday (Monday,
. . . , Sunday) of any given date. You may for example know that the Berlin wall
came down on November 9, 1989, but what was the weekday? (It was a Thursday.)
Or what is the weekday of the 1000th anniversary of the Swiss confederation, to be
celebrated on August 1, 2291? (Quite adequately, it will be a Saturday.)

a) The task is to write a program that outputs the weekday (Monday, . . . , Sun-
day) of a given input date.

Identify a set of subtasks to which you can reduce this task. Such a set is
not unique, of course, but all individual subtasks should be small (so small
that they could be realized with few lines of code). It is of course possible
for a subtask in your set to reduce to other subtasks. (Without giving away
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anything, one subtask that you certainly need is to determine whether a given
year is a leap year).

b) Write a program perpetual_calendar.cpp that reads a date from the input and
outputs the corresponding weekday. The range of dates that the program can
process should start no later than January 1, 1900 (Monday). The program
should check whether the input is a legal date, and if not, reject it. An example
run of the program might look like this.

day =? 13
month =? 11
year =? 2007
Tuesday

To structure your program, implement the subtasks from a) as functions, and
put the program together from these functions.

(G6)(G7)

Exercise 105 Build a library on your platform from the �les math.h and math.cpp in
Program 24 and Program 25. Use this library to generate an executable program
from Program 26. (G6)(G8)

Exercise 106

a) Implement the following function and test it. You may assume that the type
double complies with the IEEE standard 754, see Section 2.5.6. The function
is only required to work correctly, if the nearest integer is in the value range
of the type int. (G6)

// POST: return value is the integer nearest to x

int round (double x);

b) The postcondition of the function does not say what happens if there are two
nearest integers. Specify the behavior of your implementation in the postcon-
dition of your function. (G2)

c) Add a declaration of your function to the �le math.h (Program 24) and a de�nition
to math.cpp (Program 25). Build a library from these two �les, and rewrite your
test function from a) to call the library version of the function round. (G8)

Exercise 107 This is another (not too di�cult) one from Project Euler (Problem 56,
http://projecteuler.net/). Find natural numbers a, b < 100 for which ab has the
largest cross sum (sum of decimal digits). Let us say upfront that 9999 is not the
answer.

Write a program power_cross_sums.cpp that computes the best a and b (within
reasonable time).

Can you also �nd the best a, b up to 1, 000?
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3.1.13 Challenges

Exercise 108 (This is a theory challenge.) The simplest computer model that is being
studied in theoretical computer science is the deterministic �nite automaton (DFA).
Such an automaton is de�ned over a �nite alphabet Σ (for example Σ = {0, 1}).
Then it has a �nite set of states Q. The main ingredient is the transition function

δ : Q� Σ→ Q.

We can visualize this function as follows: whenever δ(q, σ) = q 0, we draw an arrow
from state q to state q 0, labeled with σ.

Finally, there is a starting state s 2 Q and a subset F � Q of accepting states.
Figure Figure 19 depicts a DFA with state set Q = {0, 1, 2}. The starting state is
indicated by an arrow coming in from nowhere, and the accepting states are marked
with double circles (in this case, there is only one).

0 1

2

0

1

1

0

1

0

Figure 19: A deterministic �nite automaton (DFA)

Why can we call such an automaton a computer model? Because it performs
a computation, namely the following: given an input word w 2 Σ� (�nite sequence
of symbols from the alphabet Σ), the automaton either accepts, or rejects it. To
do this, the word w is processed symbol by symbol, starting in s. Whenever the
automaton is in some state q and the next symbol is σ, the automaton switches to
state q 0 = δ(q, σ). When all symbols have been processed, the automaton is either
in an accepting state q 2 F (in which case w is accepted), or in a non-accepting
state q 2 Q \ F (in which case w is rejected).

For example, when we feed the automaton of Figure 19 with the word w =

0101, the sequence of states that are being visited is 0, 0, 1, 2, 2. Consequently, w is
rejected.

The language L of the automaton is the set of accepted words. This is a (gen-
erally in�nite) subset of Σ�. Let's try to determine the language of the automaton
in Figure 19.
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It turns out that this is not such a straightforward task, and you need the right
idea. (To be honest, we had the idea �rst and then came up with an automaton
that realizes it). We claim that the automaton accepts exactly all the words that
are divisible by 3 if you interpret the word as a binary number (where the empty
word is interpreted as 0). For example, 0101 is the binary number

0 � 23 + 1 � 22 + 0 � 21 + 1 � 20 = 5,

and indeed 5 is not divisible by 3 (and hence rejected). In fact (and this is the key
to the proof of our claim), the state after processing w is the one numbered with
wmod 3. You can therefore say that the DFA of Figure 19 is a computer (with a
built-in program) that can solve the decision problem of checking whether a given
number is divisible by 3.

We are slowly approaching the actual challenge. For every subset L of {0, 1}�

from the following list, either �nd a DFA that has L as its language, or prove
that such a DFA cannot exist (which would show that DFA are limited in their
computational power).

a) L = {w 2 {0, 1}� | w has an even number of zeros and an even number of ones}

b) L = {w 2 {0, 1}� | w is divisible by 5 when interpreted as a binary number}

c) L = {w 2 {0, 1}� | w has more zeros than ones}

d) L = {w 2 {0, 1}� | w does not contain three consecutive ones}

Exercise 109 A Sudoku puzzle is posed on a grid of 9�9 cells, subdivided into 9 square
boxes of 3 � 3 cells each. Some grid cells are already �lled by numbers between 1

and 9; the goal is to �ll the remaining cells by numbers between 1 and 9 in such
a way that within each row, column, and box of the completed grid, every number
occurs exactly once. Here is an example of a Sudoku puzzle:

1 7 4

5 9 3 2

6 7 9

4 8

2 1

9 5

4 7 3

7 3 2 6

6 5 4

In solving the puzzle, one may try to deduce from the already �lled numbers that
exactly one number is a candidate for a suitable empty cell. Then this number is
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�lled into the cell, and the deduction process is repeated. There are two situations
where such a deduction for the cell in row r / column c and number n is particularly
easy and follows the Sherlock Holmes approach ( \How often have I said to you that
when you have eliminated the impossible, whatever remains, however improbable, must
be the truth?").

1. All numbers distinct from n already appear somewhere in the same row, col-
umn, or 3x3 box. This necessarily means that the cell has to be �lled with n,
since we have eliminated all other numbers as impossible.

2. All other cells in the same row, or in the same column, or in the same 3x3
box are already known not to contain n. Again, the cell has to be �lled by n

then, since we have eliminated all other cells for the number n within the row,
column, or box.

Write a program sudoku.cpp that takes as input a Sudoku puzzle in form of a
sequence of 81 numbers between 0 and 9 (the grid numbers given row by row, where
0 indicates an empty cell). The numbers might be separated by whitespaces, so that
the Sudoku puzzle from above could conveniently be encoded like this in a �le:

0 0 0 1 0 0 7 4 0
0 5 0 0 9 0 0 3 2
0 0 6 7 0 0 9 0 0

4 0 0 8 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 9 0 0 5

0 0 4 0 0 7 3 0 0
7 3 0 0 2 0 0 6 0
0 6 5 0 0 4 0 0 0

The program should now try to solve the puzzle by using only the two Sherlock-
Holmes-type deductions from above. The output should be a (partially) completed
grid that is either the solution to the puzzle, or the unique (why?) partial solution
in which no Sherlock-Holmes-type deductions apply anymore (again, empty cells
should be indicated by the digit 0).

In the above example, the output of a correct program will be the solution:

3 9 2 1 8 5 7 4 6
8 5 7 4 9 6 1 3 2
1 4 6 7 3 2 9 5 8

4 7 9 8 5 1 6 2 3
5 2 8 6 7 3 4 1 9
6 1 3 2 4 9 8 7 5
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2 8 4 5 6 7 3 9 1
7 3 1 9 2 8 5 6 4
9 6 5 3 1 4 2 8 7

For reading the input from a �le, it can be convenient to redirect the standard
input to the �le containing the puzzle data. For checking whether any Sherlock-
Holmes-type deductions apply, it can be useful to maintain (and update) for every
triple (r, c, n) the information whether n is still a possible candidate for the cell in
row r / column c.

You will discover that many Sudoku puzzles that typically appear in newspapers
can be solved by your program and are therefore easy, even if they are labeled as
medium or hard.

Hint: It is advisable not to optimize for e�ciency here, since this will only lead
to more complicated and error-prone code. Given the very small problem size, such
optimizations won't have a noticeable e�ect anyway.
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3.2 Recursion

Mir san mir.

Bavarian dictum, meaning \we are we".

Beware of bugs in the above code; I have only proved
it correct, not tried it.

D./ E./ Knuth, in a letter to van Emde Boas
(1977)

This section introduces recursive functions, functions that directly or in-
directly call themselves. You will see that recursive functions are very
natural in many situations, and that they lead to compact and readable
code close to mathematical function de�nitions. We will also explain
how recursive function calls are processed, and how recursion can (in
principle) be replaced with iteration. In the end, you will see two ap-
plications (sorting, and drawing fractals) that demonstrate the power of
recursion.

3.2.1 A warm-up

Many mathematical functions are naturally de�ned recursively, meaning that the func-
tion to be de�ned appears in its own de�nition. For example, for any n 2 N, the number
n! can recursively be de�ned as follows.

n! :=

{
1, if n � 1

n � (n − 1)!, if n > 1.

In C++ we can also have recursive functions: a function may call itself. This is
nothing exotic, since after all, a function call is just an expression that can in principle
appear anywhere in the function's scope, and that scope includes the function body.
Here is a recursive function for computing n!; in fact, this de�nition exactly matches the
mathematical de�nition from above.

// POST: return value is n!

unsigned int fac (const unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Here, the expression fac(n-1) is a recursive call of fac.
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Infinite recursion. With recursive functions, we have the same issue as with loops (Sec-
tion 2.4.2): it is easy to write down function calls whose evaluation does not terminate.
Here is the shortest way of creating an in�nite recursion: de�ne the function

void f()
{

f();
}

with no arguments and evaluate the expression f(). The reason for non-termination
is clear: the evaluation of f() consists of an evaluation of f() which consists of an
evaluation of f() which. . . you get the picture.

As for loops, the function de�nition has to make sure that progress towards termi-
nation is made in every function call. For the function fac above, this is the case: each
time fac is called recursively, the value of the call argument becomes smaller, and when
the value reaches 1, no more recursive calls are performed: we say that the recursion
\bottoms out".

3.2.2 The call stack

Let's try to understand what exactly happens during the evaluation of fac(3), say.
The formal argument n is initialized with 3, and since this is greater than 1, the
statement return n * fac(n-1); is executed next. This �rst evaluates the expression
n * fac(n-1) and in particular the right operand fac(n-1). Since n-1 has value 2, the
formal argument n is therefore initialized with 2.

But wait: what is \the" formal argument? Automatic storage duration implies that
each function call has its \own" fresh instance of the formal argument, and the lifetime
of this instance is the respective function call. In evaluating f(n-1), we therefore get
a new instance of the formal argument n, on top of the previous instance from the call
f(3) (that has not yet terminated). But which instance of n do we use in the evaluation
of f(n-1)? Quite naturally, it will be the new one, the one that \belongs" to the call
f(n-1). This rule is in line with the general scope rules from Section 2.4.3: the relevant
declaration is always the most recent one that is still visible.

The technical realization of this is very simple. Everytime a function is called, the call
argument is evaluated, and the resulting value is put on the call stack which is simply a
region in the computer's memory. If the function has several arguments, several values
are put on the call stack; to keep the description simple, we concentrate on the case of
one argument.

Like a stack of papers on your desk, the call stack has the property that the object
that came last is \on top". Upon termination of a function call, the top object is taken
o� the stack again. Whenever a function call accesses or changes its formal argument, it
does so by accessing or changing the corresponding object on top of the stack.

This has all the properties we want: every function call works with its own instance
of the formal argument; when it calls another function (or the function itself recursively),
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this instance becomes temporarily hidden, until the nested call has terminated. At that
point, the instance reappears on top of the stack and allows the original function call to
work with it again.

Table 5 shows how this looks like for f(3), assuming that the right operand of the
multiplication operator is always evaluated �rst. Putting an object on the stack \pushes"
it, and taking the top object o� \pops" it.

call stack (bottom ←→ top) evaluation sequence action

� � � fac(3) push 3

� � � n: 3 n * fac(n-1)

� � � n: 3 n * fac(2) push 2

� � � n: 3 n: 2 n * (n * fac(n-1))

� � � n: 3 n: 2 n * (n * fac(1)) push 1

� � � n: 3 n: 2 n: 1 n * (n * 1) pop

� � � n: 3 n: 2 n * (2 * 1)

� � � n: 3 n: 2 n * 2 pop

� � � n: 3 3 * 2

� � � n: 3 6 pop

� � �

Table 5: The call stack, and how it evolves during an evaluation of fac(3); the
respective value of n to use is always the one on top

Because of the call stack, in�nite recursions do not only consume time but also
memory. Unlike in�nite loops, they usually lead to a program abortion as soon as the
memory reserved for the call stack is full.

3.2.3 Basic practice

Let us consider two more simple recursive functions that are somewhat more interesting
than fac. They show that recursive functions are particularly amenable to correctness
proofs of their postconditions, and this makes them attractive. On the other hand,
we also see that it is easy to write innocent-looking recursive functions that are very
ine�cient to evaluate.

Greatest common divisor. Consider the problem of �nding the greatest common divisor
gcd(a, b) of two natural numbers a, b. This is de�ned as the largest natural number that
divides both a and b without remainder. In particular, gcd(n, 0) = gcd(0, n) = n for
n > 0; let us also de�ne gcd(0, 0) := 0.

The Euclidean algorithm �nds gcd(a, b), based on the following



3.2. RECURSION 215

Lemma 1 If b > 0, then

gcd(a, b) = gcd(b, amodb).

Proof. Let k be a divisor of b. From

a = (adiv b)b + amodb

it follows that

a

k
= (adiv b)

b

k
+

amodb

k
.

Since adiv b and b/k are integers, we get

amodb

k
2 N ⇔ a

k
2 N.

In words, if k is a divisor of b, then k divides a if and only if k divides amodb. This
means, the divisors of a and b are exactly the divisors of b and amodb. This proves
that gcd(a, b) and gcd(b, amodb) are equal. �

Here is the corresponding C++ function for computing the greatest common divisor
of two unsigned int values, according to the Euclidean algorithm.

// POST: return value is the greatest common divisor of a and b

unsigned int gcd (const unsigned int a, const unsigned int b)
{

if (b == 0) return a;
return gcd(b, a % b); // b != 0

}

The Euclidean algorithm is very fast. We can easily call it for any unsigned int values
on our platform, without noticing any delay in the evaluation.

Correctness and termination. For recursive functions, it is often very easy to prove that
the postcondition is correct, by using the underlying mathematical de�nition directly
(such as n! for fac), or by using some facts that follow from the mathematical de�nition
(such as Lemma 1 for gcd).

The correctness proof must involve a termination proof, so let's start with this: every
call to gcd terminates, since the value b of the second argument is bounded from below
by 0 and gets smaller in every recursive call (we have amodb < b).

Given this, the correctness of the postcondition follows from Lemma 1 by induction
on b. For b = 0, this is clear. For b > 0, we inductively assume that the postcondition
is correct for all calls to gcd where the second argument has value b 0 < b. Since b 0 =

amodb satis�es b 0 < b, we may assume that the call gcd(b, a % b) correctly returns
gcd(b, amodb). But by the lemma, gcd(b, amodb) = gcd(a, b), so the statement

return gcd(b, a % b);

correctly returns gcd(a, b).
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Fibonacci numbers. The sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . of Fibonacci numbers is one
of the most famous sequences in mathematics. Formally, the sequence is de�ned as
follows.

F0 := 0,

F1 := 1,

Fn := Fn−1 + Fn−2, n > 1.

This means, every element of the sequence is the sum of the two previous ones. From
this de�nition, we can immediately write down a recursive C++ function for computing
Fibonacci numbers, getting termination and correctness for free.

// POST: return value is the n-th Fibonacci number F_n

unsigned int fib (const unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2); // n > 1

}

If you write a program to compute the Fibonacci number Fn using this function, you
will notice that somewhere between n = 30 and n = 50, the program becomes very slow.
You even notice how much slower it becomes when you increase n by just 1.

The reason is that the mathematical de�nition of Fn does not lead to an e�cient
algorithm, since all values Fi, i < n−1, are repeatedly computed, some of them extremely
often. You can for example check that the call to fib(50) computes F48 already twice
(once directly in fib(n-2), and once indirectly from fib(n-1). F47 is computed three
times, F46 �ve times, and F45 eight times (do you see a pattern?).

3.2.4 Recursion versus iteration

From a strictly functional point of view, recursion is superuous, since it can be simu-
lated through iteration (and a call stack explicitly maintained by the program; we could
simulate the call stack with an array). We don't have the means to prove this here, but
we want to show it for the recursive functions that we have seen in the previous section.

The function gcd is very easy to write iteratively, since it is tail-end recursive. This
means that there is only one recursive call, and that one appears at the very end of
the function body. Tail-end recursion can be replaced by a simple loop that iteratively
updates the formal arguments until the termination condition is satis�ed. In the case of
gcd, this update corresponds to the transformation (a, b)→ (b, amodb).

// POST: return value is the greatest common divisor of a and b

unsigned int gcd2 (unsigned int a, unsigned int b)
{

while (b != 0) {
const unsigned int a_prev = a;
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a = b;
b = a_prev % b;

}
return a;

}

You see that we get longer and less readable code, and that we need an extra variable to
remember the previous value of a before the update step; in the spirit of Section 2.4.8,
we should therefore use the original recursive formulation.

Our function fib for computing Fibonacci numbers is not tail-end recursive, but it
is still easy to write it iteratively. Remember that Fn is the sum of Fn−1 and Fn−2. We
can therefore write a loop whose iteration i computes Fi from the previously computed
values Fi−2 and Fi−1 that we maintain in the variables a and b.

// POST: return value is the n-th Fibonacci number F_n

unsigned int fib2 (const unsigned int n)
{

if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1

unsigned int b = 1; // F_2

for (unsigned int i = 3; i <= n; ++i) {
const unsigned int a_prev = a; // F_{i-2}

a = b; // F_{i-1}

b += a_prev; // F_{i-1} += F_{i-2} -> F_i

}
return b;

}

Again, this non-recursive version fib2 is substantially longer and more di�cult to
understand than fib, but this time there is a bene�t: fib2 is much faster, since it
computes every number Fi, i � n exactly once. While we would grow old in waiting
for the call fib(50) to terminate, fib2(50) gives us the answer in no time. (Unfortu-
nately, this answer may be incorrect, since F50 could exceed the value range of the type
unsigned int.)

In this case we would prefer fib2 over fib, simply since fib is too ine�cient for
practical use. The more complicated function de�nition of fib2 is a moderate price to
pay for the speedup that we get.

3.2.5 Primitive recursion

Roughly speaking, a mathematical function is primitive recursive if it can be written
as a C++ function f in such a way that f neither directly nor indirectly calls itself with
call arguments depending on f. For example,

unsigned int f (const unsigned int n)
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{
if (n == 0) return 1;
return f(f(n-1) - 1);

}

is not allowed, since f recursively calls itself with an argument depending of f. This
does not mean that the underlying mathematical function is not primitive recursive, it
just means that we have chosen the wrong C++ implementation. Indeed, the above f

implements the mathematical function satisfying f(n) = 1 for all n, and this function is
obviously primitive recursive.

In the early 20-th century, it was believed that the functions whose values can in
principle be computed by a machine are exactly the primitive recursive ones. Indeed,
the function values one computes in practice (including gcd(a, b) and Fn) come from
primitive recursive functions.

It later turned out that there are computable functions that are not primitive recur-
sive. A simple and well-known example is the binary Ackermann function A(m,n),
de�ned by

A(m,n) =


n + 1, if m = 0

A(m − 1, 1), if m > 0, n = 0

A(m − 1,A(m,n − 1)), if m > 0, n > 0.

The fact that this function is not primitive recursive requires a proof (that we don't
give here). As already noted above, it is necessary but not su�cient that this de�nition
recursively uses A with an argument that depends on A.

It may not be immediately clear that the corresponding C++ function

// POST: return value is the Ackermann function value A(m,n)

unsigned int A (const unsigned int m, const unsigned int n) {
if (m == 0) return n+1;
if (n == 0) return A(m-1,1);
return A(m-1, A(m, n -1));

}

always terminates, but Exercise 111 asks you to show this. Table 6 lists some Ackermann
function values. For m � 3, A(m,n) looks quite moderate, but starting from m = 4, the
values get extremely large. You can still compute A(4, 1), although this takes surprisingly
long already. Youmight be able to compute A(4, 2); after all, 265536−3 has \only" around
20, 000 decimal digits. But the call to A(4,3) will not terminate within any observable
period.

It can in fact be shown that A(n, n) grows faster than any primitive recursive function
in n (and this is a proof that A cannot be primitive recursive). Recursion is a powerful
but also dangerous tool, since it is easy to encode (too) complicated computations with
very few lines of code.
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n

m

0 1 2 3 � � � n

0 1 2 3 4 � � � n + 1

1 2 3 4 5 � � � n + 2

2 3 5 7 9 � � � 2n + 3

3 5 13 29 61 � � � 2n+3 − 3

4 13 65533 265536 − 3 2265536
− 3 � � � 22. . .

2︸ ︷︷ ︸
n+3

−3

Table 6: Some values of Ackermann's function

3.2.6 Sorting

Sorting a sequence of values (numbers, texts, etc.) into ascending order is a very basic
and important operation. For example, a speci�c value can be found much faster in a
sorted than in an unsorted sequence (see Exercise 119). You know this from daily life,
and that's why you sort your CDs, and why the entries in a telephone directory are
sorted by name.

We have asked you in Exercise 82 to write a program that sorts a given sequence
of integers; Exercise 101 was about making this into a function that sorts all numbers
described by a given pointer range. In both exercises, you were not supposed to do any
e�ciency considerations.

Here we want to catch up on this and investigate the complexity of the sorting
problem. Roughly speaking, the complexity of a problem is de�ned as the complexity
(runtime) of the fastest algorithm that solves the problem. In computing Fibonacci
numbers in Section 3.2.3 and Section 3.2.4, we have already seen that the runtimes of
di�erent algorithms for the same problem may vary a lot. The same is true for sorting
algorithms, as we will discover shortly.

Let us start by analyzing one of the \obvious" sorting algorithms that you may have
come up with in Exercise 82. The simplest one that the authors can think of isminimum-
sort. Given the sequence of values (let's assume they are integers), minimum-sort �rst
�nds the smallest element of the sequence; then it interchanges this element with the
�rst element. The sequence now starts with the smallest element, as desired, but the
remainder of the sequence still needs to be sorted. But this is done in the same way: the
smallest element among the remaining ones is found and interchanged with the second
element of the sequence, and so on.

Assuming that the sequence is described by a pointer range [first, last),minimum-
sort can be realized as follows.

// PRE: [first , last) is a valid range

// POST: the elements *p, p in [first , last) are in ascending order

void minimum_sort (int* first , int* last)
{
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for (int* p = first; p != last; ++p) {
// find minimum in nonempty range described by [p, last)

int* p_min = p; // pointer to current minimum

int* q = p; // pointer to current element

while (++q != last)
if (*q < *p_min) p_min = q;

// interchange *p with *p_min

std:: iter_swap (p, p_min);
}

}

The standard library function std::iter_swap interchanges the values of the objects
pointed to by its two arguments. There is also a function std::min_element (with the
same functionality as our home-made min_element on page 190) that we could use to
get rid of the inner loop; however, since we want to analyze the function minimum_sort

in detail, we refrain from calling any nontrivial standard library function here.
What can we say about the runtime of minimum_sort for a given range? That it

depends on the platform, this is for sure. On a modern PC, the algorithm will run much
faster than on a vintage computer from the twentieth century. There is no such thing
as \the" runtime. But if we look at what the algorithm does, we can �nd a measure of
runtime that is platform-independent.

A dominating operation in the sense that it occurs very frequently during a call to
minimum_sort is the comparison *q < *p_min. We can even exactly count the number
of such comparisons, depending on the number of elements n that are to be sorted. In
the �rst execution of the while statement, the �rst element is compared with all n − 1

succeeding elements. In the second execution, the second element in compared with all
the n − 2 succeeding elements, and so on. In the second-to-last execution of the while

statement, �nally, we have one comparison, and that's it. We therefore have the following

Observation 1 The function minimum_sort sorts a sequence of n elements with

1 + 2 + . . . n − 1 =
n(n − 1)

2

comparisons between sequence elements.

Why do we speci�cally count these comparisons? Because any other operation is ei-
ther performed much less frequently (for example, the declaration statement int* q = p

is executed only n times), or with approximately the same frequency. This concerns the
assignment p_min = q which may happen up to n(n − 1)/2 times, and the expression
++q != last; this one is evaluated even more frequently, namely n(n − 1)/2 + n times.
The total number of operations is therefore at most c1n(n − 1)/2 + c2n for some con-
stants c1, c2. For large n, the linear term c2n is negligible compared to the quadratic term
c1n(n − 1)/2; we can therefore conclude that the total number of operations needed to
sort n numbers is proportional to the number of comparisons between sequence elements.
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This implies the following: if you measure the runtime of the whole sorting algorithm,
the resulting time Ttotal will be proportional to the time Tcomp that is being spent with
comparisons between sequence elements. (However, due to the e�ects of caching and
other add-ons to the von-Neumann architecture, this is not necessarily true on every
platform.) Since Tcomp is in turn proportional to the number of comparisons itself, this
number is a good indicator for the e�ciency of the algorithm.

If you think about sorting more complicated values (like names in a telephone di-
rectory), a comparison between two elements might even become the single most time-
consuming operation. In such a scenario, Tcomp may eat up almost everything of Ttotal,
making the comparison count an even more appropriate measure of e�ciency.

To check that all this is not only pure theory, let us make some experiments and
measure the time that it takes to execute Program 28 below, for various values of n

(read from a �le in order not to measure the time it takes us to enter n). The program
�rst brings the sequence 0, 1, . . . , n − 1 into random order, using the standard library
function std::random_shuffle. Then it calls the function minimum_sort and �nally
checks whether we now indeed have the ascending sequence 0, 1, . . . , n − 1. Yes, this
program does other things apart from the actual sorting, but all additional operations
are \cheap" in the sense that their number is proportional to n at most; according to
our above line of arguments, they should therefore not matter.

1 // Prog: minimum_sort.cpp

2 // implements and tests minimum -sort on random input

3

4 #include <iostream >
5 #include <algorithm >
6

7 // PRE: [first , last) is a valid range

8 // POST: the elements *p, p in [first , last) are in ascending order

9 void minimum_sort (int* first , int* last)
10 {
11 for (int* p = first; p != last; ++p) {
12 // find minimum in nonempty range described by [p, last)

13 int* p_min = p; // pointer to current minimum

14 int* q = p; // pointer to current element

15 while (++q != last)
16 if (*q < *p_min) p_min = q;
17 // interchange *p with *p_min

18 std:: iter_swap (p, p_min);
19 }
20 }
21

22 int main()
23 {
24 // input of number of values to be sorted
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n 100,000 200,000 400,000 800,000 1,600,000
Gcomp 5 20 80 320 1280

Time (min) 0:15 1:05 4:26 15:39 64:22
sec/Gcomp 3.0 3.25 3.325 2.93 3.01

Table 7: Number of comparisons and runtime of minimum-sort

25 unsigned int n;
26 std::cin >> n;
27

28 int* const a = new int[n];
29

30 std::cout << "Sorting " << n << " integers ...\n";
31

32 // create random sequence

33 for (int i=0; i<n; ++i) a[i] = i;
34 std:: random_shuffle (a, a+n);
35

36 // sort into ascending order

37 minimum_sort (a, a+n);
38

39 // is it really sorted ?

40 for (int i=0; i<n -1;++i)
41 if (a[i] != i) std::cout << "Sorting error!\n";
42

43 delete [] a;
44

45 return 0;
46 }

Program 28: progs/lecture/minimum sort.cpp

Table 7 summarizes the results. For every value of n, Gcomp is the number of Gi-
gacomparisons (109 comparisons), according to Observation 1. In other words, Gcomp=
10−9n(n−1)/2. Time is the absolute runtime of the program in minutes and seconds, on
a modern PC. sec/Gcomp is Time (in seconds) divided by Gcomp and tells us how many
seconds the program needs to perform one Gigacomparison.

The table shows that the number of seconds per Gigacomparison is around 3 for all
considered values of n. As predicted above, the runtime in practice is therefore indeed
proportional to the number of comparisons between sequence elements. This number
quadruples from one column to the next, and so does the runtime.

We also see that sorting numbers using minimum-sort appears to be pretty ine�-
cient. 1,600,000 is not large by today's standards, but to sort that many numbers takes
more than one hour! Given that sec/Gcomp appears to be constant, we can even estimate
the time that it would take to sort 10,000,000 numbers, say. For this, we derive from
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Observation 1 the required number of Gigacomparisons (50,000) and multiply it with 3.
The resulting 150,000 seconds are almost two days.

Essentially the same �gures result from running other well-known simple sorting
algorithms like bubble-sort or insert-sort. Can we do better? Yes, we can, and recursion
helps us to do it!

Merge-sort. The paradigm behind the merge-sort algorithm is this: if a problem is too
large to be solved directly, subdivide it into smaller subproblems that are easier to solve,
and then put the overall solution together from the solutions of the subproblems. This
paradigm is known as divide and conquer.

Here is how this works for sorting. Let us imagine that the numbers to be sorted
come as a deck of cards, with the numbers written on them. The �rst step is to partition
the deck into two smaller decks of half the size each. These two decks are then sorted
independently from each other, with the same method; but the main ingredient of this
method comes only now: we have to merge the two sorted decks into one sorted deck.
But this is not hard: we put the two decks in front of us (both now have their smallest
card on top); as long as there are still cards in one or both of the decks, the smaller of
the two top cards (or the single remaining top card) is taken o� and put upside down on
a new deck that in the end represents the result of the overall sorting process. Figure 20
visualizes the merge step.
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Figure 20: Merging two sorted decks of cards into one sorted deck

Here is how merge-sort can be realized in C++, assuming that we have a function
merge that performs the above operation of merging two sorted sequences into one sorted
sequence.

// PRE: [first , last) is a valid range

// POST: the elements *p, p in [first , last) are in ascending order

void merge_sort (int* first , int* last)
{

const int n = last - first;
if (n <= 1) return; // nothing to do

int* const middle = first + n/2;
merge_sort (first , middle ); // sort first half



224 CHAPTER 3. FUNCTIONS

merge_sort (middle , last); // sort second half

merge (first , middle , last); // merge both halfs

}

If there is more than one element to sort, the function splits the range [first, last)

into two ranges [first, middle) and [middle, last) of lengths bn/2c and dn/2e. Just
as a reminder, for any real number x, dxe is the smallest integer greater or equal to x (\x
rounded up"), and bxc is the largest integer smaller or equal to x (\x rounded down").
If n is even, both values bn/2c and dn/2e are equal to n/2, and otherwise, the �rst value
is smaller by one.

As its next step, the algorithm recursively sorts the elements described by both
ranges. In the end, it calls the function merge on the two ranges. In commenting the
latter function, we stick to the deck analogy that we have used above. If you have
understood the deck merging process, you will perceive the de�nition of merge as being
straightforward, despite the pointer handling.

// PRE: [first , middle), [middle , last) are valid ranges; in

// both of them , the elements are in ascending order

void merge (int* first , int* middle , int* last)
{

const int n = last - first; // total number of cards

int* const deck = new int[n]; // new deck to be built

int* left = first; // top card of left deck

int* right = middle; // top card of right deck

for (int* d = deck; d != deck + n; ++d)
// put next card onto new deck

if (left == middle) *d = *right ++; // left deck is empty

else if (right == last) *d = *left ++; // right deck is empty

else if (*left < *right) *d = *left ++; // smaller top card left

else *d = *right ++; // smaller top card right

// copy new deck back into [first , last)

const int* d = deck;
while (first != middle) *first ++ = *d++;
while (middle != last) *middle ++ = *d++;

delete [] deck;
}

Analyzing merge-sort. As for minimum-sort, we will count the number of comparisons
between sequence elements that occur when a sequence of n numbers is being sorted.
Again, we can argue that the total number of operations is proportional to this number
of comparisons. For merge-sort, this fact is not so immediate, though, and we don't
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expect you to understand it now. But for the bene�t of (not only) the skeptic reader,
we will check this fact experimentally below, as we did for minimum-sort.

All the comparisons take place during the calls to the function merge at the various
levels of recursion, so let us �rst count the number of comparisons between sequence
elements that one call to merge performs in order to create a sorted deck of n cards from
two sorted decks.

It is apparent from the function body (and also from our informal description of the
merging process above) that at most one comparison is needed for every card that is
put on the new deck. Indeed, we may have to compare the two top cards of the left
and the right deck in order to �nd out which card to take o� next. But if one of the
two decks becomes empty (this situation de�nitely occurs before the last card is put on
the new deck), we don't do any further comparisons. This means that at most n − 1

comparisons between sequence elements are performed in merging two sorted decks into
one sorted deck with n cards.

Knowing this, we can now prove our main result.

Theorem 2 The function merge_sort sorts a sequence of n � 1 elements with at most

(n − 1)dlog2 ne
comparisons between sequence elements.

Proof. We de�ne T(n) to be the maximum possible number of comparisons between
sequence elements that can occur during a call to merge_sort with an argument range
of length n. For example, T(0) = T(1) = 0, since for ranges of lengths 0 and 1, no
comparisons are made. We also get T(2) = 1, since for a range of length 2, merge-sort
performs one comparison (in merging two sorted decks of one card each into one sorted
deck of two cards). In a similar way, we can convince ourselves that T(3) = 2. There
are sequences of length 3 for which one comparison su�ces (the �rst card may be taken
o� the left deck which consists only of one card), but the maximum number that de�nes
T(3) is 2.

For general n � 2, we have the following recurrence relation :

T(n) � T(bn
2
c) + T(dn

2
e) + n − 1. (3.1)

To see this, let us consider a sequence of n elements that actually requires the max-
imum number of T(n) comparisons. This number of comparisons is the sum of the
respective numbers in sorting the left and the right half, plus the number of comparisons
during the merge step. The former two numbers are (by construction of merge_sort and
de�nition of T) at most T(bn/2c) and T(dn/2e), while the latter number is at most n−1

by our previous considerations regarding merge. It follows that T(n), the actual number
of comparisons, is bounded by the sum of all three numbers.

Now we can prove the actual statement of the theorem. Since the merge-sort al-
gorithm is recursive, it is natural that the proof is inductive. For n = 1, we have
T(1) = 0 = (1 − 1)dlog2 2e, so the statement holds for n = 1.
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n 100,000 200,000 400,000 800,000 1,600,000
Mcomp 1.7 3.6 7.6 16 33.6

Time (msec) 46 93 190 390 834
sec/Gcomp 27 25.8 25 24.4 25.1

Table 8: Number of comparisons and runtime of merge-sort

For n � 2, let us assume that the statement of the theorem holds for all values in
{1, . . . , n − 1} (this is the inductive hypothesis). From this hypothesis, we need to derive
the validity of the statement for the number n itself (note that bn/2c, dn/2e � 1). This
goes as follows.

T(n) � T(bn
2
c) + T(dn

2
e) + n − 1 (Equation 3.1))

� (bn
2
c− 1)dlog2b

n

2
ce+ (dn

2
e− 1)dlog2d

n

2
ee+ n − 1 (inductive hypothesis)

� (bn
2
c− 1)(dlog2 ne− 1) + (dn

2
e− 1)(dlog2 ne− 1) + n − 1 (Exercise 120)

= (n − 2)(dlog2 ne− 1) + n − 1 ( n = bn
2
c+ dn

2
e)

� (n − 1)(dlog2 ne− 1) + n − 1

= (n − 1)dlog2 ne.
�

As for minimum-sort, let us conclude with some experiments to check whether the
number of comparisons between sequence elements is indeed a good indicator for the
runtime in practice. The results of running merge-sort (Program 29 below) are given
in Table 8 and look very di�erent from the ones in Table 7.

1 // Prog: merge_sort.cpp

2 // implements and tests merge -sort on random input

3

4 #include <iostream >
5 #include <algorithm >
6

7 // PRE: [first , middle), [middle , last) are valid ranges; in

8 // both of them , the elements are in ascending order

9 void merge (int* first , int* middle , int* last)
10 {
11 const int n = last - first; // total number of cards

12 int* const deck = new int[n]; // new deck to be built

13

14 int* left = first; // top card of left deck

15 int* right = middle; // top card of right deck

16 for (int* d = deck; d != deck + n; ++d)
17 // put next card onto new deck
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18 if (left == middle) *d = *right ++; // left deck is empty

19 else if (right == last) *d = *left ++; // right deck is empty

20 else if (*left < *right) *d = *left ++; // smaller top card left

21 else *d = *right ++; // smaller top card right

22

23 // copy new deck back into [first , last)

24 const int* d = deck;
25 while (first != middle) *first ++ = *d++;
26 while (middle != last) *middle ++ = *d++;
27

28 delete [] deck;
29 }
30

31 // PRE: [first , last) is a valid range

32 // POST: the elements *p, p in [first , last) are in ascending order

33 void merge_sort (int* first , int* last)
34 {
35 const int n = last - first;
36 if (n <= 1) return; // nothing to do

37 int* const middle = first + n/2;
38 merge_sort (first , middle ); // sort first half

39 merge_sort (middle , last); // sort second half

40 merge (first , middle , last); // merge both halfs

41 }
42

43 int main()
44 {
45 // input of number of values to be sorted

46 unsigned int n;
47 std::cin >> n;
48

49 int* const a = new int[n];
50

51 std::cout << "Sorting " << n << " integers ...\n";
52

53 // create sequence:

54 for (int i=0; i<n; ++i) a[i] = i;
55 std:: random_shuffle (a, a+n);
56

57 // sort into ascending order

58 merge_sort (a, a+n);
59

60 // is it really sorted ?

61 for (int i=0; i<n -1;++i)
62 if (a[i] != i) std::cout << "Sorting error!\n";
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63

64 delete [] a;
65

66 return 0;
67 }

Program 29: progs/lecture/merge sort.cpp

Since merge_sort incurs much less comparisons than minimum_sort, our unit here is
just Mcomp, the number of Megacomparisons (106 comparisons), according to Theorem 2.
In other words, Mcomp= 10−6(n−1)dlog2 ne. Time is the absolute runtime of the program,
this time in milliseconds and not minutes. But as in Table 7, sec/Gcomp tells us how
many seconds the program needs to perform one Gigacomparison.

We �rst observe that this latter number is around 25 for all n, also con�rming in
this case that the runtime is proportional to the number of comparisons. On the other
hand, the time needed by merge_sort per Gcomp is much higher than in minimum_sort

(25 seconds for merge-sort vs. 3 seconds for minimum-sort. It may be surprising that
the di�erence is this large, but the fact that it is larger can be explained. Merge-sort
is a more complicated algorithm than minimum-sort, with its recursive structure, the
extra memory needed for the new deck, etc. The price to pay is that less comparisons
can be done per second, since a lot of time is needed for other operations. But this is a
moderate price, since we can more than pay for it by the gain in total runtime.

This gets us to the most positive news of Table 8: Merge-sort is actually a very prac-
tical sorting algorithm. While it takes minimum-sort more than one hour to process
1, 600, 000 numbers, merge-sort does the same in less than a second. Our experimental
results show that this is mainly due to the fact that merge-sort needs much less com-
parisons (at most (n−1)dlog2 ne) than minimum-sort with its n(n−1)/2 comparisons.
Still, merge-sort is not the best sorting algorithm in practice, see Exercise 118.

3.2.7 Lindenmayer systems

In this �nal section we want to present another application in which recursion is predom-
inant and di�cult to avoid (an iterative version would indeed require an explicit stack).
As a bonus, this applications lets us draw beautiful pictures.

Let us �rst �x an alphabet Σ which is simply a �nite set of symbols, for example
Σ = {F,+,−}. Let Σ� denote the set of all words that we can form from symbols in Σ.
For example, F + F+ 2 Σ�.

Next, we �x a function P : Σ → Σ�. P maps every symbol to a word, and these are
the productions. We might for example have the productions

σ 7→ P(σ)

F 7→ F + F+

+ 7→ +

− 7→ −
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p p

Figure 21: The turtle before and after processing the command sequence F + F+

Finally, we �x an initial word s 2 Σ�, for example s = F.
The triple L = (Σ, P, s) is called a Lindenmayer system. Such a system generates

an in�nite sequence of words s = w0, w1, . . . as follows. To get the next word wi from
the previous word wi−1, we simply substitute all symbols in wi−1 by their productions.

In our example, this yields

w0 = F,

w1 = F + F +

w2 = F + F + +F + F + +

w3 = F + F + +F + F + + + F + F + +F + F + + +
...

The next step is to \draw" these words, and this gives the pictures we were talking
about.

Turtle graphics. Imagine a turtle sitting at some point p on a large piece of paper, with
its head pointing in some direction, see Figure 21 (left). The turtle can understand the
commands F, +, and −. F means \move one step forward", + means \turn counter-
clockwise by an angle of 90 degrees", and − means \turn clockwise by an angle of 90

degrees". The turtle can process any sequence of such commands, by executing them
one after another. We are interested in the resulting path taken by the turtle on the
piece of paper. The path generated by the command sequence F + F+, for example, is
shown in Figure 21 (right), along with the position and orientation of the turtle after
processing the command sequence.

The turtle can therefore graphically interpret any word generated by a Lindenmayer
system over the alphabet {F,+,−}.

Recursively drawing Lindenmayer systems. For σ 2 Σ, let wσ
i denote the word resulting

from σ by the i-fold substitution of all symbols according to their productions. In our
running example, we have for example w2 = wF

2 = F + F + +F + F + + and w+
i = + for

all i.
The point is now that can we express wσ

i in terms of the wi−1's of other symbols,
and this is where recursion comes into play. Suppose that P(σ) = σ1 � � �σk. Then we can
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obtain wσ
i as follows. We �rst substitute σ by σ1 � � �σk (1-fold substitution), and in the

resulting word σ1 � � �σk we apply (i− 1)-fold substitution to all the symbols. This shows
that

wσ
i = w

σ1
i−1 � � �wσk

i−1.

This formula also implies that the drawing of wσ
i is obtained by simply concatenating

the drawings for w
σ1
i−1, . . . , w

σk
i−1. To get the actual word wi, we simply concatenate the

drawings of all wσ
i , for σ running through the symbols of the initial word s.

Program 30 shows how this works for our running example with productions F 7→
F + F+,+ 7→ +,− 7→ − and initial word F. Since Pi(+) = +, Pi(−) = − for all i, we do
not need to substitute + and − and get

wi = wF
i = wF

i−1 + wF
i−1 + . (3.2)

The program assumes the existence of a library turtle with prede�ned turtle command
functions forward, left (counterclockwise rotation with some angle) and right (clock-
wise rotations with some angle) in namespace ifm.

In the documentation of the program, we have omitted the \trivial" productions
+ 7→ +,− 7→ −, and in specifying a Lindenmayer system, we can do so as well: we will
usually only list productions for symbols that are not mapped to themselves.

1 // Prog: lindenmayer.cpp

2 // Draw turtle graphics for the Lindenmayer system with

3 // production F -> F+F+ and initial word F.

4

5 #include <iostream >
6 #include <IFM/turtle >
7

8 // POST: the word w_i^F is drawn

9 void f (const unsigned int i) {
10 if (i == 0)
11 ifm:: forward (); // F

12 else {
13 f(i-1); // w_{i-1}^F

14 ifm::left (90); // +

15 f(i-1); // w_{i-1}^F

16 ifm::left (90); // +

17 }
18 }
19

20 int main () {
21 std::cout << "Number of iterations =? ";
22 unsigned int n;
23 std::cin >> n;
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24

25 // draw w_n = w_n(F)

26 f(n);
27

28 return 0;
29 }

Program 30: progs/lecture/lindenmayer.cpp

For input n = 14, the program will produce the following drawing.

As n gets larger, the picture does not seem to change much; it rotates, and some
more details develop, but apart from that the impression is the same. Assume you could
draw the picture for n =∞. Then equation (3.2) would give

w∞ = w∞ + w∞ + .

This is a self-similarity : the drawing of w∞ consists of two rotated drawings of itself.
We have a fractal !

Additional features. We can extend the de�nition of a Lindenmayer system to include a
rotation angle α that may be di�erent from 90 degrees. This is shown in Program 31
that draws a snowake for input n = 5.
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1 // Prog: snowflake.cpp

2 // Draw turtle graphics for the Lindenmayer system with

3 // production F -> F-F++F-F, initial word F++F++F and

4 // rotation angle 60 degrees.

5 #include <iostream >
6 #include <IFM/turtle >
7

8 // POST: the word w_i^F is drawn

9 void f (const unsigned int i) {
10 if (i == 0)
11 ifm:: forward (); // F

12 else {
13 f(i-1); // w_{i-1}^F

14 ifm:: right (60); // -

15 f(i-1); // w_{i-1}^F

16 ifm::left (120); // ++

17 f(i-1); // w_{i-1}^F

18 ifm:: right (60); // -

19 f(i-1); // w_{i-1}^F

20 }
21 }
22

23 int main () {
24 std::cout << "Number of iterations =? ";
25 unsigned int n;
26 std::cin >> n;
27

28 // draw w_n = w_n^F++w_n^F++w_n^F

29 f(n); // w_n^F
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30 ifm::left (120); // ++

31 f(n); // w_n^F

32 ifm::left (120); // ++

33 f(n); // w_n^F

34

35 return 0;
36 }

Program 31: progs/lecture/snowake.cpp

To get more exibility, we can also extend the alphabet Σ of symbols. For example,
we may add symbols without any graphical interpretation; these are still useful, though,
since they may be used in productions. For example, the Lindenmayer system with
Σ = {F,+,−, X, Y}, initial word X and productions

X 7→ X + YF +

Y 7→ −FX − Y

yields the dragon curve (w14, angle of 90 degrees).

The corresponding code is shown in Program 32.

1 // Prog: dragon.cpp

2 // Draw turtle graphics for the Lindenmayer system with

3 // productions X -> X+YF+, Y -> -FX -Y, initial word X

4 // and rotation angle 90 degrees

5 #include <iostream >
6 #include <IFM/turtle >
7

8 // necessary: x and y call each other

9 void y (const unsigned int i);
10

11 // POST: w_i^X is drawn



234 CHAPTER 3. FUNCTIONS

12 void x (const unsigned int i) {
13 if (i > 0) {
14 x(i-1); // w_{i-1}^X

15 ifm::left (90); // +

16 y(i-1); // w_{i-1}^Y

17 ifm:: forward (); // F

18 ifm::left (90); // +

19 }
20 }
21

22 // POST: w_i^Y is drawn

23 void y (const unsigned int i) {
24 if (i > 0) {
25 ifm:: right (90); // -

26 ifm:: forward (); // F

27 x(i-1); // w_{i-1}^X

28 ifm:: right (90); // -

29 y(i-1); // w_{i-1}^Y

30 }
31 }
32

33 int main () {
34 std::cout << "Number of iterations =? ";
35 unsigned int n;
36 std::cin >> n;
37

38 // draw w_n = w_n^X

39 x(n);
40

41 return 0;
42 }

Program 32: progs/lecture/dragon.cpp

Finally, one can add symbols with graphical interpretation. Commonly used symbols
are f (jump one step forward, this doesn't leave a trace), [ (remember current position)
and ] (jump back to last remembered position). Our turtle library understands these
three symbols as well. It is also typical to add new symbols with the same interpretation
as F, say.

3.2.8 Details

Lindenmayer systems. Lindenmayer systems are named after the Danish biologist Aristide
Lindenmayer (1925{1985) who proposed them in 1968 to model the growth of plants.
Lindenmayer systems (with generalizations to 3-dimensional space) have found many
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applications in computer graphics.

3.2.9 Goals

Dispositional. At this point, you should . . .

1) understand the concept of recursion, and why it makes sense to de�ne a function
through itself;

2) understand the semantics of recursive function calls and be aware that they do not
always terminate;

3) appreciate the power of recursion in sorting and drawing Lindenmayer systems.

Operational. In particular, you should be able to . . .

(G1) �nd pre- and postconditions for given recursive functions;

(G2) prove or disprove termination and correctness of recursive function calls;

(G3) translate recursive mathematical function de�nitions into C++ function de�ni-
tions;

(G4) rewrite a given recursive function in iterative form;

(G5) recognize ine�cient recursive functions and improve their performance;

(G6) count the number of operations of a given type in a recursive function call, using
induction as the main tool;

(G7) write recursive functions for given tasks.

3.2.10 Exercises

Exercise 110 Find pre- and postconditions for the following recursive functions. (G1)

a) bool f (const int n)
{

if (n == 0) return false;
return !f(n-1);

}

b) void g (const unsigned int n)
{

if (n == 0) {
std::cout << "*";
return;

}
g(n-1);
g(n-1);

}
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c) unsigned int h (const unsigned int n, const unsigned int b) {
if (n == 1) return 0;
return 1 + h (n / b, b);

}

Exercise 111 Prove or disprove for any of the following recursive functions that it
terminates for all possible arguments. In this theory exercise, overow should not
be taken into account, i.e. you should pretend that the value range of unsigned int

is equal to N. (G2)

a) unsigned int f (const unsigned int n)
{

if (n == 0) return 1;
return f(f(n -1));

}

b) // POST: return value is the Ackermann function value A(m,n)

unsigned int A (const unsigned int m, const unsigned int n) {
if (m == 0) return n+1;
if (n == 0) return A(m-1,1);
return A(m-1, A(m, n -1));

}

c) unsigned int f (const unsigned int n, const unsigned int m)
{

if (n == 0) return 0;
return 1 + f ((n + m) / 2, 2 * m);

}

Exercise 112 Consider the following recursive function de�ned on all nonnegative
integers, also known as McCarthy's 91 Function.

M(n) :==

{
n − 10, if n > 100

M(M(n + 11)), if n � 100.

a) Provide a C++ function mccarthy that implements McCarthy's 91 Function.

b) What are the values of the following four function calls?

(i) mccarthy(101)

(iii) mccarthy(100)

(iii) mccarthy(99)

(iv) mccarthy(91)
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c) Explain why the function is called McCarthy's 91 Function! More precisely,
what is the value of M(n) for any given number n?

(G3)(G7)

Exercise 113

a) Write and test a C++ function that computes binomial coe�cients
�

n
k

�
, n, k 2

N. These may be de�ned in various equivalent ways. For example, 
n

k

!
:=

n!

k!(n − k)!
,

or

 
n

k

!
:=


0, if n < k

1, if n = k or k = 0�
n−1

k

�
+
�

n−1
k−1

�
, if n > k, k > 0

,

or

 
n

k

!
:=


0, if n < k

1, if n � k, k = 0
n
k

�
n−1
k−1

�
if n � k, k > 0

b) Which of the three variants is best suited for the implementation, and why?
Argue theoretically, but underpin your arguments by comparing at least two
di�erent implementations of the function.

(G3)(G5) (G7)

Exercise 114 In how many ways can you own CHF 1? Despite its somewhat philo-
sophical appearance, the question is a mathematical one. Given some amount of
money, in how many ways can you partition it using the available denominations
(bank notes and coins)? The denominations in CHF are 1000, 200, 100, 50, 20,
10 (banknotes), 5, 2, 1, 0.50, 0.20, 0.10, 0.05 (coins). The amount of CHF 0.20,
for example, can be owned in four ways (to get integers, let's switch to centimes):
(20), (10, 10), (10, 5, 5), (5, 5, 5, 5).

Solve the problem for any given input amount, by writing a program partition.cpp

that de�nes the following function (all values to be understood as centimes).

// PRE: [first , last) is a valid nonempty range that describes

// a sequence of denominations d_1 > d_2 > ... > d_n > 0

// POST: return value is the number of ways to partition amount

// using denominations from d_1 , ..., d_n

unsigned int partitions (unsigned int amount ,

const unsigned int* first ,

const unsigned int* last);
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Use your program to determine in how many ways you can own CHF 1, and CHF
10. Can your program compute the number of ways for CHF 50? For CHF 100?
(G7)

Exercise 115 Suppose you want to crack somebody's secret code, consisting of d digits
between 1 and 9. You have somehow found out that exactly k of these digits are
1's.

a) Write a program that generates all possible codes. The program should contain
a function that solves the problem for given arguments d and k.

b) Adapt the program so that it also outputs the number of possible codes.

For example, if d = 2 and k = 1, the output may look like this:

12 13 14 15 16 17 18 19 21 31 41 51 61 71 81 91
There were 16 possible codes.

(G7)

Exercise 116 Rewrite the following recursive function in iterative form and test with
a program whether your iterative version is correct. What can you say about the
absolute runtimes of both variants for values of n up to 100, say? (G4)(G5)

unsigned int f (const unsigned int n)
{

if (n <= 2) return 1;
return f(n-1) + 2 * f(n-3);

}

Exercise 117 Rewrite the following recursive function in iterative form and test with
a program whether your iterative version is correct. What can you say about the
runtimes of both variants for values of n up to 100, say? (G4)(G5)

unsigned int f (const unsigned int n)
{

if (n == 0) return 1;
return f(n-1) + 2 * f(n/2);

}

Exercise 118 Modify Program 29 (merge_sort.cpp) such that it calls the sorting func-
tion std::sort of the standard library instead of the function merge_sort. For this,
you need the header algorithm that is already being included. Store the resulting
program as std_sort.cpp and compare the total runtimes of both programs an larger
inputs on your platform (start with n = 1, 600, 000 numbers and then keep doubling
the input size).
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What do you observe? How many sec/Gcomp does merge_sort take? Can you
reproduce the \25" of Table 8, or do you get a di�erent constant (explained by
your computer having a speed di�erent from the one of the authors)? How much
faster (in absolute runtime) is std::sort on your platform? And is the speedup
independent of n?

Exercise 119 The following function �nds an element with a given value x in a sorted
sequence (if there is such an element).

// PRE: [first , last) is a valid range , and the elements *p,

// p in [first , last) are in ascending order

// POST: return value is a pointer p in [first , last) such

// that *p = x, or the pointer last , if no such pointer

// exists

const int* binary_search (const int* first , const int* last , const int x)
{

const int n = last - first;
if (n == 0) return last; // empty range

if (n == 1) {
if (* first == x)

return first;
else

return last;
}
// n >= 2

const int* middle = first + n/2;
if (* middle > x) {

// x can’t be in [middle , last)

const int* p = binary_search (first , middle , x);
if (p == middle)

return last; // x not found

else
return p;

} else
// *middle <= x; we may skip [first , middle)

return binary_search (middle , last , x);
}

What is the maximum number T(n) of comparisons between sequence elements
and x that this function performs if the number of sequence elements is n? Try
to �nd an upper bound on T(n) that is as good as possible. (You may use the
statement of Exercise 120.) (G6)

Exercise 120 For any natural number n � 2, prove the following two (in)equalities.
(G6)

dlog2b
n

2
ce � dlog2d

n

2
ee = dlog2 ne− 1.
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Exercise 121 Write programs that produce turtle graphics drawings for the following
Lindenmayer systems (Σ, P, s). (G7)

a) Σ = {F,+,−}, s = F + F + F + F and P given by

F 7→ FF + F + F + F + F + F − F.

b) Σ = {X, Y,+,−}, s = Y, and P given by

X 7→ Y + X + Y

Y 7→ X − Y − X.

For the drawing, use rotation angle α = 60 degrees and interpret both X and Y as
\move one step forward".

c) Like b), but with the productions

X 7→ X + Y + +Y − X − −XX − Y +

Y 7→ −X + YY + +Y + X − −X − Y.

Exercise 122 The Towers of Hanoi puzzle (that can actually be bought from shops) is
the following. There are three wooden pegs labeled 1, 2, 3, where the �rst peg holds
a stack of n disks, stacked in decreasing order of size, see Figure Figure 22.

1 2 3

Figure 22: The Tower of Hanoi

The goal is to transfer the stack of disks to peg 3, by moving one disk at a time
from one peg to another. The rule is that at no time, a larger disk may be on top
of a smaller one. For example, we could start by moving the topmost disk to peg 2

(move (1, 2)), then move the next disk from peg 1 to peg 3 (move (1, 3)), then move
the smaller disk from peg 2 onto the larger disk on peg 3 (move (2, 3)), etc.

Write a program hanoi.cpp that outputs a sequence of moves that does the
required transfer, for given input n. For example, if n = 2, the above initial sequence
(1, 2)(1, 3)(2, 3) is already complete and solves the puzzle. Check the correctness of
your program by hand at least for n = 3, by manually reproducing the sequence of
moves on a piece of paper (or an actual Tower of Hanoi, if you have one). (G7)
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3.2.11 Challenges

Exercise 123 This challenge lets you take a look behind the scenes of GIMPS (the
Great Internet Mersenne Prime Search, www.mersenne.org). This project is con-
cerned with the problem of �nding large Mersenne primes, see Section 1.1. The
essential tool used by GIMPS is the Lucas-Lehmer test, a simple procedure to check
whether a number of the form 2n − 1 is prime or not.

Find out what the Lucas-Lehmer test is and write a program that employs it to
�nd all Mersenne primes of the form 2n − 1 with n � 1, 000 (you may go higher
if you can). The resulting list will allow you to rediscover the �ve errors that
Mersenne made in his original conjecture (Section 1.1), and it will tell you what
happens next after n = 257, the largest exponent covered by Mersenne's conjecture.

Exercise 124 On the occasion of major sports events, the Italian company Panini sells
stickers to be collected in an album. For the EURO 2008 soccer championship, the
collection comprised of 555 di�erent stickers, available in packages of �ve stickers
each.

When buying a package, you cannot see which stickers it contains. The company
only guarantees that each package contains �ve di�erent stickers. Let us assume
that each possible selection of �ve di�erent stickers is equally likely to be contained
in any given package. How many packages do you need to buy on average in order
to have all the stickers?

For the case of EURO 2008 with 555 stickers, a newspaper claimed (based on
consulting a math professor) that this number is 763. How did the professor arrive
at that number, and is it correct?

Write a program that computes the average number of packages that you need
to buy for a collection of size n. (As a simple check, you should get one package
on average if n = 5). What do you get for n = 555?

Note: In order to solve this challenge in a mathematically sound way, you need
some basic knowledge of probability theory. But for our purposes, it is also ok to
just handwave why your program is correct.

Exercise 125 Lindenmayer systems can also be used to draw (quite realistic) plants,
with the growth process simulated by the various iterations. For this, however, there
must be a possibility of creating branches. Let us therefore enhance our default set
{F,+,−} of symbols with �xed meaning and now use Σ = {F,+,−, [, ], f}. The symbol [

is de�ned to have the following e�ect: the current state of the turtle (position and
direction) is put on top of the state stack which is initially empty. The symbol ] sets
the state of the turtle back to the one found on top of the state stack, and removes
the top state from the stack. This mechanism can be used to remember a certain
state and return to it later.

For example, if the rotation angle is 45 degrees, the word FF[+F][−F] produces
the drawing of Figure 23.
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p

Figure 23: The turtle after processing the command sequence FF[+F][−F]

This does not look like a very sophisticated plant yet, but if you for example try
the production

F 7→ FF + [+F − F − F] − [−F + F + F]

with initial word F, rotation angle 22 degrees, and four iterations, you will see what
we mean.

It remains to explain what the symbol f means. It has the same e�ect on the
state of the turtle as F, except that it does not draw a line. You can imagine that
f makes the turtle \jump".

Here are the functions of the library turtle that correspond to this additional
functionality. jump realizes f, while save and restore are for [ and ]. In order to
draw Figure 23, we can therefore use the following statements.

ifm:: forward (2);
ifm::save ();
ifm::left (45);
ifm:: forward ();
ifm:: restore ();
ifm::save ();
ifm:: right (45);
ifm:: forward ();
ifm:: restore ();

Here you see that we can provide an integer to forward telling it how many steps
we want to move forward (the default that we always used before is 1).

Now here comes the challenge: write a turtle graphics program amazing.cpp

that will knock our socks o�! In other words, we are asking for the most beautiful
picture that you can produce using the recursive drawing scheme on top of the turtle
graphics commands introduced so far (there are still more commands that are more
or less common, but our turtle library stops at Σ = {F,+,−, [, ], f}).

If you think that you can submit a crappy program and still earn full points,
you're right. But we count on your sportsmanship to give your best!
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4.1 Structs

A POD-struct is an aggregate class that has no nonstatic data
members of type pointer to member, non-POD struct, non-
POD union (or array of such types) or reference, and has
no user-de�ned copy-assignment operator and no user-de�ned
destructor.

Section 9, paragraph 4, of the ISO/IEC Standard 14882
(C++ Standard)

In this section, we show how structs are used to group data and to obtain
new types with application-speci�c functionality. You will also see how
operator overloading can help in making new types easy and intuitive to
use.

Suppose we want to use rational numbers in a program, i.e., numbers of the form
n/d, where both the numerator n and the denominator d are integers. C++ does not
have a fundamental type for rational numbers, so we have to implement it ourselves.

We could of course represent a rational number simply by two values of type int,
but this would not be in line with our perception of the rational numbers as a distinct
mathematical concept. The two numbers n and d \belong together", and this is also
reected in mathematical notation: the symbol Q for the set of rational numbers indi-
cates that we are dealing with a mathematical type, de�ned by its value range and its
functionality (see Section 2.1.6). Ideally, we would like to get a C++ type that can be
used like existing arithmetic types; the following piece of code (for adding two rational
numbers) shows how this could look like.

// input

std::cout << "Rational number r:\n";
rational r;
std::cin >> r;

std::cout << "Rational number s:\n";
rational s;
std::cin >> s;

// computation and output

std::cout << "Sum is " << r + s << ".\n";

And we would like a sample run of this to look as follows.

Rational number r:
1/2
Rational number s:
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1/3
Sum is 5/6.

In C++ this can be done. C++ o�ers the possibility of de�ning new types based on
existing types. In this section, we introduce as a �rst step the concept of structs. A
struct is used to aggregate several values of di�erent types into one value of a new type.
With this, we can easily model the mathematical type Q as a new type in C++. Here is
a working program that makes a �rst step toward the desired piece of code above.

1 // Program: userational.cpp

2 // Add two rational numbers.

3 #include <iostream >
4

5 // the new type rational

6 struct rational {
7 int n;
8 int d; // INV: d != 0

9 };
10

11 // POST: return value is the sum of a and b

12 rational add (const rational a, const rational b)
13 {
14 rational result;
15 result.n = a.n * b.d + a.d * b.n;
16 result.d = a.d * b.d;
17 return result;
18 }
19

20 int main ()
21 {
22 // input

23 std::cout << "Rational number r:\n";
24 rational r;
25 std::cout << " numerator =? "; std::cin >> r.n;
26 std::cout << " denominator =? "; std::cin >> r.d;
27

28 std::cout << "Rational number s:\n";
29 rational s;
30 std::cout << " numerator =? "; std::cin >> s.n;
31 std::cout << " denominator =? "; std::cin >> s.d;
32

33 // computation

34 const rational t = add (r, s);
35

36 // output

37 std::cout << "Sum is " << t.n << "/" << t.d << ".\n";
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38

39 return 0;
40 }

Program 33: progs/lecture/userational.cpp

In C++, a struct de�nes a new type whose value range is the Cartesian product of
a �xed number of types. (Here and in the following, we identify a type with its value
range to avoid clumsy formulations.) In our case, we de�ne a new type named rational

whose value range is the Cartesian product int�int, where we interpret a value (n, d)

as the quotient n/d.
Since there is no type for the denominator with the appropriate value range int\{0},

we specify the requirement d 6= 0 by an informal invariant, a condition that has to hold
for all legal combinations of values. Such an invariant is indicated by a comment starting
with

// INV:

Like pre- and postconditions of functions (see Section 3.1.1), invariants are an informal
way of documenting the program; they are not standardized, and our way of writing them
is one possible convention.

The type rational is referred to as a struct, and it can be used like any other type;
for example, it may appear as argument type and return type in functions like add.

A struct defines a type, not variables. Let's get rid of one possible confusion right from the
beginning. The de�nition

struct rational {
int n;
int d; // INV: d != 0

};

does not de�ne variables n and d of type int, although the two middle lines look like
variable declarations as we know them. Rather, all four lines together de�ne a type of
the name rational, but at that point, neither a variable of that new type, nor variables
of type int have been de�ned. The two middle lines

int n;
int d; // INV: d != 0

specify that every actual object of the new type (i.e. a concrete rational number) \has"
(is represented by) two objects of type int that can be accessed through the names n and
d; see the member access below. This speci�cation is important if we want to implement
operations on our new type like in the function add.

Here is an analogy for the situation. If the university administration wants to specify
how a student is represented in their �les, they might come up with three pieces of data
that are necessary: a name, an identi�cation number, and a program of study. This
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de�nes the \type" of a student and allows functionality (registration, change of program
of study, etc.) to be realized, long before any students actually show up.

4.1.1 Struct definitions.

In general, a struct de�nition looks as follows.

struct T f
T1 name1;
T2 name2;
...
TN nameN;

g;

Here, T is the name of the newly introduced struct (this name must be an identi�er,
Section 2.1.10), and T1,. . . ,TN are names of existing types. These are called the under-
lying types of T. The identi�ers name1, name2,. . . , nameN are the data members of
the new type T.

The value range of T is T1�T2� . . .�TN. This means, a value of type T is an
N-tuple (t1, t2, . . . , tN) where ti 2 Ti.

\Existing types" might be fundamental types, but also user-de�ned types. For ex-
ample, consider the vector space Q3 over the �eld Q. Given the type rational as above,
we could model Q3 as follows.

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

Although it follows from the de�nition, let us make it explicit: the types T1,. . . ,TN
need not be the same. Here is an example: If 0, 1, . . . , U is the value range of the type
unsigned int, we can get a variant of the type int with value range

{−U, −U + 1, . . . ,−1, 0, 1, . . . , U − 1,U}

as follows.

struct extended_int {
// represents u if n== false and -u otherwise

unsigned int u; // absolute value

bool n; // sign bit

};

The value range of this type is {0, 1, . . . , U} � {true, false}, but like in the rational case,
we interpret values di�erently: a value (u,n) \means" u if n = false and −u if n = true.
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Even if two struct de�nitions have the same member speci�cation (the part of the
de�nition enclosed in curly braces), they de�ne di�erent types, and it is not possible
to replace one for the other. Consider this trivial but instructive example with two
apparently equal structs de�ned over an empty set of existing types.

struct S {
};

struct T {
};

void foo (const S s) {}

int main() {
S s;
T t;
foo (s); // ok

foo (t); // error: type mismatch

return 0;
}

It is also possible to use array members in structs. For example, the �eld Q3 that we
have discussed above could alternatively be modeled like this.

struct rational_vector_3 {
rational v[3];

};

4.1.2 Structs and scope

The scope of a struct is the part of the program in which it can be used (in a variable
declaration, or as a formal function argument type, for example). Structs behave similar
to functions here: the scope of a struct is the union of the scopes of all its declarations,
where a struct declaration has the form

struct T

The struct de�nition is a declaration as well, and usually one actually needs the de�nition
in order to use a struct. This is easy to explain: in order to translate a variable declaration
of struct type, or a function with formal arguments of struct type into machine language,
the compiler needs to know the amount of memory required by an object of the struct.
But this information is only obtainable from the de�nition of the struct; as long as the
compiler has only seen a declaration of T, the struct T is said to have incomplete type.
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4.1.3 Member access

A struct is more than the Cartesian product of its underlying types|it o�ers some basic
functionality on its own that we explain next. The most important (and also most
visible) functionality of a struct is the access to the data members, and here is where
the identi�ers name1,. . . , nameN come in. If expr is an expression of type T with value
(t1, . . . , tN), then tK|the K-th component of its value|can be accessed as

expr.nameK

Here, `.' is the member access operator (see Table 9 in the Appendix for its speci�cs).
The composite expression expr.nameK is an lvalue if expr itself is an lvalue, and we say
that the data member nameK is accessed for expr.

Lines 25 and 26 of Program 33 assign values to the rational numbers r through the
member access operator, while line 37 employs the member access operator to output the
value of the rational number t. The additional output of `/' indicates that we interpret
the 2-tuple (n, d) as the quotient n/d.

4.1.4 Initialization and assignment

We can initialize objects of struct type and assign values to them, just like we do it for
fundamental types.

In line 34 of Program 33 for example, the variable t of type rational is initialized with
the value of the expression add (r, s). In a struct, initialization is quite naturally done
member-wise, i.e. for each data member separately. Under the hood, the declaration
statement

const rational t = add (r, s);

therefore has the e�ect of initializing t.n (with the �rst component of the value of
add (r, s)) and t.d (with the second component). Interestingly, this also works with
array members. Structs therefore provide a way of forging array initialization and as-
signment by wrapping the array into a struct. Here is an example to show what we
mean.

#include <iostream >

struct point {
double coord [2];

};

int main()
{

point p;
p.coord [0] = 1;
p.coord [1] = 2;
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point q = p;
std::cout << q.coord [0] << " " // 1

<< q.coord [1] << "\n"; // 2

return 0;
}

In the same way (memberwise initialization), the formal arguments a and b of the
function add are initialized from the values of r and s; the value of add (r, s) itself
also results from an initialization of a (temporary) object when the return statement of
the function add is executed.

Instead of the above declaration statement that initializes t we could also have written

rational t;
t = add (r, s);

Here, t is default-initialized �rst, and this default-initializes the data members. In our
case, they are of type int; for fundamental types, default-initialization does nothing,
so the values of the data members are unde�ned after default-initialization (see also
Section 2.1.8). In the next line, the value of add (r, s) is assigned to t, and this
assignment again happens member-wise.

What about other operations? For every fundamental type T, two expressions of type
T can be tested for equality, using the operators == and !=. It would therefore seem
natural to have these two operators also for structs, implemented in such a way that
they compare member-wise.

Formally, this would be correct: if t = (t1, . . . , tN) and t 0 = (t 01, . . . t
0
N), then we have

t = t 0 if and only if tK = t 0K for K = 1, . . . ,N.
But our type rational already shows that this won't work: under member-wise

equality, we would erroneously conclude that 2/3 6= 4/6. The problem is that the
syntactical value range int�int of the type rational does not coincide with the
semantical value range in which we identify pairs (n, d) that de�ne the same rational
number n/d.

The same happens with our type extended_int from above: since both pairs (0, false)

and (0, true) are interpreted as 0, member-wise equality would give us \0 6= 0" in this
case.

Only the implementor of a struct knows the semantical value range, and for this
reason, C++ neither provides equality operators for structs, nor any other operations
beyond the member access, initialization, and assignment discussed above. Operations
that respect the semantical value range can be provided by the implementor, though,
see next section.

You might argue that even member-wise initialization and assignment could be incon-
sistent with the semantics of the type. Later, we will indeed encounter such a situation,
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and we will show how it can be dealt with elegantly.

4.1.5 User-defined operators

New types require new operations, but when it comes to the naming of such operations,
one less nice aspect of Program 33 shows in line 34. By de�ning the function add, we
were able to perform the operation t := r + s through the statement

const rational t = add (r, s);

Ideally, however, we would like to add rational numbers like we add integers or oating-
point numbers, by simply writing (in our case)

const rational t = r + s;

The bene�t of this might not be immediately obvious, in particular since the naming of
the function add seems to be quite reasonable; but consider the expression

const rational t = subtract (multiply (p, q), multiply (r, s));

and its \natural" counterpart

const rational t = p * q - r * s;

to get an idea what we mean.

The natural notation can indeed be achieved: a key feature of the C++ language is
that most of its operators (see Table 9 in the Appendix for the full list) can be overloaded
to work for other types as well. This means that we can use the same operator token to
implement various operators: we \overload" the token.

In principle, this is nothing new: we already know that the binary operator + is
available for several types, for example int and double. What is new is that we can add
even more overloads on our own, and simply let the compiler �gure out from the call
argument types which one is needed in a certain context.

In overloading an operator, we cannot change the operator's arity, precedence or
associativity, but we can create versions of it with arbitrary formal argument and return
types.

Operator overloading is simply a special case of function overloading. For example,
having the structs rational and extended_int available, we could declare the following
two functions in the same program, without creating a name clash: for any call to the
function square in the program, the compiler can �nd out from the call argument type
which of the two functions we mean.

// POST: returns a * a

rational square (rational a);

// POST: returns a * a

extended_int square (extended_int a);



252 CHAPTER 4. COMPOUND TYPES

Function overloading in general is useful, but not nearly as useful as operator over-
loading. To de�ne an overloaded operator, we have to use the functional operator
notation. In this notation, the name of the operator is obtained by appending its token
to the pre�x operator. In case of the binary addition operator for the type rational,
this looks as follows and replaces the function add.

// POST: return value is the sum of a and b

rational operator+ (const rational a, const rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

In Program 33, we can now replace line 34 by

const rational t = r + s; // equivalent to operator+ (r, s);

Here, the comment refers to the fact that an operator can also be called in functional
notation; in contrast, it appears in in�x notation in r + s. The call in functional
notation can be useful for didactic purposes, since it emphasizes the fact that an operator
is simply a special function; in an application, however, the point is to avoid functional
notation and use the in�x notation.

The other three basic arithmetic operations are similar, and here we only give their
declarations.

// POST: return value is the difference of a and b

rational operator - (rational a, rational b);

// POST: return value is the product of a and b

rational operator* (rational a, rational b);

// POST: return value is the quotient of a and b

// PRE: b != 0

rational operator/ (rational a, rational b);

We can also overload the unary - operator; in functional operator notation, it has
the same name as the binary version, but it has only one instead of two arguments. In
the following implementation, we use the (modi�ed) \local copy" of the call argument a
as the return value.

// POST: return value is -a

rational operator - (rational a)
{

a.n = -a.n;
return a;

}
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In order to compare rational numbers, we need the relational operators as well. Here
is the equality operator as an example.

// POST: return value is true if and only if a == b

bool operator == (const rational a, const rational b)
{

return a.n * b.d == a.d * b.n;
}

4.1.6 Details

Overloading resolution. If there are several functions or operators of the same name in a
program, the compiler has to �gure out which one is meant in a certain function call.
This process is called overloading resolution and only depends on the types of the call
arguments. Overloading resolution is therefore done at compile time. There are two
cases that we need to consider: we can either have an unquali�ed function call (like
add (r, s) in Program 33), or a quali�ed function call (like std::sqrt(2.0)). To
process an unquali�ed function call of the form

fname ( expression1, ..., expressionN )

the compiler has to �nd a matching function declaration. Candidates are all functions
f of name fname such that the function call is in the scope of some declaration of f. In
addition, the number of formal arguments must match the number of call arguments, and
each call argument must be of a type whose values can be converted to the corresponding
formal argument types.

In a quali�ed function call of the form

X::fname ( expression1, ..., expressionN )

where X is a namespace, only this namespace is searched for candidates.

Argument-dependent name lookup (Koenig lookup). There is one special rule that some-
times makes the list of candidates larger. If some call argument type of an unquali�ed
function call is de�ned in a namespace X (for example the namespace std), then the
compiler also searches for candidates in X. This is useful mainly for operators and allows
them to be called unquali�ed in in�x notation. The point of using operators in in�x
notation would be spoiled if we had to mention a namespace somewhere in the operator
call.

Resolution: Finding the best match. For each candidate function and each call argument, it
is checked how well the call argument type matches the corresponding formal argument
type. There are four quality levels, going from better to worse, given in the following
list.
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(1) Exact match. The types of the call argument and the formal argument are the
same.

(2) Promotion match. There is a promotion from the call argument type to the
formal argument type. We have seen some examples for promotions, like from
bool to int and from float to double.

(3) Standard conversion match. There is a standard conversion from the call
argument type to the formal argument type. We have seen that all fundamental
arithmetic types can be converted into each other by standard conversions.

(4) User-defined conversion match. There is a user-de�ned conversion from the
call argument type to the formal argument type. We will get to user-de�ned con-
versions only later in this book.

A function f is called better than g with respect to an argument, if the match that f

induces on that argument is at least as good as the match induced by g. If the match is
really better, f is called strictly better for the argument.

A function f is called a best match if it is better than any other candidate g in all
arguments, and strictly better than g in at least one argument.

Under this de�nition, there is at most one best match, but it may happen that there
is no best match, in which case the function call is ambiguous, and the compiler issues
an error message.

Here is an example. Consider the two overloaded function declarations

void foo(double d);
void foo(unsigned int u);

In the code fragment

float f = 1.0f;
foo(f);

the �rst overload is chosen, since float can be promoted to double, but only standard-
converted to unsigned int. In

int i = 1;
foo(i);

the call is ambiguous, since int can be standard-converted to both double and unsigned int.

4.1.7 Goals

Dispositional. At this point, you should . . .

1) know how structs can be used to aggregate several di�erent types into one new type;

2) understand the di�erence between the syntactical and semantical value range of a
struct;

3) know that C++ functions and operators can be overloaded.
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Operational. In particular, you should be able to . . .

(G1) de�ne structs whose semantical value ranges correspond to that of given mathe-
matical sets;

(G2) provide de�nitions of functions and overloaded operators on structs, according to
given functionality;

(G3) write programs that de�ne and use structs according to given functionality.

4.1.8 Exercises

Exercise 126 A struct may have data members of struct type that may have data
members of struct type, and so on. It can be quite cumbersome to set all the data
members of the data members of the data members manually whenever an object of
the struct type needs to be initialized. A preferable solution is to write a function
that does this. As an example, consider the type

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

where rational is as before de�ned as

struct rational {
int n;
int d; // INV: d != 0

};

Write a function

rational_vector_3 create_rational_vector_3
(int n1, int d1, int n2, int d2, int n3, int d3)

that returns the rational vector (n1/d1, n2/d2, n3/d3). The function should also
make sure that d1, d2, d3 are nonzero. (G3)

Exercise 127 De�ne a type Tribool for three-valued logic; in three-valued logic, we
have the truth values true, false, and unknown.

For the type Tribool, implement the logical operators

// POST: returns x AND y

Tribool operator && (Tribool x, Tribool y);

// POST: returns x OR y

Tribool operator || (Tribool x, Tribool y);
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where AND (∧) and OR (∨) are de�ned according to the following two tables.
(G1)(G2)

∧ false unknown true
false false false false

unknown false unknown unknown
true false unknown true

∨ false unknown true
false false unknown true

unknown unknown unknown true
true true true true

Test your type by writing a program that outputs these truth tables in some format
of your choice.

Exercise 128 De�ne a type Z_7 for computing with integers modulo 7. Mathemati-
cally, this corresponds to the �nite ring Z7 = Z/7Z of residue classes modulo 7.

For the type Z_7, implement addition and subtraction operators

// POST: return value is the sum of a and b

Z_7 operator+ (Z_7 a, Z_7 b);

// POST: return value is the difference of a and b

Z_7 operator - (Z_7 a, Z_7 b);

according to the following table (this table also de�nes subtraction: x − y is the
unique number z 2 {0, . . . , 6} such that x = y + z). (G1)(G2)

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Exercise 129 Provide de�nitions for the following binary arithmetic operators on the
type rational. (G2)(G3)

// POST: return value is the difference of a and b

rational operator - (rational a, rational b);

// POST: return value is the product of a and b

rational operator* (rational a, rational b);

// POST: return value is the quotient of a and b

// PRE: b != 0

rational operator/ (rational a, rational b);
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Exercise 130 Provide de�nitions for the following binary relational operators on the
type rational. In doing this, try to reuse operators that are already de�ned.
(G2)(G3)

// POST: return value is true if and only if a != b

bool operator != (rational a, rational b);

// POST: return value is true if and only if a < b

bool operator < (rational a, rational b);

// POST: return value is true if and only if a <= b

bool operator <= (rational a, rational b);

// POST: return value is true if and only if a > b

bool operator > (rational a, rational b);

// POST: return value is true if and only if a >= b

bool operator >= (rational a, rational b);

Exercise 131 Provide de�nitions for the following binary arithmetic operators on the
type extended_int (Page 247), and test them in a program (for that it could be
helpful to provide an output facility for the type extended_int, and a function that
assigns to an extended_int value a value of type int). As in the previous exercise,
try to reuse code. (G2)(G3)

// POST: return value is the sum of a and b

extended_int operator+ (extended_int a, extended_int b);

// POST: return value is the difference of a and b

extended_int operator - (extended_int a, extended_int b);

// POST: return value is the product of a and b

extended_int operator* (extended_int a, extended_int b);

// POST: return value is -a

extended_int operator - (extended_int a);

Exercise 132 Consider the following set of three functions.

void foo(double , double) { ... } // function A

void foo(unsigned int , int) { ... } // function B

void foo(float , unsigned int) { ... } // function C

For each of the following function calls, decide to which of the functions (A,B, C)
it resolves to, or decide that the call is ambiguous. Explain your decisions! This
exercise requires you to read the paragraph on overloading resolution in the Details
section.
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a) foo(1, 1)

b) foo(1u, 1.0f)

c) foo(1.0, 1)

d) foo(1, 1u)

e) foo(1, 1.0f)

f) foo(1.0f, 1.0)

4.1.9 Challenges

Exercise 133 This challenge has a computer graphics avor. Write a program that
allows you to visualize and manipulate a 3-dimensional object. For the sake of
concreteness, think of a wireframe model of a cube given by 12 edges in threedimen-
sional space.

The program should be able to draw the object in perspective view and at least
provide the user with a possibility of rotating the object around the three axes. The
drawing window might for example look like in Figure 24.

Instead of a cube, you may want to take another platonic solid, you may read
the wireframe model from a �le, you may add the possibility of scaling the ob-
ject, translating it, etc. Use the library libwindow that is available at the course
homepage to create the graphical output.

If you don't know (or have forgotten) how to rotate and project threedimensional
points, here is a crash course.

Rotating a point (x, y) 2 R2 around the origin by an angle of α (radians) results
in the point (x 0, y 0) with coordinates

 
x 0

y 0

!
=

 
cosα − sinα

sinα cosα

! 
x

y

!
.

In order to rotate a point (x, y, z) 2 R3 around the z-axis, you simply keep z

unchanged and rotate (x, y) as above. By symmetry, you can �gure out how this
works for the other axes.

General perspective projection is not so easy, but if you want to project a point
onto the z = 0-plane (imagine that this plane is the computer screen that you
want to draw on), this is not hard. Imagine that v = (vx, vy, vz) is the viewpoint
(position of your eye). vz > 0 for example means that you are sitting in front of the
screen. When you project the point p = (x, y, z) onto the screen, the image point
has coordinates

(x − t(vx − x), y − t(vy − y)),
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Figure 24: Sample drawing window for Exercise 133

where

t =
z

vz − z
.

The projection thus only works if vz 6= z.
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4.2 Reference Types

Whereas Europeans generally pronounce my name the right
way ('Ni-klows Wirt'), Americans invariably mangle it into
'Nick-les Worth'. This is to say that Europeans call me by
name, but Americans call me by value.

Attributed to Niklaus Wirth

This section explains reference types that enable functions to accept and
return lvalues and in particular change the values of their call argu-
ments. Reference types naturally come up in implementing functionality
for structs.

4.2.1 The trouble with operator+=

Let us try to implement the addition assignment operator += for the struct rational

from Program 33. Here is an attempt:

rational operator += (rational a, const rational b) {
a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

With this, we can write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d << "\n";

You may already see that the output of this will not be the desired 5/6. Recall
from Section 3.1.3 what happens when r += s (equivalently, operator+= (r, s)) is
evaluated: r and s are evaluated, and the resulting values are used to initialize the
formal arguments a and b of the function operator+=. The values of r and s are not
changed by the function call.

Hence, with the above implementation of operator+=, the value of the expression
r += s is indeed 5/6, but the desired e�ect, the change of r's value, does not happen.
That's why we get 1/2 as output in the above piece of code.
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In order to implement operator+= properly, we must enable functions to change
the values of their call arguments. The careful reader may remember that pointer types
(Section 2.6.6) can indirectly be used to achieve this, but with a somewhat clumsy syntax
and potentially unsafe behavior due to pointers \going nowhere", see Exercise 99.

Reference types are very similar to pointer types in their philosophy, but in most
contexts, they are more natural to use and at the same time more safe, since they render
the use of explicit (and possibly invalid) pointers unnecessary.

4.2.2 Reference Types: Definition

If T is any type, then

T&

is the corresponding reference type (read T& as \T reference" or \reference to T").
In value range and functionality, T& is identical to T. The di�erence is only in the
initialization and assignment semantics. An expression of reference type is called a
reference.

A variable of reference type T& can be initialized only from an lvalue of type T.
The initialization makes it an alias of the lvalue: another name for the object behind
the lvalue. We also say that the reference refers to that object. The following example
shows this.

int i = 5;
int& j = i; // j becomes an alias of i

j = 6; // changes the values of i

std::cout << i << "\n"; // outputs 6

Declarations such as

int& j; // error: no object to refer to

int& k = 5; // error: 5 is not an lvalue

are invalid.
A reference behaves like (and is implemented) by a constant pointer to the object that

it refers to, a pointer that is dereferenced whenever the reference is evaluated. But the
pointer and its value|the address of the object|are hidden. Here is the explicit-pointer
variant of the above code fragment that changes the value of i to 6:

int i = 5;
int* const j = &i; // j points to i

*j = 6; // changes the values of i

std::cout << i << "\n"; // outputs 6

Apart from the syntax, the main di�erence between the two declarations
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int& j = lvalue

and

int* const j = ptr

is that in the former case, the constant pointer hidden behind the reference j is guar-
anteed to represent a valid address, namely the one of lvalue. In the latter case, the
explicit constant pointer j may or may not be valid, depending on whether the pointer
ptr is valid. From a safety point of view, working with references is therefore preferable
to working with pointers.

The fact that a reference is implemented by a constant pointer implies that a reference
cannot be changed to refer to another object after initialization. If we later assign
something to the reference, we in fact assign to the object referred to by it. In writing
j = 6 in the above piece of code, we therefore change the value of i to 6, since j is an
alias of i.

Every reference is an lvalue itself. We can therefore use a reference r to initialize
another reference r', but then we don't get a reference to r, but another reference to the
object referred to by r:

int i = 5;
int& j = i; // j becomes an alias of i

int& k = j; // k becomes another alias of i

4.2.3 Call by value and call by reference

When a function has a formal argument of reference type, the corresponding call argu-
ment must be an lvalue; when the function call is evaluated, the initialization of the
formal argument makes it an alias of the call argument. In this way, we can implement
functions that change the values of their call arguments. Here is an example.

void increment (int& i)
{

++i;
}

int main ()
{

int j = 5;
increment (j);
std::cout << j << "\n"; // outputs 6

return 0;
}

If a formal argument of a function has reference type, we have call-by-reference
semantics with respect to that argument. Equivalently, we say that we pass the argument
by reference. Another frequently used term for call by reference is call by name.
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If the formal argument is not of reference type, we have call-by-value semantics: we
pass the argument by value. Under call by reference, the address of (or a reference to) the
call argument is used to initialize the formal argument; under call-by-value semantics, it
is the value of the call argument that is used for initialization.

The basic rule is to pass an argument by reference only if the function in question
actually needs to change the call argument value. If that is not the case, call by value is
more exible, since it allows a larger class of call arguments (lvalues and rvalues instead
of lvalues only).

4.2.4 Return by value and return by reference

The return type of a function can be a reference type as well, in which case we have
return-by-reference semantics (otherwise, we return by value). If the function returns
a reference, the function call expression is an lvalue itself, and we can use it wherever
lvalues are expected.

This means that the function itself chooses (by using reference types or not) whether
its call arguments and return value are lvalues or rvalues. Section 2.1.14 and Section 2.2.4
document these choices for some of the operators on fundamental types, but only now
we understand the mechanism that makes such choices possible.

As a concrete example, let us consider the following version of the function increment

that exactly models the behavior of the pre-increment operator ++: it increments its
lvalue argument and returns it as an lvalue.

int& increment (int& i)
{

return ++i;
}

In general, we must make sure that an expression of reference type that we return
refers to a non-temporary object. To understand what a temporary object is, let us
consider the following function.

int& foo (const int i)
{

return i;
}

This is asking for trouble, since the formal argument i runs out of scope when the
function call terminates. This means that the associated memory is freed and the address
expires (see Section 2.4.3). If we now write for example

int i = 3;
int& j = foo(i); // j refers to expired object

std::cout << j << "\n"; // undefined behavior

the reference j refers to an expired object, and the resulting behavior of the program is
unde�ned. References are safer than pointers, but not absolutely safe. In working with
references, we need to adhere to the following guideline.
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Reference Guideline: Whenever you create an alias for an object, ensure that the object
does not expire before the alias.

The compiler usually notices violations of the Reference Guideline and issues a warn-
ing.

4.2.5 More user-defined operators

Rational numbers: addition assignment. Let's get back to the addition assignment operator
for our new struct rational. In order to �x our failed attempt from the beginning of
this section, we need to add two characters only.

As in the previous function increment, the formal argument a must be passed as a
reference, and to be compliant with the usual semantics of +=, we also return the result
as a reference:

// POST: b has been added to a; return value is the new value of a

rational& operator += (rational& a, const rational b)
{

a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

The other arithmetic assignment operators are similar, and we don't list them here ex-
plicitly. Together with the arithmetic and relational operators discussed in Section 4.1.5,
we now have a useful set of operations on rational numbers.

Rational numbers: input and output. Let us look at Program 33 once more, with the
function name add replaced by operator+ and the function call add (r, s) replaced by
r + s. Still, we can spot potential improvements: instead of writing

std::cout << "Sum is " << t.n << "/" << t.d << "\n";

in line 37, we'd rather write

std::cout << "Sum is " << t << "\n";

just like we are doing it for fundamental types.

From what we have done above, you can guess that all we have to do is to overload
the output operator <<. In discussing the output operator in Section 2.1.14 we have
argued that the output stream passed to and returned by the output operator must be
an lvalue, since the output operator modi�es the stream. Having reference types at our
disposal, this can easily be done: we simply pass and return the output stream (whose
type is std::ostream) as a reference:
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// POST: a has been written to o

std:: ostream& operator << (std:: ostream& o, const rational r)
{

return o << r.n << "/" << r.d;
}

There is no reason to stop here: for the input, we would in the same fashion like
to replace the two input statements std::cin >> r.n; and std::cin >> r.d; by the
single statement

std::cin >> r;

(and the same for the input of s). Again, we need to pass and return the input stream
(of type std::istream) as a reference. In addition, we must pass the rational number
that we want to read as a reference, since the input operator has to modify its value.

The operator �rst reads the numerator from the stream, followed by a separating
character, and �nally the denominator. Thus, we can read a rational number in one go
by entering for example 1/2.

// POST: r has been read from i

// PRE: i starts with a rational number of the form "n/d"

std:: istream& operator >> (std:: istream& i, rational& r)
{

char c; // separating character , e.g. ’/’

return i >> r.n >> c >> r.d;
}

In contrast to operator<<, things can go wrong, e.g., if the user enters the character
sequence \A/B" when prompted for a rational number. Also, we probably don't want to
accept 3.4 as a rational number as our input operator does. There are mechanisms to
deal with such issues, but we won't discuss them here.

Let us conclude this section with a beauti�ed version of Program 33 (see Program 34
below). What makes this version even nicer is the fact that the new type is used exactly
as fundamental type such as int. All the operations necessary for this are outsourced
into Program 35.

In the spirit of Section 3.1.8 on modularization, we should actually split the program
into three �les: a �le rational.h that contains the de�nition of the struct rational,
along with declarations of the overloaded operators; a �le rational.cpp that contains
the de�nitions of these operators; and �nally, a �le userational2.cpp that contains
the main program. At the same time, we should put our new type rational and the
operations on it into namespace ifm in order to avoid possible name clashes. (You can
still write the expression r + s in Program 34, without mentioning the namespace in
which the operator+ in question is de�ned. The Details of Section 4.1 explains this in
the paragraph on argument-dependent name lookup.) Exercise 134 asks you to do all
this and integrate the new rational number type into the math library that you have
built in Exercise 105, so that Program 34 below can be compiled using this library.
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1 // Program: userational2.cpp

2 // Add two rational numbers.

3 #include <iostream >
4 #include "rational.cpp"
5

6 int main ()
7 {
8 // input

9 std::cout << "Rational number r:\n";
10 rational r;
11 std::cin >> r;
12

13 std::cout << "Rational number s:\n";
14 rational s;
15 std::cin >> s;
16

17 // computation and output

18 std::cout << "Sum is " << r + s << ".\n";
19

20 return 0;
21 }

Program 34: progs/lecture/userational2.cpp

1 // Program: rational.cpp

2 // Define a type rational and operations on it

3

4 // the new type rational

5 struct rational {
6 int n;
7 int d; // INV: d != 0

8 };
9

10 // POST: b has been added to a; return value is the

11 // new value of a

12 rational& operator += (rational& a, const rational b) {
13 a.n = a.n * b.d + a.d * b.n;
14 a.d *= b.d;
15 return a;
16 }
17

18 // POST: return value is the sum of a and b

19 rational operator+ (const rational a, const rational b)
20 {
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21 // reduce to operator +=

22 rational result = a;
23 return result += b;
24 }
25

26 // POST: a has been written to o

27 std:: ostream& operator << (std:: ostream& o, const rational a)
28 {
29 return o << a.n << "/" << a.d;
30 }
31

32 // POST: a has been read from i

33 // PRE: i starts with a rational number of the form "n/d"

34 std:: istream& operator >> (std:: istream& i, rational& a)
35 {
36 char c; // separating character , e.g. ’/’

37 return i >> a.n >> c >> a.d;
38 }

Program 35: progs/lecture/rational.cpp

Here is an example run of Program 34, showing that we have now achieved what we
set out to do in the beginning of Section 4.1.

Rational number r:
1/2
Rational number s:
1/3
Sum is 5/6.

4.2.6 Const references

Let us come back to the addition operator for rational numbers de�ned in Program 35:

// POST: return value is the sum of a and b

rational operator+ (const rational a, const rational b)
{

rational result = a;
return result += b;

}

The e�ciency fanatic in you might already have anticipated that we can slightly speed
up this operator by using const-quali�ed reference types:

// POST: return value is the sum of a and b

rational operator+ (const rational& a, const rational& b)
{

rational result = a;
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return result += b;
}

Indeed, this version is potentially faster than the previous one, since the initialization
of a formal argument is done by copying just one address, rather than two int values
as in the member-wise copy that takes place under the call-by-value semantics. Even
if the saving is small in this example, you can imagine that member-wise copy can be
pretty expensive in structs that are more elaborate than rational; in contrast, call by
reference is fast for all types, even the most complicated ones.

As usual, the const keyword makes sure that the formal arguments cannot be changed
within the function body, but in addition, the const promise extends to the object
referred to by the call argument, since the formal argument will become an alias for
it. Under call by reference, const-correctness is thus much more important than under
call by value. Here is an instructive example. Consider the unary operator- from
Section 4.1.5:

// POST: return value is -a

rational operator - (rational a)
{

a.n = -a.n;
return a;

}

Blindly speeding this up to

rational operator - (rational& a)
{

a.n = -a.n;
return a;

}

has a drastic (and undesired) consequence: the expression -a will still have the same
value as before, but it will have the additional e�ect of negating the value of the call
argument. We have \accidentally" created a completely di�erent operator. The fact
that we have started out with a non-constant formal argument in the �rst place is taking
revenge when we move to call by reference semantics.

Const-correctness requires that whenever an argument is passed by reference to a
non-mutating function, it must have const-quali�ed reference type. In case of the unary
minus, this would have revealed our programming error:

rational operator - (const rational& a)
{

a.n = -a.n; // error: a was promised to be constant

return a;
}

In compiling this variant of the operator, the compiler will issue an error message, point-
ing out the mistake. We can then �x it by either going back to call-by-value semantics,
or by introducing a result variable like in operator+ above:
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rational operator - (const rational& a)
{

rational result = a;
result.n = -result.n;
return result;

}

Let us discuss the const mechanism in context of references in more detail. The
situation is very similar to that of const pointers, see Section 2.6.8.

A const reference is a reference for which the object referred to is constant. A const
reference can for example be obtained as follows.

int i = 5;
const int& j = i; // j becomes a non -modifiable alias of i

Now, writing j = 6 leads to an error message, since i and its alias j have been promised
to be constant.

A const reference behave like (and is implemented by) a constant const pointer to
the object that it refers to.

Const references of const-quali�ed type constT& can as usual be initialized with
lvalues of type T, but also with rvalues of type T, or of types whose values are convertible
to T. We can for example write

const int& j = 5;

Under the hood, the compiler generates a temporary object that holds the value 5, and
it initializes j with the address of the temporary object. This is useful in operator+

that can still be called with rvalue arguments under formal arguments of const-quali�ed
reference type const rational&. A formal argument of type const T& is therefore
the all-in-one device suitable for every purpose: if the call argument is an lvalue, the
initialization is very e�cient (only its address needs to be copied), and otherwise, we
essentially fall back to call-by-value semantics.

Despite this, there are still situations where T is preferable over const T& as argu-
ment type. If T is a fundamental type or a struct with small memory requirements, it
does not pay o� to move to const T&, since the saving in handling lvalue arguments is so
small (or even nonexistent) that it won't compensate for the (slightly) more costly access
to the formal function argument in the function body. Indeed, call by reference adds one
indirection: to look up the value of a formal function argument under call-by-reference
semantics, we �rst have to look up its address and then look up the actual value at that
address. Under call-by-value semantics, the address of the value is \hardwired" (and
refers to some object on the call stack, see Section 3.2.2).

Also, it is often convenient to use the formal argument as a local variable and modify
its value (see operator- above); for that, its type must not be a const-type.

What exactly is constant? We already had a paragraph with the same title in Section 2.6.8,
and what is going on here is also the same: an expression of type const T& is the alias
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of an object, but that object is not necessarily constant itself. The const-quali�cation
in this case is merely a promise that the object's value will not be modi�ed through the
alias in question. Here is an example that illustrates this point.

int n = 5;
const int& i = n; // i becomes a non -modifiable alias of n

int& j = n; // j becomes a modifiable alias of n

i = 6; // error: n is modified through const -reference

j = 6; // ok: n receives value 6

Here, we do not have a constant object, but a constant alias (namely i).

4.2.7 Const-types as return types.

Const-types may also appear as return types of functions, just like any other types. In
that case, the const promises that the function call expression itself is constant.

It is not generally valid to replace return type T by const T&; while this safely
works for the formal argument types, it can for the return type result in syntactically
correct but semantically wrong code.

As an example, let's replace rational by const rational& as the return type of
operator+, with the hope of realizing another speedup:

const rational& operator+ (const rational& a, const rational& b) {
rational result = a;
return result += b;

}

In executing the return statement, the return value (in this case a const-reference) to
be passed to the caller of the function is initialized with the expression result. Now
recall that the initialization of a (const-)reference from an lvalue simply makes it an
alias of the lvalue. But the lvalue in question (namely result) is a local variable whose
memory is freed and whose address becomes invalid when the function call terminates
(see Section 2.4.3 and Section 4.2.1). The consequence is that the returned reference will
be the alias of an expired object, and using this reference results in unde�ned behavior
of the program. The issue is again the one of temporary objects, see the discussion and
the Reference Guideline on 263.

Errors like this are very hard to �nd (and we cannot reliably count on compiler
warnings here), since the program may work as intended, for example if the memory
that was associated to the expired object is not immediately reused. But on another
platform, the program may behave di�erently or even crash.

4.2.8 Goals

Dispositional. At this point, you should . . .

1) understand the alias concept behind reference types and the Reference Guideline;
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2) understand the di�erence between call by value and call by reference semantics for
function arguments;

3) understand const references.

Operational. In particular, you should be able to . . .

(G1) state exact pre-and postconditions for functions involving formal argument types
or return types of reference and/or const-type;

(G2) write functions that modify (some of) their call arguments;

(G3) �nd syntactical and semantical errors in programs that are due to improper han-
dling of reference types;

(G4) �nd syntactical and semantical errors in programs that are due to improper han-
dling of const-types;

(G5) �nd the declarations in a given program whose types should be const-according
to the Const Guideline.

4.2.9 Exercises

Exercise 134 Split program Program 35 into a header �le rational.h and a source �le
rational.cpp. Build object code �le rational.o from rational.cpp and integrate it
into the library libmath.a that you have created in Exercise 105. Modify the main
program Program 34 to use this library.

Exercise 135 Consider the following family of functions:

T foo (S i)
{

return ++i;
}

with T being one of the types int, int& and const int&, and S being one of the
types int, const int, int& and const int&. (This de�nes 12 di�erent functions).

a) Find the combinations of T and S for which the resulting function de�nition
is syntactically valid, and explain your answer.

b) Among the combinations found in a), �nd the combinations of T and S for
which the resulting function de�nition is also semantically valid, meaning that
function calls always have well-de�ned value and e�ect; explain your answer.

c) For all combinations found in b), give precise postconditions for the corre-
sponding function foo.

(G1)(G3)(G4)
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Exercise 136 Write a function that swaps the values of two int-variables. (G2)
For example,

int a = 5;
int b = 6;
// here comes your function call

std::cout << a << "\n"; // outputs 6

std::cout << b << "\n"; // outputs 5

Exercise 137 We want to have a function that normalizes a rational number, i.e.
transforms it into the unique representation in which numerator and denominator
are relatively prime, and the denominator is positive. For example,

21

−14

is normalized to

−3

2
.

There are two natural versions of this function:

// POST: r is normalized

void normalize (rational& r);

// POST: return value is the normalization of r

rational normalize (const rational& r);

Implement one of them, and argue why you have chosen it over the other one.
Hint: you may want to use the function gcd from Section 3.2, modi�ed for arguments
of type int (how does this modi�cation look like?). (G2)(G2)

Exercise 138 Provide a de�nition of the following function.

// POST: return value indicates whether the linear equation

// a * x + b = 0 has a real solution x ; if true is

// returned , the value s satisfies a * s + b = 0

bool solve (double a, double b, double& s);

Test your function in a program for at least the pairs (a, b) from the set

{(2, 1), (0, 2), (0, 0), (3,−4)}.

(G2)

Exercise 139 Find all mistakes (if any) in the following programs, and explain why
these are mistakes. All programs share the following two function de�nitions and
only di�er in their main functions. (G1)
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int foo (int& i) {
return i += 2;

}

const int& bar (int &i) {
return i += 2;

}

a) int main()
{

const int i = 5;
int& j = foo (i);

}

b) int main()
{

int i = 5;
const int& j = foo (i);

}

c) int main()
{

int i = 5;
const int& j = bar (foo (i));

}

d) int main()
{

int i = 5;
const int& j = foo( bar (i));

}

e) int main()
{

int i = 5;
const int j = bar (++i);

}

Exercise 140 The C++ standard library also contains a type for computing with com-
plex numbers. A complex number where both the real and the imaginary part are
doubles has type std::complex<double> (you need to #include <complex> in order
to get this type). In order to get a a complex number with real part r and imaginary
part i, you can use the expression
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std::complex <double >(r,i); // r and i are of type double

Otherwise, complex numbers work as expected. All the standard operators (arith-
metic, relational) and mathematical functions (std::sqrt, std::abs, std::pow. . . )
are available. The operators also work in mixed expressions where one operand is
of type std::complex<double> and the other one of type double. Of course, you
can also input and output complex numbers.

Here is the actual exercise. Implement the following function for solving quadratic
equations over the complex numbers:

// POST: return value is the number of distinct complex solutions

// of the quadratic equation ax^2 + bx + c = 0. If there

// are infinitely many solutions (a=b=c=0), the return

// value is -1. Otherwise , the return value is a number n

// from {0,1,2}, and the solutions are written to s1 ,..,sn

int solve_quadratic_equation (std::complex <double > a,
std::complex <double > b,
std::complex <double > c,
std::complex <double >& s1 ,
std::complex <double >& s2);

(G2)

4.2.10 Challenges

Exercise 141 Implement the following function for solving cubic equations over the
complex numbers:

// POST: return value is the number of distinct (complex) solutions

// of the cubic equation ax^3 + bx^2 + cx + d = 0. If there

// are infinitely many solutions (a=b=c=d=0), the return

// value is -1. Otherwise , the return value is a number n

// from {0,1,2,3}, and the solutions are written to s1 ,..,sn

int solve_cubic_equation (std::complex <double > a,
std::complex <double > b,
std::complex <double > c,
std::complex <double > d,
std::complex <double >& s1 ,
std::complex <double >& s2 ,
std::complex <double >& s3);

You �nd a brief description of the type std::complex<double> in the text of
Exercise 140.

Write a program that tests your function. For example, you may substitute the
solutions returned by the above function into ax3 + bx2 + cx + d = 0 and check
whether the expression indeed evaluates to (approximately) zero.

Hint: You �nd the necessary theory under the keyword Cardano's formula.
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4.3 Classes

Let me tell you this in closing
I know we might seem imposing
But trust me if we ever show in your section
Believe me its for your own protection

Will Smith, Men in Black (1997)

This section introduces the concept of classes as an extension of the
struct concept from Section 4.1. You will learn about data encapsulation
as a distinguishing feature of classes. This feature makes type imple-
mentations more safe and exible. You will �rst learn classes feature
by feature for rational numbers, and then see two complete classes in
connection with random number generation.

4.3.1 Encapsulation

In the previous two sections, we have de�ned a new struct type rational whose value
range models the mathematical type Q (the set of rational numbers), and we have shown
how it can be equipped with some useful functionality (arithmetic and relational opera-
tors, input and output).

To motivate the transition from structs to classes in this section (and in particular
the aspect of encapsulation), let us start o� with a thought experiment. Suppose you
have put the struct rational and all the functionality that we have developed into a
nice library. In Exercise 134 you have actually done this, for the very basic version of
the type rational from Program 35. Now you have sold the library to a customer; let's
call it RAT (Rational Thinking Inc.). RAT is initially happy with the functionality
that the library provides, and starts working with it. But then some unpleasant issues
come up.

Issue 1: Initialization is cumbersome. Some code developed at RAT needs to initialize a
new variable r with the rational number 1/2; for this, the programmer in charge must
write

rational r; // default -initialization of r

r.n = 1; // assignment to data member

r.d = 2; // assignment to data member

The declaration rational r default-initializes r, but the actual value of r must be pro-
vided through two assignments later. RAT tell you that they would prefer to initialize r
from the numerator and denominator in one go, and you realize that they have a point
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here. Indeed, if the programmer at RAT forgets one of the assignments, r has unde-
�ned value (and you get to handle the bug reports). If the struct is larger (consider the
example of rational_vector_3 on page 247), the problem is ampli�ed.

Issue 2: Invariants cannot be guaranteed. Every legal value of the type rational must
have a nonzero denominator. You have stipulated this as an invariant in Program 35,
but there is no way of enforcing this invariant. It is possible for anyone to write

rational r;
r.n = 1;
r.d = 0;

and thus violate the integrity of the type, the correctness of the internal representation.

You might argue that it would be quite stupid to write r.d = 0, and even the pro-
grammer at RAT can't be that stupid. But in RAT's application, the values of rational
numbers arise from complicated computations somewhere else in the program; these
computations may result in a zero denominator simply by mistake, and in allowing value
0 to be assigned to r.d, the mistake further propagates instead of being withdrawn from
circulation (again, you get to handle the bug reports).

You think about how both issues could be addressed in the next release of the rational
numbers library, and you come up with the following solution: As another piece of
functionality on the type rational, you de�ne a function that creates a value of type
rational from two values of type int. (We have proposed such a solution already in
Exercise 126 in connection with nested structs).

// PRE: d != 0

// POST: return value is n/d

rational create_rational (const int n, const int d) {
assert (d != 0);
rational result;
result.n = n;
result.d = d;
return result;

}

You then advise RAT to use this function whenever they want to initialize or assign to
a rational number. For example,

rational r = create_rational (1, 2);

would initialize r with 1/2 in one go, and at the same time make sure that the denomi-
nator is nonzero.

Such a creation function certainly makes sense for structs in general, but the two issues
above don't really go away. The reason is that this safe creation can be circumvented by
not using it. In fact, your advice might not have reached the programmer at RAT, and
even if it did, the programmer might be too lazy to follow it. It is therefore still possible
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to write rational r; and forget about data member assignment, and it is still possible
to assign 0 to r.d. Behind this lies in fact a much larger problem, as you discover next.

Issue 3: The internal representation cannot be changed. After having used the rational
numbers library for some time, RAT approaches you with a request for a version with a
larger value range, since they have observed that intermediate values sometimes overow.

You recall the type extended_int from Page 247 and realize that one thing you could
easily do is to change the type of numerator and denominator from int to unsigned int

and store the sign of the rational number separately as a data member of type bool. for
example like this:

struct rational {
unsigned int n; // absolute value of numerator

unsigned int d; // absolute value of denominator

bool is_negative; // sign of the rational number

};

It is also not too hard to rewrite the library �les rational.h and rational.cpp to reect
this change in representation.

But shortly after you have shipped the new version of your library to RAT (you have
even included the safe creation function create_rational from above in the hope to
resolve issues 1 and 2 above), you receive an angry phone call from the management of
RAT: the programmer reports that although the application code still compiles with the
new version of the library, nothing works anymore!

After taking a quick look at the application code, you suddenly realize what the
problem is: the code is cluttered up with expressions of the form expr.n and expr.d, as
in

rational r;
r.n = 1;
r.d = 2;

Already this particular piece of code does not work anymore: a rational number is now
represented by three data members, but the (old) application code obviously does not
initialize the (new) member of type bool. Now you regret not to have provided the
create_rational function in the �rst place; indeed, the statement

rational r = create_rational (1, 2);

would still work, assuming that you have correctly adapted the de�nition of the function
create_rational to deal with the new representation. But the problem is much more
far-reaching and manifests itself in each and every occurrence of expr.n or expr.d in the
application code, since the data members have changed their meaning (they might even
have changed their names): in letting RAT access numerator and denominator through
data members that are speci�c to a certain representation, you are now committed to that
representation, and you can't change it without asking RAT to change its application
code as well (which they will refuse, of course).
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When the RAT management realizes that the new rational numbers with extended
value range are useless for them, they terminate the contract with you. Disappointed as
you are, you still realize that what you need to avoid such troubles in the future is encap-
sulation : a mechanism that hides the actual representation of the type rational from
the customer, and at the same time o�ers the customer representation-independent
ways of working with rational numbers.

In C++, encapsulation is available through the use of classes, and we start by ex-
plaining how to hide the representation of a type from the customer. In the following,
the term \customer" is used in a broader sense for all programs that use the class.

4.3.2 Public and private

Here is a preliminary class version of struct rational that takes care of data hiding.

class rational {
private:

int n;
int d; // INV: d!= 0

};

In the same way as a struct, a class aggregates several di�erent types into a
new type, but the class keyword indicates that access restriction may occur, real-
ized through the keywords public and private.

A data member is public if and only if its declaration appears somewhere after a
public: speci�er, and with no private: speci�er in between. It is private otherwise.
In particular, if the class de�nition (see Section 4.3.9 below for the precise meaning of
this term) contains no public: speci�er, all data members are private by default. In
contrast, a struct is a class where all data members are public by default.

If a data member is private, it cannot be accessed by customers through the member
access operator. If a data member is public, there are no such restrictions. Under our
above de�nition of class rational, the following will therefore not compile:

rational r;
r.n = 1; // error: n is private

r.d = 2; // error: d is private

int i = r.n; // error: n is private

In particular, the assignment r.d = 0 becomes impossible (which is good), but at a (too)
high price: now your customer cannot do anything with a rational number, and even you
cannot implement operator+=, say, as you used to do it in Program 35. What we are
still lacking is some way of accessing the encapsulated representation. This functionality
is provided by a second category of class members, namely member functions.
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4.3.3 Member functions

Let us now add the missing functionality to class rational through member functions.
It would seem natural to start with safe creation, but since there are speci�c member
functions reserved for this purpose, let us �rst show two \general" member functions
that grant safe access to the numerator and denominator of a rational number (we'll
discuss below what *this and const mean here; and if you wonder why we can use
n and d before they are declared: this is a special feature of class scope, explained in
Section 4.3.9).

class rational {
public:

// POST: return value is the numerator of *this

int numerator () const
{

return n;
}
// POST: return value is the denominator of *this

int denominator () const
{

return d;
}

private:
int n;
int d; // INV: d!= 0

};

If r is a variable of type rational, for example, the customer can then write

int n = r.numerator (); // get numerator of r

int d = r.denominator (); // get denominator of r

using the member access operator as for data members. The customer can call these two
functions, since they are declared public. Access speci�ers have the same meaning for
member functions as for data members: a private member function cannot be called by
the customer. This kind of access to the representation is exible, since the corresponding
member functions can easily be adapted to a new representation; it is also safe, since it is
not possible to change the values of the data members through the functions numerator
and denominator. As a general rule of thumb, all data members of a class should be
private (otherwise, you encourage the customer to access the data members, with the
ugly consequences mentioned in Issue 3 above).

The implicit call argument and *this. In order to call a member function, we need an expres-
sion of the class type for which we access the function, and this expression (appearing
before the .) is an implicit call argument whose value may or may not be modi�ed by
the function call.
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Within each member function, the lvalue *this refers to this implicit call argument
and explains the appearance of *this in the postconditions of the two member functions
above. It does not explain why an asterisk appears in *this, but we will get to this
later.

Const member functions. A const keyword after the formal argument list of a member
function refers to the implicit argument *this and therefore promises that the member
function call does not change the value (represented by the values of the data members)
of *this. We call such a member function a const member function.

Member function call. The general syntax of a member function call is

expr.fname ( expr1, ..., exprN )

Here, expr is an expression of a class type for which a member function called fname is
declared, expr1,. . . , exprN are the call arguments, and . is the member access operator.
In most cases, expr is an lvalue of the class type, typically a variable.

Access to members within member functions. Within the body of a member function f of a
class, any member (data member of member function) of the same class can be accessed
without a pre�x expr.; in this case, we implicitly access it for *this. In our example,
the expression n in the return statement of the member function numerator refers to
the data member n of *this. The call r.numerator() therefore does what we expect: it
returns the numerator of the rational number r.

Within member functions, we can also access members for other expressions of the
same class type through the member access operator (like a customer would do it). All
accesses to class members within member functions of the same class are unrestricted,
regardless of whether the member in question is public or private. The public: and
private: speci�ers are only relevant for the customer, but not for member functions of
the class itself.

Member functions are sometimes also referred to as methods of the class.

Member functions and modularization. In the spirit of Section 3.1.8, it would be useful to
source out the member function de�nitions, in order to allow separate compilation. This
works like for ordinary functions, except that in a member function de�nition outside
of the class de�nition, the function name must be quali�ed with the class name. In
the header �le rational.h we would then write only the declarations (as usual within
namespace ifm):

class rational {
public:

// POST: return value is the numerator of *this

int numerator () const;
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// POST: return value is the denominator of *this

int denominator () const;
private:

int n;
int d; // INV: d!= 0

};

The matching de�nitions would then appear in the source code �le rational.cpp (again
within namespace ifm, and after including rational.h) as follows.

int rational :: numerator () const
{

return n;
}
int rational :: denominator () const
{

return d;
}

4.3.4 Constructors

A constructor is a special member function that provides safe initialization of class values.
The name of a constructor coincides with the name of the class, and|this distinguishes
constructors from other functions|it does not have a return type, and consequently no
return value. A class usually has several constructors, and the compiler �gures out which
one is meant in a given context (using the rules of overloading resolution, see the Details
of Section 4.1).

The syntax of a constructor de�nition for a class T is as follows.

T (T1 pname1, T2 pname2, ..., TN pnameN)
: name1 (expr1), ..., nameM (exprM)

block

Here, pname1,. . . , pnameN are the formal arguments of the constructor. In the initial-
izer

: name1 (expr1), ..., nameM (exprM)

name1,. . . , nameM are data members, and expr1,. . . ,exprM are expressions of types
whose values can be converted to the respective data member types. These values are
used to initialize the data members, before block is executed, and in the order in which
the members are declared in the class. In other words, the order in the initializer is
ignored, but it is good practice to use the declaration order here as well. If a data
member is not listed in the initializer, it is default-initialized. In the constructor body
block, we can still set or change the values of some of the data members.
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For the type rational, here is a constructor that initializes a rational number from
two integers.

// PRE: d != 0

// POST: *this is initialized with numerator / denominator

rational (const int numerator , const int denominator)
: n (numerator), d (denominator)

{
assert (d != 0);

}

To use this constructor in a variable declaration, we would for example write

rational r (1 ,2); // initializes r with value 1/2

In general, the declaration

T x ( expr1, ..., exprN )

de�nes a variable x of type T and at the same time initializes it by calling the appropriate
constructor with call arguments expr1,. . . , exprN.

The constructor can also be called explicitly as in

rational r = rational (1, 2);

This initializes r not directly from two integers, but from an expression of type rational
that is constructed by the explicit constructor call rational(1,2) (which is of type
rational).

4.3.5 Default constructor

In Section 4.1.4, we have introduced the term default-initialization for the kind of
initialization that takes place in declarations like

rational r;

For fundamental types, default-initialization leaves the value in question unde�ned, but
for class types, the default constructor is automatically called to initialize the value. If
present, the default constructor is the unique constructor with an empty formal argument
list.

By providing a default constructor, we can thus make sure that class type values
are always properly initialized. In case of the class rational (or any arithmetic type),
default-initialization with value 0 seems to be the canonical choice, and here is the
corresponding default constructor.

// POST: *this is initialized with 0

rational ()
: n (0), d (1)

{}
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In fact, we must provide a default constructor if we want the compiler to accept the
declaration rational r. This makes class types safer than fundamental types, since it
is not possible to circumvent a constructor call in declaring a variable.

The careful reader will notice that there must be an exception to this rule: Program 33
in Section 4.1 contains the declaration statement rational r; although in that program,
the type rational is a struct without any constructors. This is in fact the only exception:
for a class without any constructors, the default constructor is implicitly provided by
the compiler, and it simply default-initializes the data members; if a data member is
of class type, this in turn calls the default constructor of the corresponding class. This
exception has been made so that structs (which C++ has inherited from its precursor
C) �t into the class concept of C++.

4.3.6 User-defined conversions

Constructors with one argument play a special role: they are user-de�ned conversions.
For the class rational, the constructor

// POST: *this is initialized with value i

rational (const int i)
: n (i), d (1)

{}

is a user-de�ned conversion from int to rational. Under this constructor, int becomes
a \type whose values can be converted to rational". This for example means that
we can provide a call argument of type int whenever a formal function argument of
type rational is expected; in the implicit conversion that takes place, the converting
constructor is called. With user-de�ned conversions, we go beyond the set of standard
conversions that are built-in (like the one from int to double), but in contrast to the
(sometimes incomplete) standard conversion rules stipulated by the C++ standard, we
make the rules ourselves.

There are meaningful user-de�ned conversions that can't be realized by construc-
tors. For example, if we want a conversion from rational to double, we can't add a
corresponding constructor to the type double, since double is not a class type. Even
conversions to some class type T might not be possible in this way: if T is not \our"
type (but comes from a library, say), we cannot simply add a constructor to T. In such
situations, we simply tell our type how its values should be converted to the target type.
The conversion from rational to double, for example, could be done through a member
function named operator double like this.

// POST: return value is double -approximation of *this

operator double () const
{

return double(n)/d;
}
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In general, the member function operator S has implicit return type S and induces
a user-de�ned conversion to the type S that is automatically invoked whenever this is
necessary.

4.3.7 Member operators

All functionality of rational numbers that we have previously provided through \global"
functions (operator+, operator+=,. . . ) must now be reconsidered, since directly access-
ing the data members is no longer possible. For example, operator+= as in Program 35
needs to change the value of a rational number, but there there is no speci�c member
function that allows us to do this.

The way to go is to realize operator+ as a public member function (a member
operator), having only one formal argument (for b), and *this taking the role of a.
This looks as follows.

// POST: b has been added to *this; return value is

// the new value of *this

rational& operator += (const rational& b)
{

n = n * b.d + d * b.n;
d *= b.d;
return *this;

}

Within this member function, there is no problem in accessing the data members di-
rectly, since the access restrictions do not apply to member functions. This version of
operator+= is as e�cient as the one previously used for struct rational.

Prefer nonmember operators over member operators. You might argue that even operator+

should become a member function of class rational, and indeed, this would probably
allow a slightly more e�cient implementation (without calling operator+=). There is
one important reason to keep this operator global, though, and this has to do with
user-de�ned conversions.

Having the conversion from int to rational that we get through the constructor

// POST: *this is initialized with value i

rational (int i);

we can for example write expressions like r + 2 or 2 + r, where r is of type rational.
In compiling this, the compiler automatically inserts a converting constructor call. Now,
having operator+ as a member would remove the second possibility of writing 2 + r.
Why? Let's �rst see what happens when r + 2 is compiled. If operator+ is a member
function, then r + 2 \means"

r.operator+ (2)
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In compiling this, the compiler inserts the conversion from the call argument type int

to the formal argument type rational of operator+, and everything works as expected.
2 + r, however, would mean

2. operator+ (r)

which makes no sense whatsoever. If we write a binary operator as a member function,
then the �rst call argument must be of the respective class type. Implicit conversions
do not work here: they only adapt call arguments to formal argument types of concrete
functions, but they cannot be expected to \�nd" the class whose operator+ has to be
applied.

4.3.8 Nested types

There is a third category of class members, and these are nested types. To motivate
these, let us come back to Issue 3 above, the one concerning the internal representation
of rational numbers. If you think about consequently hiding the representation of a
rational number from the customer, then you probably also want to hide the numerator
and denominator type. As indicated in the example, these types might internally change,
but in the member functions numerator and denominator, you still promise to return
int-values.

A better solution would be to promise only a type with certain properties, by saying
for example that the functions numerator and denominator return an integral type
(Section 2.2.9). Then you can internally change from one integral type to a di�erent one
without annoying the customer. Technically, this can be done as follows.

class rational {
public:

// nested type for numerator and denominator

typedef int rat_int;
...
// realize all functionality in terms of rat_int

// instead of int , e.g.

rational (rat_int numerator , rat_int denominator ); // constructor

rat_int numerator () const; // numerator

...
private:

rat_int n;
rat_int d; // INV: d!= 0

};

In customer code, this can be used for example like this.

typedef rational :: rat_int rat_int;
rational r (1 ,2);
rat_int numerator = r.numerator (); // 1

rat_int denominator = r.denominator (); // 2
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We already see one of the properties that the nested type rational::rat_int must have
in order for this to work. For example, values of type int must be convertible to it. If
you have set up everything cleanly, you can now for example replace the line

typedef int rat_int;

by the lines

typedef ifm:: integer rat_int;

and thus immediately get exact rational numbers without any overow issues; see also
Exercise 142.

Typedef declarations. A typedef declaration introduces a new name for an existing type
into its scope. It does not introduce a new type. In fact, the new name can be used
synonymously with the old name in all contexts. In the above code, we see this twice:
within the class rational, the typedef declaration introduces a nested type rat_int, a
new name for the type int. In the customer code, the class's nested type (that can be
accessed using the scope operator, if the nested type declaration is public) receives a new
(shorter) name.

In real-life C++ code, there are nested types of nested types of nested types,. . . , and
typenames tend to get very long due to this. The typedef mechanism allows us to keep
our code readable.

4.3.9 Class definitions

We now have seen the major ingredients of a class. Formally, a class de�nition has the
form

class T f
class−element ... class−element

g;

where T is an identi�er. The sequence of class-element's may be empty. Each class-

element is an access speci�er (public: or private:), or a member declaration. A
member declaration is a declaration statement that typically declares a member function,
a data member, or a nested type. Collectively, these are called members of the class,
and their names must be identi�ers. A class de�nition introduces a new type, and this
type is called a class type, as opposed to a fundamental type.

A member function de�nition is a declaration as well, but if the class de�nition does
not contain the de�nition of a member function, this function must have a matching
de�nition somewhere else (see Section 4.3.3). All member function de�nitions together
form the class implementation.
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Class Scope. Any member declaration of a class is said to have class scope. Its declar-
ative region is the class de�nition. Class scope di�ers from local scope (Section 2.4.3)
in one aspect. The potential scope of a member declaration is not only the part of the
class de�nition \below" the declaration, but it spans the whole class de�nition, and the
formal argument lists and bodies of all member function de�nitions. In short, a class
member can be used \everywhere" in the class.

If two class de�nitions form disjoint declarative regions, there is no problem in using
the same name for members of both classes.

4.3.10 Random numbers

We now have all the means to put together a complete and useful implementation of the
type rational as a class in C++; but since we have already seen most of the necessary
code in Section 4.1 and in this section, we leave this as Exercise 142 and continue here
with a fresh class that has a little more entertainment in store.

Playing games on the computer would be pretty boring without some unpredictabil-
ity: a chess program should not always come up with the same old moves in reaction to
your same old moves, and in an action game, the enemies should not always pop up at
the same time and location. In order to achieve unpredictability, the program typically
uses a random number generator. This term is misleading, though, since the numbers
are in reality generated according to some �xed rule, in such a way that they appear to
be random. But for many purposes (including games), this is completely su�cient, and
we call such numbers pseudorandom.

Linear congruential generators. A simple and widely-used technique of getting a sequence
of pseudorandom numbers is the linear congruential method. Given amultiplier a 2 N,
an o�set c 2 N, a modulus m 2 N and a seed x0 2 N, let us consider the sequence
x1, x2, . . . of natural numbers de�ned by the rule

xi = (axi−1 + c)modm, i > 0.

A small example is the pseudorandom number generator knuth8, de�ned by the following
parameters.

a = 137, c = 187, m = 28 = 256, x0 = 0.

The sequence x1, x2, . . . of numbers that we get from this is

187, 206, 249, 252, 151, 138, 149, 120, 243, 198, 177, 116, 207, 130, 77,
240, 43, 190, 105, 236, 7, 122, 5, 104, 99, 182, 33, 100, 63, 114, 189, 224, 155,
174, 217, 220, 119, 106, 117, 88, 211, 166, 145, 84, 175, 98, 45, 208, 11, 158,
73, 204, 231, 90, 229, 72, 67, 150, 1, 68, 31, 82, 157, 192, 123, 142, 185, 188,
87, 74, 85, 56, 179, 134, 113, 52, 143, 66, 13, 176, 235, 126, 41, 172, 199, 58,
197, 40, 35, 118, 225, 36, 255, 50, 125, 160, 91, 110, 153, 156, 55, 42, 53, 24,
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147, 102, 81, 20, 111, 34, 237, 144, 203, 94, 9, 140, 167, 26, 165, 8, 3, 86, 193,
4, 223, 18, 93, 128, 59, 78, 121, 124, 23, 10, 21, 248, 115, 70, 49, 244, 79, 2,
205, 112, 171, 62, 233, 108, 135, 250, 133, 232, 227, 54, 161, 228, 191, 242, 61,
96, 27, 46, 89, 92, 247, 234, 245, 216, 83, 38, 17, 212, 47, 226, 173, 80, 139,
30, 201, 76, 103, 218, 101, 200, 195, 22, 129, 196, 159, 210, 29, 64, 251, 14,
57, 60, 215, 202, 213, 184, 51, 6, 241, 180, 15, 194, 141, 48, 107, 254, 169, 44,
71, 186, 69, 168, 163, 246, 97, 164, 127, 178, 253, 32, 219, 238, 25, 28, 183,
170, 181, 152, 19, 230, 209, 148, 239, 162, 109, 16, 75, 222, 137, 12, 39, 154,
37, 136, 131, 214, 65, 132, 95, 146, 221, 0, 187, . . .

From here on, the sequence repeats itself (in general, the period can never be longer
than m). But until this point, it appears to be pretty random (although a closer look
reveals that it is not random at all; do you discover a striking sign of nonrandomness?).

In order to make the magnitude of the random numbers independent from the mod-
ulus, it is common practice to normalize the numbers so that they are real numbers in
the interval [0, 1).

Program 36 below contains the de�nition of a class random in namespace ifm for gen-
erating normalized pseudorandom numbers according to the linear congruential method.
There is a constructor that allows the customer to provide the parameters a, c, m, x0,
and a member function operator() to get the respective next element in the sequence
of the xi.

1 // Prog: random.h

2 // define a class for pseudorandom numbers.

3

4 namespace ifm {
5 // class random: definition

6 class random {
7 public:
8 // POST: *this is initialized with the linear congruential

9 // random number generator

10 // x_i = ( a * x_{i-1} + c) mod m

11 // with seed x0.

12 random(const unsigned int a, const unsigned int c,
13 const unsigned int m, const unsigned int x0);
14

15 // POST: return value is the next pseudorandom number

16 // in the sequence of the x_i , divided by m

17 double operator ()();
18

19 private:
20 const unsigned int a_; // multiplier

21 const unsigned int c_; // offset

22 const unsigned int m_; // modulus

23 unsigned int xi_; // current sequence element
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24 };
25 } // end namespace ifm

Program 36: progs/lecture/random.h

The function operator() has no arguments in our case (that's why its declaration is
operator()(), which admittedly looks a bit funny), and it overloads the function call
operator, see Table 9 in the Appendix. In general, if expr is an expression of some class
type which has the member function

operator()(T1 name1,..., TN nameN)

then expr can be used like a function: the expression

expr (expr1,..., exprN)

is equivalent to a call of the member function operator() with arguments expr1,. . . ,exprN
for the expression expr. We will see such calls in Program 39 and Program 40 below.

Here is the implementation of the class random in which we see how operator()

updates the value of the data member x_i to be the respective next element in the
sequence of the xi.

1 // Prog: random.cpp

2 // implement a class for pseudorandom numbers.

3

4 #include <IFM/random.h>
5

6 namespace ifm {
7 // class random: implementation

8 random :: random(const unsigned int a, const unsigned int c,
9 const unsigned int m, const unsigned int x0)
10 : a_(a), c_(c), m_(m), xi_(x0)
11 {}
12

13 double random :: operator ()()
14 {
15 // update xi acording to formula ,...

16 xi_ = (a_ * xi_ + c_) % m_;
17 // ... normalize it to [0,1), and return it

18 return double(xi_) / m_;
19 }
20 } // end namespace ifm

Program 37: progs/lecture/random.cpp



290 CHAPTER 4. COMPOUND TYPES

Many commonly used random number generators are obtained in exactly this way.
For example, the well-known generator drand48 returns pseudorandom numbers in [0, 1)

according to the parameters

a = 25214903917, c = 11, m = 248,

and a seed chosen by the customer. Assuming that the value range of unsigned int

is {0, . . . , 232 − 1}, we can't realize this generator using our class random. Doing all the
computations over the type double and simulating the modulo operator in a suitable
way is the way to go here. It is clear that we need a large modulus to obtain a useful
generator, since m is an upper bound for the number of di�erent numbers that we can
possibly get from the generator. This means that knuth8 from above is rather a toy
generator.

The game of choosing numbers. Here is a game that you could play with your friend while
waiting for a delayed train. Each of you independently writes down an integer between
1 and 6. Then the numbers are compared. If they are equal, the game is a draw. If the
numbers di�er by one, the player with the smaller number gets CHF 2 from the one with
the larger number. If the two numbers di�er by two or more, the player with the larger
number gets CHF 1 from the one with the smaller number. You can repeat this until
the train arrives (or until one of you runs out of cash, and hopefully it's your friend).

If you think about how to play this game, it's not obvious what to do. One thing
is obvious, though: you should not write down the same number in every round, since
then your friend quickly learns to exploit this by writing down a number that beats your
number (by design of the game, this is always possible).

You should therefore add some unpredictability to your choices. You could, for
example, secretly roll a dice in every round and write down the number that it shows.
But Exercise 147 reveals that your friend can exploit this as well.

You must somehow �netune your random choices, but how? In order to experiment
with di�erent distributions, you decide to de�ne and implement a class loaded_dice

that rolls the dice in such a way that the probability for number i to come up is equal
to a prespeci�ed value pi (a fair dice has pi = 1/6 for all i 2 {1, . . . , 6}). Then you
could let di�erent loaded dices play against each other, and in this way discover suit-
able probabilities to use against your friend (who is by the way not studying computer
science).

Program 38 shows a suitable class de�nition (that in turn relies on the class random
from above, with the normalization to the interval [0, 1)). We will get to the class
implementation (and the meaning of the data members) in Program 39 below.

1 // Prog: loaded_dice.h

2 // define a class for rolling a loaded dice.

3

4 #include <IFM/random.h>
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5

6 namespace ifm {
7 // class loaded_dice: definition

8 class loaded_dice {
9 public:
10 // PRE: p1 + p2 + p3 + p4 + p5 <= 1

11 // POST: *this is initialized to choose the number

12 // i in {1,... ,6} with probability pi , according

13 // to the provided random number generator; here ,

14 // p6 = 1 - p1 - p2 - p3 - p4 - p5

15 loaded_dice (double p1, double p2, double p3, double p4,
16 double p5 , ifm:: random& generator );
17

18 // POST: return value is the outcome of rolling a loaded

19 // dice , according to the probability distribution

20 // induced by p1 ,...,p6

21 unsigned int operator ()();
22

23 private:
24 // p_upto_i is p1 + ... + pi

25 const double p_upto_1;
26 const double p_upto_2;
27 const double p_upto_3;
28 const double p_upto_4;
29 const double p_upto_5;
30 // the generator (we store an alias in order to allow

31 // several instances to share the same generator)

32 ifm:: random& g;
33 };
34 } // end namespace ifm

Program 38: progs/lecture/loaded dice.h

To initialize the loaded dice, we have to provide the probabilities p1, . . . , p5 (p6 =

1 −
∑5

i=1 pi), and the random number generator that is being used to actually roll the
dice. Again, we overload operator() to realize the functionality of rolling the dice once.
How do we implement this functionality? We partition the interval [0, 1) into 6 right-open
intervals, where interval i has length pi:

0 1

p1 p2 p3 p4 p5 p6

p1 + p2 + p3p1 + p2 x

Then we draw a number x at random from [0, 1), using our generator. If the number
that we get were truly random, then it would end up in interval i with probability exactly
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pi. Under the assumption that our pseudorandom numbers behave like random numbers
in a suitable way, we therefore declare i as the outcome of rolling the dice if and only if
x ends up in interval i. This is the case if and only if

p1 + . . . + pi−1 � x < p1 + . . . + pi.

This explains the data members p_upto_1,. . . , p_upto_5 (we don't need p_upto_0

(= 0) and p_upto_6 (= 1)). The constructor in Program 39 simply sets these members
from the data provided, and the implementation of operator() uses them in exactly the
way that was envisioned by the previous equation.

1 // Prog: loaded_dice.cpp

2 // implement a class for rolling a loaded dice.

3

4 #include <IFM/loaded_dice.h>
5

6 namespace ifm {
7 // class loaded_dice: implementation

8 loaded_dice :: loaded_dice
9 (double p1, double p2, double p3, double p4, double p5,
10 ifm:: random& generator)
11 : p_upto_1 (p1),
12 p_upto_2 (p_upto_1 + p2),
13 p_upto_3 (p_upto_2 + p3),
14 p_upto_4 (p_upto_3 + p4),
15 p_upto_5 (p_upto_4 + p5),
16 g (generator)
17 {}
18

19 unsigned int loaded_dice :: operator ()()
20 {
21 const double x = g();
22 if (x <= p_upto_1) return 1;
23 if (x <= p_upto_2) return 2;
24 if (x <= p_upto_3) return 3;
25 if (x <= p_upto_4) return 4;
26 if (x <= p_upto_5) return 5;
27 return 6;
28 }
29 } // end namespace ifm

Program 39: progs/lecture/loaded dice.cpp

Now you can compare two di�erent loaded dices to �nd out which one is better in the
game of choosing numbers. Program 40 does this, assuming that you are using a loaded
dice that prefers larger numbers, and your friend uses a loaded dice that stays more in
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the middle. It turns out that in this setting, you win in the long run, but not by much
(CHF 0.12 on average per round). Exercise 148 challenges you to �nd the best loaded
dice that you could possibly use in this game.

1 // Prog: choosing_numbers.cpp

2 // let your loaded dice play against your friend ’s dice

3 // in the game of choosing numbers.

4

5 #include <iostream >
6 #include <IFM/loaded_dice.h>
7

8 // POST: return value is the payoff to you (possibly negative),

9 // given the numbers of you and your friend

10 int your_payoff (const unsigned int you , const unsigned int your_friend)
11 {
12 if (you == your_friend) return 0; // draw

13 if (you < your_friend) {
14 if (you + 1 == your_friend) return 2; // you win 2

15 return -1; // you lose 1

16 } // now we have your_friend < you

17 if (your_friend + 1 == you) return -2; // you lose 2

18 return 1; // you win 1

19 }
20

21 int main() {
22 // the random number generator; let us use the generator

23 // ANSIC instead of the toy generator knuth8; m = 2^31;

24 ifm:: random ansic (1103515245u, 12345u, 2147483648u, 12345u);
25

26 // your strategy may be to prefer larger numbers and use

27 // the distribution (1/21, 2/21, 3/21, 4/21, 5/21, 6/21)

28 const double p = 1.0/21.0;
29 ifm:: loaded_dice you (p, 2*p, 3*p, 4*p, 5*p, ansic);
30

31 // your friend ’s strategy may be to stay more in the middle

32 // and use the distribution (1/12, 2/12, 3/12, 3/12, 2/12, 1/12)

33 const double q = 1.0/12.0;
34 ifm:: loaded_dice your_friend (q, 2*q, 3*q, 3*q, 2*q, ansic);
35

36 // now simulate 1 million rounds (the train may be very late ...)

37 int your_total_payoff = 0;
38 for (unsigned int round = 0; round < 1000000; round ++) {
39 your_total_payoff += your_payoff (you(), your_friend ());
40 }
41
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42 // output the result:

43 std::cout << "Your total payoff is "
44 << your_total_payoff << "\n";
45

46 return 0;
47 }

Program 40: progs/lecture/choosing numbers.cpp

4.3.11 Details

Friend functions. Sometimes, we want to grant nonmember functions access to the inter-
nal representation of a class. Typical functions for which this makes sense are the in- and
output operators operator<< and operator>>. Indeed, writing out or reading into the
internal representation often requires some knowledge of this representation that goes
beyond what other functions need.

We cannot reasonably write operator<< and operator>> as members (why not?), but
we can make these functions friends of the class. As a friend, a function has unrestricted
access to the private class members. It is clear that the class must declare a function to
be its friend, and not the other way around, since it's the class that has to protect its
privacy, and not the function. Formally, a friend declaration is a member declaration
of the form

friend function−declaration;

This declaration makes the respective function a friend of the class and grants access to
all data members, whether they are public or private. For the class rational, we could
rewrite the private section as follows to declare in- and output operators to be friends
of the class.

class rational {
private:

friend std:: ostream& operator << (std:: ostream& o, const rational& r);
friend std:: istream& operator >> (std:: istream& i, rational& r);
int n;
int d; // INV: d!= 0

};

In the de�nition of these operators, we can then access the numerator and denomina-
tor through .n and .d as we used to do it in Section 4.2.5. If possible, friend declarations
should be avoided, since they compromise encapsulation; but sometimes, they are useful
in order to save unnecessary member functions.
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4.3.12 Goals

Dispositional. At this point, you should . . .

1) be able to explain the purpose of a class in C++;

2) understand the new syntactical and semantical terms associated with C++ classes,
in particular access speci�ers, member functions, and constructors ;

3) understand the classes ifm::random and ifm::loaded_dice in detail.

Operational. In particular, you should be able to . . .

(G1) �nd syntactical and semantical errors in a given class de�nition and implementa-
tion;

(G2) describe value range and functionality of a type given by a class de�nition;

(G3) add functionality to a given class through member functions;

(G4) write simple classes on your own;

(G5) work with and argue about pseudorandom numbers.

4.3.13 Exercises

Exercise 142 Provide a full implementation of rational numbers as a class type, and
test it. The type should o�er all arithmetic operators (including in- and decre-
ment, and the arithmetic assignments), relational operators, as well as in- and
output and user-de�ned conversions (from int and to double). As an invariant, it
should hold that the internal representation is normalized (see also Exercise 137).
For all the functionality you provide, decide whether it should be realized by mem-
ber functions, or by nonmember functions. The class should also have a nested
numerator and denominator type to achieve more exibility, and there should be a
conversion function from values of this type. Test this class with internal integral
type ifm::integer! (G3)(G4)

Exercise 143 Rewrite the struct Tribool that you have developed in Exercise 127 into
a class, by

a) making the data members private,

b) adding corresponding access functions,

c) adding an access function is_bool() const that returns true if and only if the
value is not unknown, and

d) adding user-de�ned conversions from and to the type bool.

(G4)
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Exercise 144

a) Find all errors and violations of const-correctness in the following program.
Fix them and describe the functionality of the type Clock, by providing pre-and
postconditions for the member functions. (G1)(G2)

1 #include <iostream >

2

3 class Clock {

4 Clock(unsigned int h, unsigned int m, unsigned int s);

5 void tick ();

6 void time(unsigned int h, unsigned int m,

7 unsigned int s);

8 private:

9 unsigned int h_;

10 unsigned int m_;

11 unsigned int s_;

12 };

13

14 Clock :: Clock(unsigned int& h,

15 unsigned int& m,

16 unsigned int& s)

17 : h_(h), m_(m), s_(s)

18 {}

19

20 void Clock ::tick()

21 {

22 h_ += (m_ += (s_ += 1) / 60) / 60;

23 h_ %= 24; m_ %= 60; s_ %= 60;

24 }

25

26 void Clock ::time(unsigned int& h,

27 unsigned int& m,

28 unsigned int& s)

29 {

30 h = h_;

31 m = m_;

32 s = s_;

33 }

34

35 int main() {

36 Clock c1 (23, 59, 58);

37 tick ();

38

39 unsigned int h;

40 unsigned int m;

41 unsigned int s;

42 time(h, m, s);

43

44 std::cout << h << ":" << m << ":" << s << "\n";

45

46 return 0;

47 }

b) Implement an output operator for the class Clock. (G3)

Exercise 145 Write a program random_triangle.cpp to simulate the following random
process graphically. Consider a �xed triangle t and choose an arbitrary vertex of t
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as a starting point. In each step, choose as a next point the midpoint between the
current point and a (uniformly) randomly selected vertex of t.

The simulation at each step draws the current point into a Window. Use the
window object ifm::wio de�ned in <IFM/window> for graphical output, and choose
the triangle with vertices (0, 0), (512, 0), and (256, 512). Use the random number
generator ansic from Program 40. At begin, the program should read in a seed for
the random number generator and the number of simulation steps to perform. For
testing purposes, let the simulation run for about 100,000 steps. (G5)

Exercise 146 Consider the generator ansic used in Program 40. Since the modulus
is m = 231, the internal computations of the generator will certainly overow if
32 bits are used to represent unsigned int values. Despite this, the sequence of
pseudorandom numbers computed by the generator is correct and coincides with its
mathematical de�nition. Explain this! (G5)

Exercise 147 Find a loaded dice that beats the fair dice in the game of choosing
numbers. (This is a theory exercise.) (G5)

4.3.14 Challenges

Exercise 148 What is the best loaded dice for playing the game of choosing numbers?
Give its distribution! You could try to approximate the distribution experimen-
tally, or somehow compute it. (Hint: in order to �nd a suitable theoretical model,
search for the term \zero-sum games", or directly go to the corresponding chap-
ter in http://www.inf.ethz.ch/personal/gaertner/cv/lecturenotes/ra.pdf. Once
you have formulated the problem as a zero-sum game, you can solve it using for
example the web-interface http://banach.lse.ac.uk/form.html (G5)

Exercise 149 This is about visual cryptography. You may know the riddle of the rich
Bedouin on his deathbed who wants to split his 17 camels among his three sons.
Here we consider a modern version of this riddle where a secret image should be
split among two people. You can for example imagine that the rich Bedouin wants
to pass a treasure map to his two sons (these days, even Bedouins have less children
than they used to have). Unfortunately, the two sons are at odds with each other,
so that the Bedouin can't put the map into his testament. He is afraid that the son
who �nds the testament �rst keeps the treasure for himself.

But the clever Bedouin �nds a way of \splitting" the treasure map in such a
way that the two sons must cooperate in order to decipher the map and �nd the
treasure. He calls his two sons and gives each of them one image, printed on a
transparency. By themselves, both images look (and really are) absolutely random,
and the sons are puzzled. But then the father tells the two that in order to see the
treasure map, they simply have to overlay the two transparencies!
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Now how does this work? We assume for simplicity that the image to be split is
black and white. The splitting happens pixel by pixel, according to the result (head
or tail) of a fair coin ip. In each of the two transparencies, the original pixel is
replaced by a \superpixel" of four pixels, according to the scheme in Figure 25.

white black

tailhead head tail

gray black

transparency 1

transparency 2

overlay

original pixel

Figure 25: Visual cryptography: one pixel is split into two random \superpixels" of
four pixels each, depending on the outcome of a fair coin ip

In overlaying the two transparencies, we get a black superpixel for every black
pixel, and a gray superpixel for every white pixel. Thus, the overlay reveals the
secret image, except that it now has double size, and white appears as gray.

Each transparency by itself does not contain any information about the secret
image. Independently of the color of the original pixel, every superpixel is with the
same probability in one of the two di�erent gray states.

Now the challenge: write a program visual_crypto.cpp that splits an image in
XBM format into two images (again in XBM format) according to the scheme just
outlined. The XBM format is described in the text of Exercise 90 on page 174. You
may use command line arguments (see the Details of Section 2.6 to specify the
transparency to be generated.

Test your program by printing the resulting images on transparencies, and then
overlaying them. If you cannot print on transparencies (or if you feel that you can-
not a�ord it anymore, after a few dozen failed attempts to �x your buggy program),
write a program xbm_merge.cpp that simulates the overlay of two transparencies in
XBM format.
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Appendix
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Appendix A

C++ Operators

Description Operator Arity Prec. Assoc.

scope :: 2 18 right
subscript [] 2 17 left
function call () 2 17 left
construction type() 1 17 right
member access . 2 17 left
member access -> 2 17 left
post-increment ++ 1 17 left
post-decrement -- 1 17 left
dynamic cast dynamic_cast<> 1 17 right
static cast static_cast<> 1 17 right
reinterpret cast reinterpret_cast<> 1 17 right
const cast const_cast<> 1 17 right
type identi�cation typeid 1 17 right
pre-increment ++ 1 16 right
pre-decrement -- 1 16 right
dereference * 1 16 right
address & 1 16 right
bitwise complement ~ 1 16 right
logical not ! 1 16 right
sign + 1 16 right
sign - 1 16 right
sizeof sizeof 1 16 right
new new 1 16 right
delete delete 1 16 right
cast (type) 1 16 right
member pointer ->* 2 15 left
member pointer .* 2 15 left

. . .
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. . .
multiplication * 2 14 left
division (integer) / 2 14 left
modulus % 2 14 left
addition + 2 13 left
subtraction - 2 13 left
output/left shift << 2 12 left
input/right shift >> 2 12 left
less < 2 11 left
greater > 2 11 left
less equal <= 2 11 left
greater equal >= 2 11 left
equality == 2 10 left
inequality != 2 10 left
bitwise and & 2 9 left
bitwise xor ^ 2 8 left
bitwise or | 2 7 left
logical and && 2 6 left
logical or || 2 5 left
assignment = 2 4 right
mult assignment *= 2 4 right
div assignment /= 2 4 right
mod assignment %= 2 4 right
add assignment += 2 4 right
sub assignment -= 2 4 right
rshift assignment >>= 2 4 right
lshift assignment <<= 2 4 right
and assignment &= 2 4 right
xor assignment ^= 2 4 right
or assignment |= 2 4 right
selection ? 3 3 right
exception throw 1 2 right
sequencing , 2 1 left

Table 9: Precedences and associativities of C++ op-
erators.
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*this, 280
C++

origin of name, 54
\n (line break), 151
32-bit system, 17

\0 (zero character), 151

access
data member, 249
member function, 279

access restrictions
private, 278
public, 278

access speci�er
private, 278
public, 278

Ackermann function, 218
addition assignment operator, 54
addition operator, 50
address

of a memory cell, 17
of a variable, 27

address operator, 139
adjustment

of array argument, 188
algorithm

cache-oblivious, 19
alternate denial, 73
ANSIC

random number generator, 292
antivalence, 73
application program, 10
argument-dependent lookup, 253

Arithmetic Evaluation Rule 1, 47
Arithmetic Evaluation Rule 2, 47
Arithmetic Evaluation Rule 3, 48
arithmetic expression, 30
arithmetic operators, 50
arithmetic type, 47
arity, 32
array, 135

as function argument, 188
dimension, 154
drawbacks, 165
element, 133
�xed length, 165
incomplete type, 135
index, 136
initialization, 135
initialization from string literal, 151
initializer list, 135
multidimensional, 154
simulation by onedimensional array,
155

of pointers, 156
out-of-bound index, 136
pointer to, 155
random access, 135
security issues, 165
size of, 137
subscript, 136
subscript operator, 136
underlying type, 135
zero-terminated, 151

array-to-pointer conversion, 141
ASCII code, 151
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assertion, 180
assignment

member-wise, 250
of a struct value, 249
of reference, 262
pointer, 139

assignment operator, 33
associative operation, 47
associativity

left, 48
right, 48

associativity of operator, 47
attacker, 165
automatic storage duration, 88
automaton

deterministic �nite, 208

Babylonian method, 129
base

of a oating point number system, 114
BASIC

programming language, 188
behavior

implementation de�ned, 24
unde�ned, 24
unspeci�ed, 24

binary expansion
of natural number, 57
of real number, 115

binary operator, 32
binary representation

of int value, 58
of unsigned int value , 58

binary search, 239
binary-to-decimal conversion, 58
binomial coe�cient, 237
bit, 17
bitwise operators, 74
block, 84
BODMAS, 47
body

of do statement, 91
of for statement, 81

of function, 181
of while statement, 89

bool, 70
Boole, George, 68
Boolean, 68
Boolean Evaluation Rule, 71
Boolean expression, 72
Boolean function, 68

completeness, 69
break statement, 92
brute-force approach, 157
bubble-sort, 223
bug, 85
built-in type, 27
burst, 63
byte, 17

C++ standard, 24
cache, 19
cache-oblivious algorithm, 19
call arguments, 182
call by name, 262
call by reference, 262
call by value, 263
call stack, 213
cancellation

in oating point computations, 123
Cardano's formula, 274
cast (functional notation), 112
cast expression, 112
central processing unit (CPU), 17
char

literal, 150
promotion to (unsigned) int, 150
type, 150

character, 150,
control, 151
line break, 151

choosing numbers
game, 290

Church, Alonzo (1903{1995), 99
Church-Turing thesis, 99
class
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access speci�er, 286
constructor, 281
de�nition, 286
implementation, 286
member declaration, 286
member function, 279
member function call, 280
member operator, 284
method, 280
nested type, 285
private member, 278
public member, 278

class scope, 287
class type, 286
Collatz problem, 89
Collatz, Lothar (1910{1990), 100
command line argument, 166
command shell, 18
comment, 25
compilation, 16

separate, 192
compiler, 16
complex number, 273
complexity

of a problem, 219
of an algorithm, 219

composite expression, 30
compound statement, 84
computable function, 99
computer

main memory, 17
memory cell, 17
processor, 17
von Neumann, 17

condition
of a while statement, 89
of an if statement, 79

conditional operator, 100
const

member function, 280
pointer, 142
reference, 269

Const Guideline, 29

const pointer, 142
const reference, 269
const-correctness, 29
const-pointer type

in function argument, 191
const-quali�ed type, 28

as formal argument type of function ,
182

as return type of function , 183
in function argument, 191

constant, 28
constant expression, 135
constant pointer, 142
constructor, 281

default, 282
explicit call, 282
initializer, 281

container, 138
iteration, 138

continue statement, 93
control character, 151
control ow, 79

iteration, 80
jump, 92
linear, 79
selection, 79

control statement, 80
control variable, 82
conversion

array to pointer, 141
explicit, 112
oating point, 111
implicit, 56
integral, 56
promotion, 72
standard, 283
user-de�ned, 283

correctness proof, 215
coupon collector's problem, 121
CPU, 17
Cramer's rule, 169
cryptography

visual, 297
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cryptosystem, 13

data encapsulation, 278
data member

access for, 249
of struct, 247

De Morgan's laws, 72
De Morgan, Augustus, 72
debugging output, 85
decimal-to-binary conversion, 57
declaration, 35

local, 85
of a class member, 286
of a function, 185
of a variable, 27
of friend, 294
struct, 248

declaration statement, 35
declarative region, 86
default argument

of a function, 199
default constructor, 282
default initialization

struct, 250
default-initialization

by default constructor, 282
de�nition

of a class, 286
of a function, 181
of a variable, 28
struct, 247

delete expression, 149
denormalized number, 126
dereference operator, 140
dereferencing, 140
deterministic �nite automaton, 208
DFA, 208
dimension

(multidimensional) array, 154
directive

include, 25
using, 39

discriminant

of a quadratic equation, 123
divide and conquer, 223
division assignment operator, 54
do statement, 91

body, 91
domain

of a function, 180
double, 109
drand48

random number generator, 290
dynamic memory allocation, 147
dynamic programming, 157
dynamic storage duration, 147
Dynamic Storage Guideline, 150

editor, 15
e�ect

of a function, 26
of a statement, 35
of an expression, 30

e�ect (semantical term), 27
element

of array, 133
encapsulation

of data, 278
equality

pointer, 139
Eratosthenes' Sieve, 133
Erd}os, Paul (1913{1996), 100
Euclidean algorithm, 214
Euler, Leonhard (1707 - 1783), 173
evaluation

of an expression, 30
order of operands, 32
short circuit, 73

evaluation sequence, 49
Excel 2007 bug, 116
executable, 16
execution, 35
explicit conversion, 112
exponent

of a oating point number, 114
expression, 30
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arithmetic, 30
Boolean, 72
cast, 112
composite, 30
constant, 135
delete, 149
e�ect of, 30
evaluation of, 30
evaluation sequence, 49
function call, 182
literal, 27
lvalue, 31
mixed, 56
new, 148
of type void, 183
order of e�ects, 63
primary, 30
rvalue, 31
type of, 30
value of, 30
variable, 27

expression statement, 35
expression tree, 49

factoring numbers, 12
fair dice, 290
false, 70
Fibonacci numbers, 216
�le, 18
�nite oating point number system, 114
�xed point number, 108
oat, 109
Floating Point Arithmetic Guideline 1, 120
Floating Point Arithmetic Guideline 2, 123
oating point computations

cancellation, 123
di�erent sizes, 123
equality test, 120
relative error, 118

oating point conversions, 111
oating point number

denormalized, 126
exponent, 114

in�nity, 126
mantissa, 114
NaN, 126
normalized, 114
sign, 114
signi�cand, 114

oating point number system, 114
base, 114
largest exponent, 114
precision, 114
smallest exponent, 114

oating point type, 108
oor function, 112
for statement, 81

body, 81
init-statement, 81
iteration, 82
termination, 82

formal argument, 181
fractal, 131, 231
friend declaration, 294
function

Ackermann, 218
body, 181
call, 182
call arguments, 182
call by reference, 262
call by value, 263
const-pointer argument type, 191
const-quali�ed argument type, 182, 191
const-quali�ed return type, 183
declaration, 185
default argument, 199
de�nition, 181
domain, 180
e�ect, 179
formal argument, 181
formal argument of reference type, 262
main, 26
mutating, 190
overloading, 251
postcondition, 179
precondition, 179
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recursive, 212
recursive call, 212
return by reference, 263
return by value, 263
return type, 181
return value of reference type, 263
scope, 185
scope of formal arguments, 184
signature, 200
value, 179
void, 183

function call
quali�ed, 253
unquali�ed, 253

function call operator, 289
functional operator notation, 252
functional programming language, 26
functionality

of a struct, 249
of a type, 27
of an operator, 31

fundamental type, 27

game
choosing numbers, 290

garbage collection, 149
Gauss, Carl-Friedrich, 83
global scope, 86
global variable, 184
goto statement, 101
greatest common divisor, 214
guideline

Dynamic Storage, 150

halting problem, 83, 99
harmonic number, 121
header

�le, 193
of the standard library, 26
iostream, 26

heap, 147
hexadecimal literal, 174
hiding

of name, 87

identi�er, 29
IEEE compliance, 125
IEEE standard 754, 119

arithmetic operations, 120
double extended precision, 124
single extended precision, 124
value range, 119

IEEE standard 854, 124
if statement, 79

condition, 79
if-else statement, 80
ifm::integer, 37
implementation de�ned behavior, 24
implicit conversion, 56

stream to bool, 153
include directive, 25

variant with angle brackets, 195
variant with quotes, 192

incomplete array type, 135
incomplete type, 248
indentation, 25
index

of array element, 136
indirection, 140
in�nite loop, 82
in�nite recursion, 213
in�x operator notation, 252
initialization

by constructor, 282
by zero, 101
member-wise, 249
of a struct value, 249
of a variable, 36
of array, 135
of reference, 261
pointer, 139

initializer
of constructor, 281

initializer list
array, 135

input operator, 33
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input stream, 33
input/output e�ciency, 20
insert-sort, 223
int, 47
integer division, 52
integer division operator, 52
integral conversions, 56
integral type, 59
integrity

of representation, 276
invariant

of a struct, 246
iostream, 26
ISO/IEC standard 14882, 24
iteration, 80

over a container, 138
over an array, 138

iteration statements, 80
equivalence of, 94

iterator, 146, 189

Josephus problem, 67
jump statements, 92

Knuth, Donald E., 13
Knuth-Morris-Pratt algorithm, 152
knuth8

random number generator, 287
Koenig lookup, 253

layout of program, 25
least common multiple, 43
left associativity, 48
left-associative, 34
library, 194

standard, 26
Lindenmayer system, 229

alphabet, 228
fractal, 231
graphical interpretation, 230
initial word, 229
productions, 228

Lindenmayer, Aristide (1925{1985), 234
line break character, 151

linear congruential generator, 287
linear congruential method, 287
linear control ow, 79
linker, 193
Linux, 18
literal, 27

bool, 70
char, 150
double, 110
oat, 110
hexadecimal, 60, 174
int, 47
long double, 125
octal, 60
string, 150
unsigned int, 56

loaded dice, 290
local declaration, 85
local scope, 86
logical parentheses, 60
logical operators, 71
logical parentheses

leading operand, 60
secondary operand, 60

long double, 125
long int, 62
lookup

argument-dependent, 253
loop, 80

in�nite, 82
progress towards termination, 82

lvalue, 31
lvalue-to-rvalue conversion, 32

Mac OS, 18
machine epsilon, 118
machine language, 15, 18
macro, 180
main function, 26
main memory, 17
Mandelbrot set, 131
mantissa

of a oating point number, 114
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mathematical induction, 215
McCarthy's 91 Function, 236
member access

in a struct, 249
member access operator, 249
member function, 279

access for, 279
and const, 280
call, 280
implicit call argument, 279

member operator
of class, 284

member speci�cation
of a struct, 248

member-wise assignment, 250
member-wise initialization, 249
memory cell, 17

address, 17
memory leak, 150
merge-sort, 223

complexity, 225
Mersenne primes, 11
method

of class, 280
minimum-sort, 219

complexity, 220
mixed expression, 56
modularization, 191
modulus assignment operator, 54
modulus operator, 52
multidimensional array, 154

dimension, 154
simulation by onedimensional array, 155

multiplication assignment operator, 54
multiplication operator, 33, 50
mutating function, 190

name
clash, 26
hiding, 87
of a class, 286
of a function, 181
of a type, 27

of a variable, 27
of formal argument, 181
quali�ed, 26
unquali�ed, 26

namespace, 26
namespace scope, 86
nested type, 285
new expression, 148
normalized oating point number, 114
null pointer, 141
null pointer value, 140
null statement, 35
numeric limits

of oating point types, 125
of integral types, 55

object, 30
unnamed, 30

object code, 192
open source software, 194
operand, 31

evaluation order, 32
operating system (OS), 18

Linux, 18
Mac OS, 18
Unix, 18
Windows, 18

operator
addition, 50
addition assignment, 54
address, 139
arithmetic, 50
arithmetic assignment, 54
arity, 32
assignment, 33
associativity, 47
binary, 32
binding, 47
bitwise, 74
conditional, 100
conversion, 283
dereference, 140
division assignment, 54
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function call, 289
functional notation, 252
functionality, 31
in�x notation, 252
input, 33
integer division, 52
left-associative, 34
logical, 71
modulus, 52
modulus assignment, 54
multiplication, 33, 50
multiplication assignment, 54
operand, 31
output, 34
overloading, 251
post-decrement, 53
post-increment, 53
pre-decrement, 53
pre-increment, 53
precedence, 47
relational, 71
return value, 31
sizeof, 137
subscript, 136, 145
subtraction, 50
subtraction assignment, 54
ternary, 100
unary, 32
unary minus, 52
unary plus, 52

operator token, 32
overloaded, 48

order of e�ects, 63
OS, 18
out-of-bound array index, 136
output operator, 34
output stream, 34
overow

of value range, 55
overloading

argument-dependent lookup, 253
best match, 253
of functions, 251

of operators, 251
overloading resolution, 253

Panini, 241
parallel computer, 20
past-the-end pointer, 143
PEMDAS, 47
permutation, 170
perpetual calendar, 206
pipe, 78
platform, 19
point of declaration, 86, 100
pointer, 139

adding an integer, 143
arithmetic, 143
assignment, 139
comparison, 145
const, 142
constant, 142
equality, 139
initialization, 139
null, 141
null value, 140
past-the-end, 143
subscript operator, 145
subtraction, 145
to array, 155
type, 138

pointer type
underlying type, 139

porting, 16
post-decrement operator, 53
post-increment operator, 53
postcondition

of a function, 179
potential scope, 86
pre-decrement operator, 53
pre-increment operator, 53
precedence of operator, 47
precision

of a oating point number system, 114
precondition

of a function, 179
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predicate, 70
primary expression, 30
primitive recursion, 217
private

class member, 278
private:, 278
procedural programming, 188
processor, 17
production

of a Lindenmayer system, 228
program

const-correct, 29
layout, 25
valid, 23

Program Listing
callpow.cpp, 179
callpow2.cpp, 192
callpow3.cpp, 193
callpow4.cpp, 197
choosing numbers.cpp, 294
clock.cpp, 296
collatz.cpp, 90
diff.cpp, 114
dragon.cpp, 234
eratosthenes.cpp, 134
eratosthenes2.cpp, 148
euler.cpp, 111
fahrenheit.cpp, 46
fill.cpp, 189
harmonic.cpp, 122
limits.cpp, 55
lindenmayer.cpp, 231
loaded dice.cpp, 292
loaded dice.h, 291
math.cpp, 196
math.h, 196
merge sort.cpp, 228
minimum sort.cpp, 222
perfect2.cpp, 187
pow.cpp, 191
power8.cpp, 22
power8 condensed.cpp, 25
power8 exact.cpp, 38

power8 using.cpp, 40
prime.cpp, 84
prime2.cpp, 198
random.cpp, 290
random.h, 289
rational.cpp, 267
scope.cpp, 87
shortest path.cpp, 164
snowflake.cpp, 233
string matching.cpp, 153
sum n.cpp, 81
userational.cpp, 246
userational2.cpp, 266

program state, 17
programming language, 10

functional, 26
promotion, 72

bool to int, 72
char to (unsigned) int, 150
oat to double, 112

pseudorandom numbers, 287
public

class member, 278
public:, 278
Pythagorean triple, 67

quali�ed function call, 253
quali�ed name, 26
quantum computer, 20

RAM, 17
random access

in array, 135
random access memory (RAM), 17
random number, 287
random number generator, 287

ANSIC, 292
drand48, 290
knuth8, 287

range
of pointers, 189
valid, 189

rational numbers, 244
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recurrence relation, 225
recursion

in�nite, 213
primitive, 217
tail-end, 216

recursive call, 212
recursive function, 212

correctness, 215
termination, 215

refactoring, 96
reference, 261

assignment, 262
const, 269
implementation, 261
initialization, 261

Reference Guideline, 264
reference type, 261
relational operators, 71
relative error

in oating point computations, 118
reserved name, 29
return by reference, 263
return by value, 263
return statement, 36, 101
return type, 181
return value, 31
Reverse Polish Notation, 77
right associativity, 48
runtime error, 181
rvalue, 31

Sarrus' rule, 170
scope

global, 86
local, 86
namespace, 86
of a declaration, 86
of a function declaration, 185

segmentation fault, 141
selection, 79
selection statements, 80
semantical value range

of a struct, 250

semantics, 23
sentinel, 158
separate compilation, 192
sequence point, 63
She�er stroke, 73
She�er, Henry M. (1883{1964), 73
short circuit evaluation, 73
short int, 62
shortest path problem, 157
side e�ect, 31
Sieve of Eratosthenes, 133
sign

of a oating point number, 114
signature of a function, 200
signed char, 62
signi�cand

of a oating point number, 114
Single Modi�cation Rule, 64
sizeof operator, 137
sorting algorithm

bubble-sort, 223
insert-sort, 223
merge-sort, 223
minimum-sort, 219

sourcecode, 16
availability, 194

spaghetti code, 188
special character, 150
standard conversion, 283
standard error, 34
standard input, 33
standard library, 26

mathematical functions, 200
std::cerr, 34
std::cin, 33
std::cout, 34
std::�ll, 198
std::pow, 197
std::sqrt, 197

standard output, 34
statement, 35

break, 92
compound, 84
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continue, 93
control, 80
declaration, 35
do, 91
execution, 35
expression, 35
for, 81
goto, 101
if, 79
if-else, 80
iteration, 80
jump, 92
null, 35
return, 36, 101
selection, 80
switch, 98
while, 89

static storage duration, 89
static variable, 89, 101
std::cerr, 34
std::cin, 33
std::complex, 273
std::cout, 34
std::sqrt, 197
storage duration, 87

automatic, 88
dynamic, 147
static, 89

string literal, 150
string matching, 152

Knuth-Morris-Pratt algorithm, 152
obvious algorithm, 152

struct, 246
assignment, 249
data member, 247
declaration, 248
default initialization, 250
de�nition, 247
functionality, 249
initialization, 249
member access, 249
member speci�cation, 248
underlying type, 247

value range, 247
semantical, 250
syntactical, 250

subscript
of array element, 136

subscript operator
array, 136
pointer, 145

subtraction assignment operator, 54
subtraction operator, 50
Sudoku, 209
swapping

of memory, 20
switch statement, 98
syntactical value range

of a struct, 250
syntax, 23
syntax error, 23

tail-end recursion, 216
temporary object, 263

reference to, 263
ternary operator, 100
topological sorting, 49
Towers of Hanoi, 240
true, 70
Turing machine, 99
Turing, Alan (1912{1954), 99
turtle graphics, 229
two's complement, 59
type, 27

arithmetic, 47
bool, 70
built-in, 27
char, 150
class, 286
const-quali�ed, 28
double, 109
oat, 109
oating point, 108
functionality of, 27
fundamental, 27
incomplete, 248
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incomplete array, 135
int, 47
integral, 59
long double, 125
long int, 62
name of, 27
of a variable, 27
of an expression, 30
of formal argument, 181
pointer, 138
reference, 261
short int, 62
signed char, 62
underlying a struct, 247
underlying an array, 135
unsigned char, 62
unsigned int, 56
unsigned long int, 62
unsigned short int, 62
value range of, 27
void, 183

typedef, 286

Ulam spiral, 106
Ulam, Stanislaw (1909{1984), 106
unary minus operator, 52
unary operator, 32
unary plus operator, 52
undecidable problem, 99
unde�ned behavior, 24
underow

of value range, 55
underlying type

of a pointer type, 139
Unix, 18
unnamed object, 30
unquali�ed function call, 253
unquali�ed name, 26
unsigned char, 62
unsigned int, 56
unsigned long int, 62
unsigned short int, 62
unspeci�ed behavior, 24

user-de�ned conversion, 283
using directive, 39

valid program, 23
valid range, 189
value

of a variable, 27
of an expression, 30

value (semantical term), 27
value range

of a struct, 247
of a type, 27
of type bool, 70
of type double, 119
of type oat, 119
of type int, 54
of type unsigned int, 56
overow, 55
semantical, 250
syntactical, 250
underow, 55

variable, 27
address of, 27
control, 82
global, 184
name of, 27
static, 89, 101
type of, 27
value of, 27

variable declaration, 27
variable de�nition, 28
vector, 165
visibility

of name, 86
visual cryptography, 297
void, 183
void function, 183
von Neumann computer, 17

while statement, 89
body, 89

whitespace, 154
Windows, 18
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wireframe model, 258

XBM graphics format, 174

zero-initialization, 101
zero-sum game, 297
zero-terminated array, 151
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