Skript-Aufgabe 122 (4 Punkte)

The Towers of Hanoi puzzle (that can actually be bought from shops) is the following. There are three wooden pegs labeled 1, 2, 3, where the first peg holds a stack of \(n \) disks, stacked in decreasing order of size, see Figure Abbildung 1.

![Abbildung 1: The Tower of Hanoi](image)

The goal is to transfer the stack of disks to peg 3, by moving one disk at a time from one peg to another. The rule is that at no time, a larger disk may be on top of a smaller one. For example, we could start by moving the topmost disk to peg 2 (move \((1,2)\)), then move the next disk from peg 1 to peg 3 (move \((1,3)\)), then move the smaller disk from peg 2 onto the larger disk on peg 3 (move \((2,3)\)), etc.

Write a program hanoi.cpp that outputs a sequence of moves that does the required transfer, for given input \(n \). For example, if \(n = 2 \), the above initial sequence \((1,2)(1,3)(2,3)\) is already complete and solves the puzzle. Check the correctness of your program by hand at least for \(n = 3 \), by manually reproducing the sequence of moves on a piece of paper (or an actual Tower of Hanoi, if you have one).

By the way, if you search for Towers of Hanoi on the Internet you will find a lot if information. There's also an iPhone application, and incidentally somebody who programmed a robot to play the game on his iPhone. Watch http://www.youtube.com/watch?v=ETNpYCq2AN8, it's really funny.

Skript-Aufgabe 128 (4 Punkte)

Define a type \(\mathbb{Z}_7 \) for computing with integers modulo 7. Mathematically, this corresponds to the finite ring \(\mathbb{Z}_7 = \mathbb{Z}/7\mathbb{Z} \) of residue classes modulo 7.

For the type \(\mathbb{Z}_7 \), implement addition and subtraction operators

```cpp
// POST: return value is the sum of a and b
Z_7 operator+ (Z_7 a, Z_7 b);

// POST: return value is the difference of a and b
Z_7 operator- (Z_7 a, Z_7 b);
```
according to the following table (this table also defines subtraction: \(x - y \) is the unique number \(z \in \{0, \ldots, 6\} \) such that \(x = y + z \)).

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Skript-Aufgabe 140 (8 Punkte)

The C++ standard library also contains a type for computing with complex numbers. A complex number where both the real and the imaginary part are doubles has type std::complex<double> (you need to `#include <complex>` in order to get this type). In order to get a a complex number with real part \(r \) and imaginary part \(i \), you can use the expression

\[
\text{std::complex<double>}(r, i); \quad // r \text{ and } i \text{ are of type } \text{double}
\]

Otherwise, complex numbers work as expected. All the standard operators (arithmetic, relational) and mathematical functions (std::sqrt, std::abs, std::pow...) are available. The operators also work in mixed expressions where one operand is of type std::complex<double> and the other one of type double. Of course, you can also input and output complex numbers.

Here is the actual exercise. Implement the following function for solving quadratic equations over the complex numbers:

```cpp
// POST: return value is the number of distinct complex solutions
// of the quadratic equation ax^2 + bx + c = 0. If there are infinitely many solutions (a=b=c=0), the return value is -1. Otherwise, the return value is a number n from \{0,1,2\}, and the solutions are written to s1,..,sn
int solve_quadratic_equation (std::complex<double> a, std::complex<double> b, std::complex<double> c, std::complex<double>& s1, std::complex<double>& s2);
```

Test your function in a program for at least the triples \((a, b, c)\) from the set

\[\{(0,0,0), (0,0,2), (0,2,2), (2,2,2), (1,2,1), (i,1,1)\}.\]

Die Aufgaben 125 und 133 aus den Vorlesungsunterlagen sind die Challenge Aufgaben und geben jeweils 8 Punkte, wenn sie vollständig gelöst werden.

Abgabe: Bis 8. Dezember 2009, 15:15 Uhr.