Eidgendssische Ecole polytechnigue fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ztirich Swiss Federal Institute of Technology Zurich
Institut fiir Theoretische Informatik 10. November 2009
Dr. B. Gartner, Prof. Dr. J. Hromkovié

Informatik fiir Mathematiker und Physiker Serie 8 HS 09

URL: http://www.ti.inf.ethz.ch/ew/courses/Infol 09/

Aufgabe 1 (4 Punkte)

Consider the problem of finding a shortest robot path from the lecture. In reality, the robot
has to turn when the path makes a turn (by 90 degrees clockwise or counterclockwise), and
this takes time. Suppose therefore that each turn of the robot requires one extra step. In this
setting, the path on page 157 of the lecture notes becomes longer by 7 (the number of turns).
In particular, the path is not a shortest one anymore in this new model (can you find a shorter
one)? How would you extend the method described in the lecture to compute shortest robot
paths in the new model where each turn requires one extra step? This is a theory exercise.

Skript-Aufgabe 80 (4 Punkte)

Write a program inverse_matrix.cpp that inverts a 3 x 3 matrix A with real entries. The
program should read the nine matrix entries from the input, and then output the inverse
matrix A~ (or the information that the matrix A is not invertible). In addition, the program
should output the matrix AA " in order to let the user check whether the computation of the
inverse was accurate (in the fully accurate case, the latter product is the identity matrix).

Hint: For the computation of the inverse, you can employ Cramer’s rule. Applied to the com-
putation of the inverse, it yields that A{j1 (the entry of A~" in row i and column j) is given
by
At (1) det(ATY
v det(A) ’

where det(M) is the determinant of a square matrix M, and AVY is the 2 x 2 matrix obtained
from A by deleting row j and column 1.

To compute the determinant of a 3 x 3 matrix, you might want to use the well-known Sarrus’
rule.

Skript-Aufgabe 84 (4 Punkte)

Consider the string matching algorithm of string_matching. cpp. Prove that forallm > 1,n >
m, there exists a search string s of length m and a text t of length n on which the algorithm
in string_matching.cpp performs m(n — m + 1) comparisons between single characters.



Skript-Aufgabe 86 (4 Punkte)

Write a program frequencies.cpp that reads a text from standard input (like in
string_matching.cpp) and outputs the frequencies of the letters in the text, where we do
not distinguish between lower and upper case letters. For this exercise, you may assume that
the type char implements ASCII encoding. This means that all characters have integer values

in {0,1,...,127}. Moreover, in ASCII, the values of the 26 upper case literals A’ up to >Z’ are
consecutive numbers in {65,...,90}; for the lower case literals *a’ up to ’z’, the value range
is {97,...,122}.

Running this on the lyrics of Yesterday (The Beatles) for example should yield the following

output.

Frequencies: i: 27 of 520 re 19 of 520
~ s: 36 of 520
a: 45 of 520 i 0 of 520 . ORI
b: 5 of 520 k: 3 of 520 _ S o ene
c: 5 of 520 1: 20 of 520 :: . Zf oo
a: 28 of 520 m: 10 of 520 :
e: 65 of 520 n: 30 of 520 i 39 §f52§0
£ 4 of 520 o: 43 of 520 x 34°of oo
g: 13 of 520 p: 4 of 520 Z; e e
v 27 of 520 4 0 of 520 Other: 37 of 520

Die Aufgaben 88 und 90 aus den Vorlesungsunterlagen sind die Challenge Aufgaben und geben
jeweils 8 Punkte, wenn sie vollstandig gelost werden.

Abgabe: Bis 17. November 2009, 15.15 Uhr.



