Assignment 1 - (4 points)

Define a type \mathbb{Z}_7 for computing with integers modulo 7. Mathematically, this corresponds to the finite ring $\mathbb{Z}_7 = \mathbb{Z}/7\mathbb{Z}$ of residue classes modulo 7.

For the type \mathbb{Z}_7, implement addition and subtraction operators

```
// POST: return value is the sum of a and b
Z_7 operator+ (Z_7 a, Z_7 b);

// POST: return value is the difference of a and b
Z_7 operator- (Z_7 a, Z_7 b);
```

according to the following table (this table also defines subtraction: $x - y$ is the unique number $z \in \{0, \ldots, 6\}$ such that $x = y + z$).

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Assignment 2 - (4 points)

Consider the following program `power.cpp`. The function `linPower` calculates x^n using $n - 1$ multiplications. Let k be the number of digits of binary representation of n. In `power.cpp`, implement a function `logPower` that performs at most $2k$ multiplications. You can compare the two functions on the input $x = 2$ and $n = 10^5$.

// Program: power.cpp
// This program computes x^n

#include <iostream>
#include <IM/integer.h>

// Method that uses n−1 multiplications to compute x^n
// PRE: n >= 0
// POST: result is x^n
ifm::integer linPower(ifm::integer x, ifm::integer n) {
 if (n == 0)
 return 1;
 if (n == 1)
 return x;
 return x * linPower(x, n-1);
}

// Method that uses O(log n) multiplications to compute x^n
// PRE: n >= 0
// POST: result is x^n
ifm::integer logPower(ifm::integer x, ifm::integer n) {
 // Your code goes here ...
 return 0;
}

int main() {
 ifm::integer x;
 std::cout << "x =? ";
 std::cin >> x;
 ifm::integer n;
 std::cout << "n =? ";
 std::cin >> n;
 std::cout << "x^n = " << linExponent(x, n) << std::endl;
 return 0;
}

Hint: Look back at Exercise 8. Think, how you can generalize this approach. Also have a look at Exercise 12, part a).

Assignment 3 - (4 points)

The C++ standard library also contains a type for computing with complex numbers. A complex number where both the real and the imaginary part are doubles has type std::complex<double> (you need to #include <complex> in order to get this type). In order to get a a complex number with real part r and imaginary part i, you can use the expression
std::complex<double>(r,i); // r and i are of type double

Otherwise, complex numbers work as expected. All the standard operators (arithmetic, relational) and mathematical functions (std::sqrt, std::abs, std::pow ...) are available. The operators also work in mixed expressions where one operand is of type std::complex<double> and the other one of type double. Of course, you can also input and output complex numbers.

Here is the actual exercise. Implement the following function for solving quadratic equations over the complex numbers:

```cpp
// POST: return value is the number of distinct complex solutions
// of the quadratic equation ax^2 + bx + c = 0. If there
// are infinitely many solutions (a=b=c=0), the return
// value is -1. Otherwise, the return value is a number n
// from {0,1,2}, and the solutions are written to s1,...,sn
int solve_quadratic_equation (std::complex<double> a,
    std::complex<double> b,
    std::complex<double> c,
    std::complex<double>& s1,
    std::complex<double>& s2);
```

Test your function in a program for at least the triples \((a,b,c)\) from the set

\[\{(0,0,0),(0,0,2),(0,2,2),(2,2,2),(1,2,1),(i,1,1)\} \]

Assignment 4 - (4 points)

Write programs that produce turtle graphics drawings for the following Lindenmayer systems \((\Sigma, P, s)\).

b) \(\Sigma = \{X,Y,+,-\}, \ s = Y, \ \text{and} \ P \text{ given by} \)

\[
X \mapsto Y + X + Y \\
Y \mapsto X - Y - X.
\]

For the drawing, use rotation angle \(\alpha = 60\) degrees and interpret both \(X\) and \(Y\) as “move one step forward”.

c) Like b), but with the productions

\[
X \mapsto X + Y + +Y - X - X X - Y + \\
Y \mapsto -X + Y Y + +Y + X - X - Y.
\]

Challenge - (8 points)

Exercise 135 from the lecture notes.