Today’s exercises

- 5.12: Lower Bound for Binomial Coefficient
- 5.13: Volume versus Boundary
- Inclass: PPZ on the formula F^*
- 6.2: Many j-isolated Satisfying Assignments
- 6.4: Make it Hard for PPZ
- 7.1: Covering Radius Example
- 7.3: Exact Radius
5.12: Lower Bound for Binomial Coefficient

First observe that for $i < k \leq n$, we have

$$\frac{n-i}{k-i} = \frac{(n-i)k}{(k-i)n} \cdot \frac{n}{k} = \frac{kn-ik}{kn-in} \cdot \frac{n}{k} \geq \frac{n}{k}.$$

The desired inequality follows directly, as

$$\binom{n}{k} = \frac{n(n-1) \cdots (n-k+1)}{k(k-1) \cdots (k-k+1)} \geq \left(\frac{n}{k}\right)^k.$$
5.13: Volume versus Boundary

Trivial: \(\binom{n}{k} \leq \sum_{l=0}^{k} \binom{n}{l} \). For the other direction, observe that for \(i \geq 1 \)

\[
\frac{n(n-1)\cdots(n-k+i+1)}{(k-i)!} \cdot \frac{n(n-1)\cdots(n-k+1)}{k!}
=
\frac{k(k-1)\cdots(k-i+1)}{(n-k+i)(n-k+i-1)\cdots(n-k+1)}.
\]

We assumed \(k \leq \frac{n}{2} \) and hence \(n-k+i \geq n-k \geq k \), so for \(j \geq 0 \) (similar to 5.12)

\[
\frac{k-j}{n-k+i-j} \leq \frac{k}{n-k+i} \leq \frac{k}{n-k+1}.
\]
5.13: Volume versus Boundary (2)

It follows that for $i \geq 1$ (and also $i = 0$)

$$\frac{\binom{n}{k-i}}{\binom{n}{k}} \leq \left(\frac{k}{n-k+1}\right)^i.$$

Hence

$$\sum_{l=0}^{k} \binom{n}{l} \leq \binom{n}{k} \cdot \sum_{i=0}^{k} \left(\frac{k}{n-k+1}\right)^i$$

$$\leq \binom{n}{k} \cdot \frac{1}{1 - \frac{k}{n-k+1}} = \binom{n}{k} \frac{n-k+1}{n-2k+1} = \binom{n}{k} \left(1 + \frac{k}{n-2k+1}\right).$$
Inclass: PPZ on the formula F^*

Consider the formula F^*_3 on variables $\{x_1, x_2, \ldots, x_n\}$ containing

- all clauses on x_1, x_2, x_3 with at least one positive literal

- all clauses $\{\overline{x}_1, \overline{x}_2, x_i\}$ for $4 \leq i \leq n$

Question: What is the success probability of PPZ on F^*?
Inclass: PPZ on the formula F^* (2)

Claim. The success probability is $1/\text{poly}(n)$.

Proof: With probability $\frac{1}{n(n-1)}$, x_1 and x_2 are the first two variables in the random permutation. Supposing that x_1 and x_2 are set correctly (which happens with probability 1/4), all other variables are forced. \square
6.2: Many j-isolated Satisfying Assignments

One possible way is to use the example from the lecture notes over j variables (which will be critical in every assignment) and augment it with $n - j$ dummy variables not appearing in the formula (which will be non-critical in every assignment).
6.4: Make it Hard for PPZ

Since we, if possible, do not want to sum over multiple satisfying assignments, let us go for a formula with a unique isolated solution. In a unique solution, each variable has a critical clause. To minimize the success probability, we want to have exactly one critical clause per variable.

Moreover, for simplicity, we would like not to have long-range influences and dependencies between the variables, so the formula should consist of components as independent as possible.
6.4: Make it Hard for PPZ (2)

A good example is the formula F consisting of n/k independent components, where each component is a maximal satisfiable formula over k variables.

This way, there is a unique solution: each component has one satisfying assignment and composing these is the only way to get a satisfying assignment for F.
6.4: Make it Hard for PPZ (3)

And in each component, as long as less than $k-1$ variables are set, there cannot arise any unit clauses. Once $k-1$ variables are set in a component, there is always a unit clause forcing the last variable. Therefore exactly $n - n/k$ variables are being guessed, yielding exactly the success probability desired.
7.1: Covering Radius Example

Map any word $w \in \{0, 1\}^{3m}$ to its signature $\varphi(w) := (a, b, c) \in \{0..m\}^3$ where a, b and c are the number of ones in w within the first, second and third m bits.

We now have, because of the various words in the code C,

$$d(w, C) \leq \begin{cases}
 a + b + c \\
 a + (m - b) + (m - c) \\
 (m - a) + b + (m - c) \\
 (m - a) + (m - b) + c
\end{cases}$$

and thus, by adding the four inequalities,

$$4d(w, C) \leq 6m.$$
7.3: Exact Radius

Let C be the code of radius $r' < r$.

Pick a point $w \in \{0, 1\}^n$ which maximizes the distance $d(w, C)$.

We clearly have $d(w, C) = r'$.

Now consider all codewords $v \in C$ at distance exactly $d(v, w) = r'$ and move all of them “away” from w (e.g. by changing the first coordinate where v and w are the same), producing a code C'.
7.3: Exact Radius

Clearly, C' still has at most M codewords. (why at most?)

The covering radius is now at least $r' + 1$ because the codeword closest to w has distance $r' + 1$.

On the other hand, the covering radius is at most $r' + 1$ as well, as before it was r' and we have moved codewords by only one position, so no distance can have increased by more than one.

Repeat the process until we have covering radius r.