
Crash Course Complexity Theory |

with Emphasis von Randomized Computation

Markus Bl�aser

Draft | August 4, 2004 and forever

1 Turing machines

We assume that the reader is familiar with the concept of Turing machines.

Throughout this lecture, we consider multitape Turing machines with a sep-

arate read-only two-way input tape. For simplicity, we assume w.l.o.g. that

Turing machines have a unique accepting and rejecting state and that the com-

putation stops once the Turing machine accepts or rejects. DTime(t(n)) denotes

the class of language that can be decided by a deterministic Turing machine

in time O(t(n)). NTime(t(n)) denotes the class of languages that can be de-

cided by a nondeterministic Turing machine in time O(t(n)). In the same way,

DSpace(s(n)) and NSpace(s(n)) denote the classes of languages that can be de-

cided by a deterministic or nondeterministic Turing machine, respectively, that

uses O(s(n)) cells one the work tapes. Note that we do not count the space

on the input tape. In this way, it is possible to speak about sublinear space

classes. The language accepted by a Turing machine M is denoted by L(M).

Throughout this lecture, we only consider languages over the alphabet {0, 1}.

We shorthand the statement that M accepts an input x by M(x) = 1 and that

M rejects an input x by M(x) = 0.

Definition 1.1 1. P =
⋃

i∈N DTime(ni),

2. NP =
⋃

i∈N NTime(ni),

3. E =
⋃

i∈N DTime(2in),

4. EXP =
⋃

i∈N DTime(2ni
),

5. NEXP =
⋃

i∈N NTime(2ni
),

6. SUBEXP =
⋂

ε>0 DTime(2nε
),

7. L = DSpace(log(n))

8. PSPACE =
⋃

i∈N DSpace(ni).

1

We have

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP. (1)

From the space and time hierachy theorems, it follows that L (PSPACE and

P (EXP, but we do not know which of the four inclusions in (1) are strict.

Our guess is that all of them are strict. The space hierachy theorem basically

states the following: If s1(n) = o(s2(n)), then DTime(s1) (DTime(s2). Loosely

speaking, more space means more power. But this is only true if the space

bounds s1 and s2 are nice, more precisely, they have to be space constructible.

That means that there exists a Turing machine that can mark exactly s1(n) or

s2(n) cells using no more space than s1(n) or s2(n), respectively. All the usual

functions like polynomials, exponential functions, logarithms, etc. are space

constructible. The proof of the space hierachy theorem uses diagonalization,

one of the rare techniques known for proving lower bounds. The time hierachy

theorem is somewhat more complicated but things are essentially the same.

For a complexity class C that is de�ned in terms of Turing machines, we call

a Turing machine M that ful�lls the requirements of C, in particular L(M) ∈ C,

a C-machine for short. Note that L(M) ∈ C does not necessarily imply that

M is a C-machine. M could be ine�cient in some way and use more resources

than the de�nition of C allows.

Finally, for a class C, co-C is the class of all languages L such that their

complement �L is in C.

2 Circuits

We will also consider the non-uniform circuit model. A (Boolean) circuit C

is an acyclic directed graph with exactly one node of outdegree zero. This

node is called the output gate. Nodes with indegree zero are called input gates.

The number n of input gates is the length of the input. Each other node has

either indegree one or two. If it has indegree one, it is labeled with ¬ and

called a NOT gate. Otherwise, it is labeled with ∨ or ∧ and called an OR or

AND gate, respectively. Any circuit C accepts a language L ⊆ {0, 1}n where

n is the number of input gates of C. For a given x ∈ {0, 1}n, we assign each

gate a Boolean value inductively. The ith input gate gets the value xi. (Order

the input nodes arbitarily.) If all direct predecessors of a gate v have already

a value, then the value of v is the Boolean negation, Boolean disjunction or

conjunction of the values of its direct predecessors, depending on the type of

the gate. The string x is in L, if the output gate evaluates to one, otherwise

x is not in L. The size of a circuit C is the number of NOT, OR, and AND

gates of C. A family of circuits Cn, n ∈ N accepts a language L ⊆ {0, 1}∗, if Cn

accepts L ∩ {0, 1}n for all n. In this case, we also write L = L(Cn) for short.

Definition 2.1 The class P/poly is the class of all languages L ⊆ {0, 1}∗

such that there is a family of circuits Cn, n ∈ N, and a polynomial p with

L = L(Cn) and size(Cn) = O(p(n)).

2

Exercise 2.1 Show that there is a nonrecursive language in P/poly.

We call a family Cn of size s(n) uniform, if there is a O(log s(n))-space

bounded Turing machine M that on input n written in unary form on the

input tape, outputs a description of Cn on the output tape. Circuits and

deterministic Turing machines are polynomially related.

Exercise 2.2 Prove the following theorem: For any uniform family of cir-

cuits Cn of size s(n), there is a deterministic Turing machine M with

running time bounded by s(n)O(1) with L(Cn) = L(M).

Exercise 2.3 Prove the following theorem: For any deterministic Turing

machine M with running time bounded by t(n), there is a family of circuits

Cn of size t(n)O(1) with L(Cn) = L(M). This family is even uniform.

3 Randomized complexity classes

Probabilistic Turing machines have an additional random tape. On this tape,

the Turing machine gets an one-sided in�nite bit string y. The random tape is

read-only and one-way.

Right at the moment, we are considering the random string y as an addi-

tional input. The name random string is justi�ed by the following de�nition:

A probabilistic Turing machine accepts an input x with acceptance probability

at least p if Pr[M(x, y) = 1] ≥ p. Here the probability is taken over all choices

of y. We de�ne the rejection probability in the same way. The running time

t(n) of a probabilistic Turing machine M is the maximum number of steps, M

performs on any input of length n and and any random string y. Note that if

t(n) is bounded, then we can consider y to be a �nite string of length at most

t(n). The maximum number of random bits a Turing maching reads on any

input x and random string y is called the amount of randomness used by the

machine.

We de�ne RTime(t(n)) to be the class of all languages L such that there is

a Turing machine M with running time O(t(n)) and for all x ∈ L, M accepts x

with probability at least 1/2 and for all x /∈ L, M rejects L with probability 1.

Such an M is said to have a one-sided error. If M in fact accepts each x ∈ L

with probability ≥ 1 − ε ≥ 1/2, then we say that the error probability of M is

bounded by ε.

The class BPTime(t(n)) is de�ned in the same manner, but we allow the

Turing machine M to err in two ways. We require that for all x ∈ L, M accepts

x with probability at least 2/3 and for all x /∈ L, M rejects with probability at

least 2/3 (that is, accepts with probability at most 1/3). Such an error is called

a two-sided error. If M actually accepts all x ∈ L with probability ≥ 1−ε and

rejects each x ∈ L with probability ≤ ε, then we say that the error probability

is bounded by ε.

3

Definition 3.1 1. RP =
⋃

i∈N RTime(ni),

2. BPP =
⋃

i∈N BPTime(ni),

3. ZPP = RP ∩ co-RP.

The name ZPP stands for zero error probabilistic polynomial time. It is

justi�ed by the following statement.

Exercise 3.1 A language L is in ZPP if and only if L is accepted by a prob-

abilistic Turing machine with error probability zero and expected polyno-

mial running time. Here the expectation is taken over all possible random

strings on the random tape.

For robust classes (such as RP and BPP) the choice of the constants 1/2

and 2/3 in the de�nitions of RTime and BPTime is fairly arbitrary, since both

classes allow probability ampli�cation.

Lemma 3.2 Let M be a Turing machine for some language L ∈ RP that

runs in time t(n), uses r(n) random bits, and has error probability ε. For

any k ∈ N, there is a Turing machine M ′ for L that runs in time O(kt(n)),

uses kr(n) random bits, and has error probability εk.

Proof. M ′ simulates M k times, each time using new random bits. M ′

accepts, if M accepts at least once. Otherwise, M ′ rejects. The bounds on the

time and randomness are obvious.

If x /∈ L, then M ′ also rejects, since M does not err on x.

If x ∈ L, then with probability at most ε, M rejects x. Since M ′ performs

k independent trials, the probability that M ′ rejects x is at most εk.

Lemma 3.3 Let M be a Turing machine for some language L ∈ BPP that

runs in time t(n), uses r(n) random bits, and has error probability ε < 1/2.

For any k ∈ N, there is a Turing machine M ′ for L that runs in time

O(kt(n)), uses kr(n) random bits, and has error probability 2−cεk for some

constant cε that solely depends on ε.

Proof. M ′ simulates M k times, each time with fresh random bits. M ′

accepts, if M accepted at least as many as times as it rejected the input. Oth-

erwise, M ′ rejects. Let µ be the expected number of times that a simulated

run of M accepts.

If x ∈ L, then µ ≥ (1 − ε)k. The probability that less than half of the

simulated runs of M accept is < e−
(1−ε)δ2

2
k with δ = 1− 1

2(1−ε) by the Cherno�

bound (see below). The case x /∈ L is treated similarly. In both cases, the error

probability is bounded by 2ck for some constant c only depending on ε.

In the proof above, we used the so-called Cherno� bound. A proof of it can

be found in the book by Motwani and Raghavan or in most books on probability

theory.

4

Lemma 3.4 (Chernoff bound) Let X1, . . . , Xm be independent 0{1 valued

random variables and let X = X1 + · · · + Xm. Let µ = E(x). Then for any

δ > 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ

and Pr[X < (1 − δ)µ] < e− µδ2

2 .

We have

P ⊆ ZPP ⊆ RP

co-RP
⊆ BPP. (2)

The latter two inclusion follow by amplifying the acceptance probability once.

Finally, we de�ne probabilistic circuits : They have an additional number of

indegree zero gates, so-called random gates. Beside the input x, the circuit gets

an additional bit string y via the random gates. (Note that random gates and

choice gates is basically the same construction. Only the acceptance condition

is di�erent.) A circuit C is a bounded two-sided error probabilistic circuit if

Pry∈{0,1}m [C(x, y) = 1] ≥ 2/3. or Pry∈{0,1}m [C(x, y) = 1] ≤ 1/3. (Here, m is the

number of random gates.) In the �rst case, C is said to accept x, in the second

case, it rejects x.

C is a bounded one-sided error probabilistic circuit, if Pry∈{0,1}m [C(x, y) =

1] ≥ 1/2. or Pry∈{0,1}m [C(x, y) = 1] = 0. In the �rst case, C is said to accept x,

in the second case, it rejects x.

Exercise 3.2 Prove the following theorem: For any probabilistic Turing

machine M with running time bounded by t(n), there is a family of proba-

bilistic circuits Cn of size t(n)O(1) such that for any input x, the acceptance

probability of Cn on x is the same as the one of M on x. This family is

even uniform.

4 Promise Problems

To show that P = NP, one possible strategy is \simply" to show L ∈ P for

some NP-complete language L. Is there a similar stragegy for settling whether

P = BPP? The roadblock is that we do not know whether BPP and RP have

any complete problems. Even such a generic problem as the set of all triples

〈M,x, 1t〉 such that M is a BPP-machine that accepts x within t steps is not

BPP-complete. It is BPP-hard, but not in BPP, since it is even undecidable

whether the error probability of M is bounded by 1/3. Being a BPP-machine

is a semantic property, while being an NP-machine is a syntactic one.

There is an easy \solution" to this rather annoying problem: Instead of only

considering languages we also study partial languages : A partial languages is a

pair of languages L ⊆ U. A Turing machine M accepts such a partial language,

if it accepts all input in L and rejects all inputs in U \ L. We do not care about

the behaviour of M on inputs in Σ∗ \ U. Informally, we give M the promise

that it will only get inputs from U. Therefore, partial languages are often called

5

promise problems. The trick is that we can choose any language, even a nonre-

cursive one for U. For instance, in the above generic Turing machine simulation

problem, we would choose U to be the set of all 〈M,x, 1t〉 such that M is a

probabilistic Turing machine that has error probability ≤ 1/3. In this way, we

overcome the problem that it is not decidable whether a Turing machine has

error probability ≤ 1/3. We simply do not care what the simulating machine

does if M does not have error probability bounded by 1/3.

For any complexity class C, we can de�ne a corresponding promise class

prC in the obvious way. For classes that are de�ned in terms of syntactic

properties, like P or NP, it does not make a real di�erence whether we consider

promise problems or not. For instance, the statements P = NP and prP =

prNP are equivalent. For classes de�ned by semantic properties, like RP and

BPP, promise version are much easier to treat than the original classes. The

additional set U gives the promise classes complete problems.

The following two problems are complete for BPP and RP, respectively.

Definition 4.1 1. Circuit acceptance probability estimation CAPE: Given

a circuit C with the promise that either Prx∈{0,1}n [C(x) = 1] ≤ 1/3 or

Prx∈{0,1}n [C(x) = 1] ≥ 2/3, decide which of the two properties is ful-

�lled by C. (Here n is the length of the input.)

2. One-sided acceptance probability estimation CAPE1: Given a circuit C

with the promise that either Prx∈{0,1}n [C(x) = 1] = 0 or Prx∈{0,1}n [C(x) =

1] ≥ 1/2, decide which of the two properties is ful�lled by C.

Lemma 4.2 1. CAPE is prBPP-complete (under logarithmic space many-

one reductions).

2. CAPE1 is prRP-complete (under logarithmic space many-one reduc-

tions).

Proof. First, CAPE is in prBPP. We simply pick an x at random and

compute C(x). We accept C i� C(x) = 1. The promise on C ensures that the

error probability is ≤ 1/3. The same arguments show that CAPE1 ∈ prRP.

Next, we show that CAPE is also hard for prBPP. Let L ⊆ U be in prBPP

and let M be a prBPP-machine for L ⊆ U. Let t be the running time of M.

By Exercise 2.3, we can construct in space O(log t(n)) a randomized circuit Cn

such that the acceptance probability of Cn on input x is the same as M on

input x

Now given an input z for M we construct a circuit Cz as follows. We �rst

construct the circuit Cn as above, which has two inputs: the string x and the

random string y. Then we �x the entries of x to be the bits of z. This gives

the circuit Cz. Cz computes the functon y → C(z, y). If M accepts z ∈ U,

then the acceptance probability of Cz is at least 2/3. If M rejects z ∈ U, then

the rejection probility of Cn is at least 2/3. Thus the reduction transforms yes-

instances to yes-instances and no-instances to no-instances. It is computable in

logarithmic space, since t is polynomial.

6

The proof for CAPE1 is essentially the same.

Exercise 4.1 Let C1 and C2 be complexity classes. Show that prC1 = prC2

implies C1 = C2? What about the converse?

Note that for complexity classes de�ned by syntactic properties, it usually

does not matter whether we also consider promise problems or not. In partic-

ular, we have the following result.

Exercise 4.2 Show the following: prP = prNP if and only if P = NP.

5 Some easy derandomization results

We start with comparing RP and BPP with the complexity classes de�ned in

De�nitions 1.1 and 2.1. Since these are non-randomized complexity classes, one

can view these results as a kind of derandomization.

Theorem 5.1 BPP ⊆ PSPACE.

Proof. Let M be a BPP-machine for some L ∈ BPP. Assume that M

reads at most r(n) random bits on inputs of length n. Turing machine M ′

simulates M as follows: M ′ systematically lists all bit strings of length r(n)

and simulates M with the current string as random string. M ′ counts how often

M accepts and rejects. If the number of accepting computations exceeds the

number of rejecting computations, M ′ accepts. Otherwise, M ′ rejects. Since

M is polynomial time, r(n) is bounded by a polynomial. Hence M ′ uses only

polynomial space.

Corollary 5.2 BPP ⊆ EXP.

Theorem 5.3 RP ⊆ NP.

Proof. Let M be an RP-machine for some L ∈ RP. We convert M into an

NP-machine M ′ as follows. Whenever M would read a bit from the random

tape, M ′ nondeterministically branches to the two states that M would enter

after reading zero or one, respectively. If M does not accept x, then there is

no random string such that M on input x reaches an accepting con�guration.

Thus there is no accepting path in the computation tree of M ′ either.

On the other hand, if M accepts x, then M reaches an accepting con�gura-

tion on at least half of the random strings. Thus at least half of the paths in

the computation tree of M ′ are accepting ones. In particular, there is at least

one accepting path. Hence M ′ accepts x.

Next we turn to the relation between BPP and circuits. The class P/poly can

be viewed as the languages accepted by polynomial time deterministic Turing

machines with polynomial advice. Such a Turing machine has an additional

read-only advice tape.

7

Definition 5.4 Let t and a be two functions N → N. A language L is in

the class DTime(t)/a if there is a deterministic Turing machine M with

running time O(t) and with an additional advice tape and a sequence of

strings α(n) ∈ {0, 1}a(n) such that the following holds: For all x ∈ L, M

accepts x with α(|x|) written on the advice tape. For all x /∈ L, M rejects x

with α(|x|) written on the advice tape.

This de�nition extends to nondeterministic classes and space classes in the

obvious way. We can also extend the de�nition to sets of functions T and A.

We de�ne DTime(T)/A =
⋃

t∈T,a∈A DTime(t)/a. If we choose T and A both to

be the class of all polynomials, then we get exactly P/poly.

For each input length n, we give the Turing machine an advice α(n). Note

that we do no restrict this sequence, except for the length. In particular, the

sequence need not be to computable at all.

Lemma 5.5 For all languages L, if there is a polynomial time Turing ma-

chine M with polynomial advice accepting L, then L ∈ P/poly.

Proof. For the moment, let us view the advice α(n) as a part of the input,

i.e., M gets α(|x|) concatenated with its regular input x. By Exercise 2.3, for

each n, there is a circuit Cn such that Cn(x, α(n)) = M(x, α(n)) for all x of

length n. Let C ′
n be the sequence of circuits obtained from Cn by �xing the

second part of the input to α(n). This gives a sequence of polynomial size

circuits such that C ′
n(x) = Cn(x, α(n)) = M(x, α(n)) for all x of length n.

Thus L ∈ P/poly.

Exercise 5.1 Show that the converse of Lemma 5.5 holds, too.

Theorem 5.6 (Adleman 1978) BPP ⊆ P/poly.

Proof. Let L ∈ BPP. By Lemma 3.3, there is a BPP-Machine with error

probability < 2−n that accepts L. There are 2n possible input strings of length

n. Since for each string x of length n, the error probability of M is < 2−n, M

can err on x only for a fraction of all possible random strings that is smaller

than 2−n. Thus there must be one random string that is good for all inputs of

length n. We take this string as an advice string for the inputs of length n. By

Lemma 5.5, L ∈ P/poly.

How do we �nd this good random string? If we amplify the error probability

even further, say to 2−2n, then almost all, namely a fraction of 1− 2−n random

strings are good. Thus picking the advice at random is a good strategy. (This,

however, requires randomness!)

8

