

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institut für Theoretische Informatik Emo Welzl, Jiří Matoušek 17.06.2004

Theoretische Informatik (Kernfach) SS 2004 Exercise Set 12

Exercise 1

Let S be a set of $n \ge 2$ non-crossing segments in the plane. Show that the set P(S) of endpoints of S satisfies

$$2 + \frac{n}{3} \le |P(S)| \le 2n \; .$$

Exercise 2

Let S be a nonempty set of non-crossing segments in general position in the plane, let $s \in S$, and let T be a trapezoid in $\mathcal{T}(S \setminus \{s\}) \setminus \mathcal{T}(S)$. Depending on the number of endpoints of s inside T (0, 1, or 2), investigate how many trapezoids overlapping with T can be created by adding s to $S \setminus \{s\}$.

Exercise 3

We are given a set P of n points in \mathbb{R}^2 and a point q which has distinct distances to all points in P. We add the points of P in random order (starting with the empty set), and observe the nearest neighbor of q in the set of points inserted so far. What is the expected number of distinct nearest neighbors that appear during the process?