Theoretische Informatik (Kernfach)

Exercise 1

Complete the proof of Proposition 5.3.3 in the lecture notes (a 2 out of n scheme with contrast close to $1 / 4$ and with $m=O(\log n))$.

Exercise 2

Let E be a set of two-element subsets of $V=\{1,2, \ldots, n\}$. In other words, $G=(V, E)$ is a simple undirected graph. The goal is to construct basis matrices for a visual cryptography scheme with n shares where the qualified sets are the edges of G, while every subset of V not containing any edge as a subset is forbidden. (So 2 out of n schemes are a special case with $G=K_{n}$.)
(a) Find a construction with $m=2$ for G being a star (one vertex is connected to all others).
(b) Generalize (a) to G being a star plus some number of isolated vertices.
(c) Supposing that basis matrices can be constructed for $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$, how can we construct basis matrices for $G=\left(V, E_{1} \cup E_{2}\right)$?
(d) Use (b) and (c) to construct suitable basis matrices for every G. What is the smallest m you can get?

Exercise 3

Now we want to encode a secret image into two shares, but we do not want the shares to look random. We are given two "innocent" images 1 and 2 , and we want that share 1 alone shows image 1 , share 2 alone shows image 2 , and the overlay shows the secret image, with no trace of either image 1 or image 2. To this end, construct eight $2 \times m$ basis matrices $B_{c, c_{1}, c_{2}}$ for a suitable m. Given a pixel of the secret image of color c, such that the corresponding pixel in image 1 has color c_{1} and the pixel in image 2 has color c_{2}, the pixel is encoded using a random permutation of the columns of $B_{c, c_{1}, c_{2}}$.
(a) Formulate the conditions on these matrices guaranteeing the desired behavior.
(b) Construct such matrices.

