

Institut für Theoretische Informatik Emo Welzl, Jiří Matoušek 22.04.2004

# Theoretische Informatik (Kernfach)

 $SS~2004 \ Exercise~Set~5$ 

# Erinnerung:

Am 30.04. findet die Semesterzwischenprüfung statt. Studenten eingeschrieben in die Übungsgruppen 1–5 legen die Prüfung in NO C 3, Punkt 9:00 bis Punkt 10:00 ab, Studenten eingeschrieben in die Übungsgruppen 6,7 in HG G 3, Punkt 10:00 bis Punkt 11:00.

#### Exercise 1

An undirected multigraph G = (V, E) is a graph where two (distinct) vertices can be connected by more than one edge, i.e. E is a multiset of two-element sets (no loops). Such a graph can be represented by its adjacency matrix  $A_G \in \mathbb{N}^{V \times V}$  where

 $A_G(u, v)$  = number of edges between u and v.

Given an edge  $\{u, v\}$  in G a contraction of this edge results in a new graph G' with vertex set  $V' = V \setminus \{u, v\} \cup \{\underline{uv}\}$ , where  $\underline{uv}$  is a new vertex. The edges in G not connected to u or v survive in G', the edges between u and v vanish and edges from a third vertex w to u or v become edges  $\{w, \underline{uv}\}$ .

For example the graph



has adjacency matrix

$$\left(\begin{array}{ccccc}
0 & 4 & 0 & 0 \\
4 & 0 & 1 & 1 \\
0 & 1 & 0 & 3 \\
0 & 1 & 3 & 0
\end{array}\right)$$

and if one contracts edge  $\{2,3\}$  the resulting graph is  ${}^{\circ}$ .

Assume for an algorithm on such multigraphs we need three operations:

- 1. Determine the number of edges between two given vertices.
- 2. Select an edge of G uniformly at random.
- 3. Contract a given edge of G.

As the algorithm will use all three operations quite frequently we want to store G in an efficient way.

Describe a data structure together with algorithms implementing these three operations. The goal is to perform the first operation in time O(1) and the other two operations in time O(n). (Here n is the number of vertices of the current G. Note that by contracting an edge the number of vertices decreases.)

## Exercise 2

Prove Proposition 1.19 in the lecture notes from Hall's theorem.

### Exercise 3

Let (G, s, t, c) be a network with all capacities equal to 1. Assume that there is no s-t-cut with capacity k or smaller (k > 1 integer). Prove that there are directed s-t-paths  $P_1, P_2, \ldots, P_k$  such that  $P_i$  and  $P_j$  have no common edges for  $1 \le i < j \le k$ . (Two paths may have common vertices.)

Hint: Consider a suitable maximum flow and extract the paths by induction.

## Exercise 4

For  $i, n \in \mathbb{N}, 1 \leq i \leq n$ , let  $R_n^{(i)}$  be the depth of the key of rank i in a rightist random search tree for n keys. (Recall the definition from Exercise 1.19, p. 12 in the hand-out Random(ized) Search Trees.)

Determine  $E[2^{R_n^{(n)}}]$ .

## Exercise 5

For a random search tree on n nodes and  $i, j, k \in \{1, \dots n\}, i \leq j$ , define the random indicator variable

$$C_{i,j}^k = [ \text{node } k \text{ is common ancestor of nodes } i \text{ and } j ]$$

(where "node k" stands for "node holding key of rank k", etc.).

Determine 
$$\Pr[C_{i,j}^k=1]$$
 for  $i,j,k\in\{1,\ldots n\},\,i\leq j.$ 

*Hint:* You'll have to discriminate the cases  $k < i \le j$ ,  $i \le k \le j$ , and  $i \le j < k$ .

**Due-date:**29.04.04 in the lecture