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Theoretische Informatik (Kernfach) SS 200/
Ezxercise Set 5

Erinnerung:

Am 30.04. findet die Semesterzwischenpriifung statt. Studenten eingeschrieben in
die Ubungsgruppen 1-5 legen die Priifung in NO C 3, Punkt 9:00 bis Punkt 10:00
ab, Studenten eingeschrieben in die Ubungsgruppen 6,7 in HG G 3, Punkt 10:00 bis
Punkt 11:00.

Exercise 1

An undirected multigraph G = (V, E) is a graph where two (distinct) vertices can be connected by more
than one edge, i.e. E is a multiset of two-element sets (no loops). Such a graph can be represented by
its adjacency matrix Ag € NV*V where

Ac(u,v) = number of edges between u and v.

Given an edge {u,v} in G a contraction of this edge results in a new graph G’ with vertex set V' =
V\ {u,v} U{mul}, where is a new vertex. The edges in G not connected to u or v survive in G’, the
edges between u and v vanish and edges from a third vertex w to u or v become edges {w, @dl}.

T ‘Q—-='°
For example the graph = has adjacency matrix
0 4 00
4 0 1 1
01 0 3
01 3 0

and if one contracts edge {2,3} the resulting graph is CEO=E

Assume for an algorithm on such multigraphs we need three operations:

1. Determine the number of edges between two given vertices.
2. Select an edge of G uniformly at random.

3. Contract a given edge of G.

As the algorithm will use all three operations quite frequently we want to store GG in an efficient way.

Describe a data structure together with algorithms implementing these three operations. The goal is
to perform the first operation in time O(1) and the other two operations in time O(n). (Here n is the
number of vertices of the current G. Note that by contracting an edge the number of vertices decreases.)

Exercise 2

Prove Proposition 1.19 in the lecture notes from Hall’s theorem.

Exercise 3

Let (G, s,t,c) be a network with all capacities equal to 1. Assume that there is no s-t-cut with capacity
k or smaller (k > 1 integer). Prove that there are directed s-t-paths Pi, P»,..., Py such that P; and P;
have no common edges for 1 <i < j < k. (Two paths may have common vertices.)

Hint: Consider a suitable maximum flow and extract the paths by induction.



Exercise 4

Fori,n e N;1 <i<mn, let R,(f ) be the depth of the key of rank 7 in a rightist random search tree for n
keys. (Recall the definition from Exercise 1.19, p. 12 in the hand-out Random(ized) Search Trees.)

Determine F [2R51n) ]

Exercise 5

For a random search tree on n nodes and 4, j, k € {1,...n},i < j, define the random indicator variable
Ci’f ; = [node k is common ancestor of nodes i and j]

(where "node k” stands for "node holding key of rank k7, etc.).

Determine Pr[ij =1]fori,j, ke {1,...n}, i <j.

Hint: You'll have to discriminate the cases k < i < j, 1 <k <j,and i< j<k.

Due-date:29.04.04 in the lecture



