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Exercise 1

Given a finite set S of rational numbers and positive integers d and n, d > |S|, find a polynomial
p(x1, 2, ..., x,) of degree d for which the Schwartz—Zippel theorem is tight. That is, the number of
n-tuples (r1,...,r,) € S™ with p(r1,...,r,) = 0is d|S|" L.

Exercise 2

Consider a modified checker for matrix multiplication (over the reals): Instead of choosing a random
vector with components 0 and 1, choose a random vector with components drawn from {0,1,..., N —1}
uniformly and independently at random. Show that the probability of failure (declaring an incorrect
multiplication correct) is at most 4.

Exercise 3

Suppose that we have an algorithm for testing the existence of a perfect matching in a given graph, with
running time at most 7'(n) for any n-vertex graph.

(a) Explain how repeated calls to the algorithm can be used to find a perfect matching if one exists.

Estimate the running time of the resulting algorithm.

(b) How can the algorithm be used for finding a maximum matching in a given graph?

Exercise 4

Suppose that a polynomial p(x1,...,Z,,y) in n+ 1 variables is given by a black box that, given concrete
values for z1,...,x, and y, returns the value of the polynomial. Let m be the maximum degree of y in
p and write p(21,...,2n,Y) = Yivp y'pi(z1,...,7,). Given an integer k and numbers rq,...,7,, how
can we compute pg(r1,...,7,) (using only the black box)? How can we test whether pg(z1,...,z,) is a
nonzero polynomial? For simplicity, assume that everything happens over the rationals.

Exercise 5

Consider a bipartite graph in which some edges are colored red and some blue. Extend the randomized
algorithm discussed in class to handle the following problem: Given such a colored bipartite graph and
an integer k, is there a perfect matching that contains exactly k red edges?

Hint: Use Exercise 4.

(Remark: No polynomial-time deterministic algorithm for this problem seems to be known.)

Exercise 6
Let n € N. The sign sign(r) of a permutation 7 of {1..n} can be defined, e.g., by

sign(m) =

11 (i) — m(j)

1<icj<n T

Recall that for two permutations 7 and o of {1..n} we have
sign(m o o) = sign(n) - sign(o),

where o is the concatenation of 7 and o, i.e w0 o(z) = 7(o(x)).



Furthermore recall that for a permutation 7 with an odd cycle the permutation r(7) has exactly the
smallest cycle reversed.

(a) Show that for a permutation 7 which consists of only one odd cycle and no even cycle the signs of
m and r(m) are equal.

(b) Show that for a permutation = with an odd cycle the signs of = and r(7) agree.

Exercise 7

Let A be a n x n matrix with 0/1-entries. For 1 < 4,5 < n let ¢; ; be independent random variables,
€i,j €u.ar {—1,+1}. Let B be the random matrix with b; ; = €; j - a; ;. In other words, to get B from A
we randomly assign signs to the entries of A.

(a) Show that E[det B] = 0.
(b) Show that E[(det B)?] = per(A). (Challenge)
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