Theoretische Informatik (Kernfach)

Exercise 1

Given a finite set S of rational numbers and positive integers d and $n, d \geq|S|$, find a polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of degree d for which the Schwartz-Zippel theorem is tight. That is, the number of n-tuples $\left(r_{1}, \ldots, r_{n}\right) \in S^{n}$ with $p\left(r_{1}, \ldots, r_{n}\right)=0$ is $d|S|^{n-1}$.

Exercise 2

Consider a modified checker for matrix multiplication (over the reals): Instead of choosing a random vector with components 0 and 1 , choose a random vector with components drawn from $\{0,1, \ldots, N-1\}$ uniformly and independently at random. Show that the probability of failure (declaring an incorrect multiplication correct) is at most $\frac{1}{N}$.

Exercise 3

Suppose that we have an algorithm for testing the existence of a perfect matching in a given graph, with running time at most $T(n)$ for any n-vertex graph.
(a) Explain how repeated calls to the algorithm can be used to find a perfect matching if one exists. Estimate the running time of the resulting algorithm.
(b) How can the algorithm be used for finding a maximum matching in a given graph?

Exercise 4

Suppose that a polynomial $p\left(x_{1}, \ldots, x_{n}, y\right)$ in $n+1$ variables is given by a black box that, given concrete values for x_{1}, \ldots, x_{n} and y, returns the value of the polynomial. Let m be the maximum degree of y in p and write $p\left(x_{1}, \ldots, x_{n}, y\right)=\sum_{i=0}^{m} y^{i} p_{i}\left(x_{1}, \ldots, x_{n}\right)$. Given an integer k and numbers r_{1}, \ldots, r_{n}, how can we compute $p_{k}\left(r_{1}, \ldots, r_{n}\right)$ (using only the black box)? How can we test whether $p_{k}\left(x_{1}, \ldots, x_{n}\right)$ is a nonzero polynomial? For simplicity, assume that everything happens over the rationals.

Exercise 5

Consider a bipartite graph in which some edges are colored red and some blue. Extend the randomized algorithm discussed in class to handle the following problem: Given such a colored bipartite graph and an integer k, is there a perfect matching that contains exactly k red edges?

Hint: Use Exercise 4.
(Remark: No polynomial-time deterministic algorithm for this problem seems to be known.)

Exercise 6

Let $n \in \mathbf{N}$. The $\operatorname{sign} \operatorname{sign}(\pi)$ of a permutation π of $\{1 . . n\}$ can be defined, e.g., by

$$
\operatorname{sign}(\pi)=\prod_{1 \leq i<j \leq n} \frac{\pi(i)-\pi(j)}{i-j}
$$

Recall that for two permutations π and σ of $\{1 . . n\}$ we have

$$
\operatorname{sign}(\pi \circ \sigma)=\operatorname{sign}(\pi) \cdot \operatorname{sign}(\sigma)
$$

where \circ is the concatenation of π and σ, i.e $\pi \circ \sigma(x)=\pi(\sigma(x))$.

Furthermore recall that for a permutation π with an odd cycle the permutation $r(\pi)$ has exactly the smallest cycle reversed.
(a) Show that for a permutation π which consists of only one odd cycle and no even cycle the signs of π and $r(\pi)$ are equal.
(b) Show that for a permutation π with an odd cycle the signs of π and $r(\pi)$ agree.

Exercise 7

Let A be a $n \times n$ matrix with $0 / 1$-entries. For $1 \leq i, j \leq n$ let $\epsilon_{i, j}$ be independent random variables, $\epsilon_{i, j} \in_{\text {u.a.r }}\{-1,+1\}$. Let B be the random matrix with $b_{i, j}=\epsilon_{i, j} \cdot a_{i, j}$. In other words, to get B from A we randomly assign signs to the entries of A.
(a) Show that $\mathbf{E}[\operatorname{det} B]=0$.
(b) Show that $\mathbf{E}\left[(\operatorname{det} B)^{2}\right]=\operatorname{per}(A)$. (Challenge)

