Theoretische Informatik (Kernfach)

Exercise 1

Let $G=(V, E)$ be a connected undirected graph and let $s, t \in V$ be vertices. Consider the following linear program with variables $x_{v}, v \in V$: maximize x_{t} subject to $x_{s} \leq 0$ and $x_{v} \leq x_{u}+1$ for every edge $\{u, v\} \in E$. Show that this linear program always has an integral optimal solution. What is the meaning of the optimal solution?

Exercise 2

Let $G=(V, E)$ be a connected undirected graph and let $s, t \in V$ be vertices. Let us consider the following integer program with variables $x_{e}, e \in E$, and $y_{v}, v \in V$: minimize $\sum_{e \in E} x_{e}$, subject to $x_{e} \in\{0,1\}$ for every $e \in E, y_{v} \in\{0,1\}$ for every $v \in V, y_{s}=0, y_{t}=1$, and $y_{v} \leq y_{u}+x_{\{u, v\}}$ for every edge $\{u, v\} \in E$. Explain how an optimal solution corresponds to a minimum edge cut separating s and t.

Exercise 3

Let $G=(V, E)$ be a connected undirected graph. We are given the following integer program with variables $x_{e} \in\{0,1\}$ for every $e \in E$: maximize $\sum_{e \in E} x_{e}$, subject to $x_{e} \in\{0,1\}$ for every $e \in E$ and $\sum_{e \ni v} x_{e}=2$ for every $v \in V$. Does every optimal solution correspond to a Hamilton cycle (a cycle passing through all vertices of G)?

Exercise 4

Consider the linear relaxation of the maximum matching problem on a bipartite graph as in the lecture notes. Using results about network flows learned earlier, prove that it always has an integral (i.e. zeroone) optimal solution.

Exercise 5

Let \mathcal{F} be a system of m subsets of the set $X=\{1,2, \ldots, n\}$. Prove that each of the points of X can be colored red or blue in such a way that for every set F of \mathcal{F}, the number of red points in F differs from the number of blue points in F by at most $\sqrt{2 n \ln (2 m)}$.
Hint: Use a random coloring and the Chernoff inequality.

