

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

Institut für Theoretische Informatik Emo Welzl, Jiří Matoušek 27.05.2004

Theoretische Informatik (Kernfach) SS 2004 Exercise Set 9

Exercise 1

Let G = (V, E) be a connected undirected graph and let $s, t \in V$ be vertices. Consider the following linear program with variables $x_v, v \in V$: maximize x_t subject to $x_s \leq 0$ and $x_v \leq x_u + 1$ for every edge $\{u, v\} \in E$. Show that this linear program always has an integral optimal solution. What is the meaning of the optimal solution?

Exercise 2

Let G = (V, E) be a connected undirected graph and let $s, t \in V$ be vertices. Let us consider the following integer program with variables $x_e, e \in E$, and $y_v, v \in V$: minimize $\sum_{e \in E} x_e$, subject to $x_e \in \{0, 1\}$ for every $e \in E$, $y_v \in \{0, 1\}$ for every $v \in V$, $y_s = 0$, $y_t = 1$, and $y_v \le y_u + x_{\{u,v\}}$ for every edge $\{u, v\} \in E$. Explain how an optimal solution corresponds to a minimum edge cut separating s and t.

Exercise 3

Let G = (V, E) be a connected undirected graph. We are given the following integer program with variables $x_e \in \{0, 1\}$ for every $e \in E$: maximize $\sum_{e \in E} x_e$, subject to $x_e \in \{0, 1\}$ for every $e \in E$ and $\sum_{e \ni v} x_e = 2$ for every $v \in V$. Does every optimal solution correspond to a Hamilton cycle (a cycle passing through all vertices of G)?

Exercise 4

Consider the linear relaxation of the maximum matching problem on a bipartite graph as in the lecture notes. Using results about network flows learned earlier, prove that it always has an integral (i.e. zero-one) optimal solution.

Exercise 5

Let \mathcal{F} be a system of m subsets of the set $X = \{1, 2, ..., n\}$. Prove that each of the points of X can be colored red or blue in such a way that for every set F of \mathcal{F} , the number of red points in F differs from the number of blue points in F by at most $\sqrt{2n \ln(2m)}$. Hint: Use a random coloring and the Chernoff inequality.