Fair Division aka Cake Cutting

"How to cut a cake fairly?"

- Different notions:
 - proportional: \(\frac{1}{n} \)
 - envy-free:
 - No one else receives a larger piece.
 - "A compromise to the art of dividing a cake such that everyone thinks they received the largest piece."
 - super envy-free:
 - All other players receive at most \(\frac{1}{n} \)

\[I = \left[0, 1 \right] \]

With \(n \) measures:

- E.g.: Moving knife scheme:
 \[t_0 = \min \left\{ t \mid \exists i : \mu_i \left(t, \bar{t} \right) = \frac{1}{n} \right\} \]

 \[\Rightarrow \text{ Player } i \text{ gets } \left[0, t_0 \right], \]

 \[\text{ other players are paid with } \left[t_0, 1 \right]. \]

 \[\Rightarrow \text{ proportional, but not necessarily envy-free.} \]

- Necklace splitting:
 - 2 thieves
 - \(d \) kinds of stones
 - Can divide with \(d \) cuts.
 - Can also be interpreted as a fair division question:
 - \(d \) opinions on what is valuable (\(d \) measures)
 - \(0, 0 \) to be divided into 2 pieces, e.t. on \(0, 1 \)
 - everybody thinks the pieces each have size \(\frac{1}{2} \).
Two siblings inheriting a piece of land, the family also has to think its $\frac{1}{2}, \frac{1}{2}$.

Law of sea treaty...
Brouwer's Fixed Point Theorem & Sperner's Lemma

THM:
\[f : B^n \to B^n \text{ cts } \implies \exists x \in B^n : f(x) = x \]
(Already saw proof using B-U-Thm)

A Homological Proof:

Assume \(f : B^n \to B^n \) without fixed point.

Define \(r : B^n \to S^{n-1} : \)

\[r(x) = \text{point where the ray from } \]
\[f(x) \text{ through } x \text{ hits } S^{n-1}(= \partial B^n) \]

(And this in previous proof)

Then, \(r \) is continuous \(\Rightarrow r/|S^{n-1}| = \text{id} \),

\[r \circ i = \text{id}_{|S^{n-1}|} \]

\[\text{where } i : S^{n-1} \to B^n \text{ inclusion.} \]

Consider induced maps in homology:

\[\begin{array}{cccc}
\text{Id}^* & H_*(S^{n-1}, \mathbb{Z}_2) & \to & H_*(B^n, \mathbb{Z}_2) \\
\downarrow & \text{id}^* & & \downarrow \\
\mathbb{Z}_2 & 0 & & \mathbb{Z}_2
\end{array} \]
Just as Birkhoff has Tucker as combinatorial equivalent, Brouwer is equivalent to:

Sperner Lemma (Z in Exercise)

A subdivision of \(\Delta^n \).

\[\lambda: V(K) \to \text{Int}(I) \text{ labeling with:} \]

- \(\lambda(e_i) = i \)
- \(\nu \in \text{conv } e_{i_1}, \ldots, e_{i_k} \Rightarrow \lambda(\nu) \in e_{i_{1}, \ldots, i_k} \)

Then: A fully-labeled k-simplex in \(\mathbb{R}^{k+1} \).

Proof with Brouwer:

A Sperner labeling

Define: \(f: \Delta^n \to \Delta^n \)

as affine extension of simplicial map

\[V(K) \to V(\Delta^n) \]

\[\nu \mapsto e_{\lambda(\nu)+1} \mod (n+1) \]

Here, \(\Delta_n \) is considered as the standard n-simplex: the convex hull of the standard basis vectors \(e_1, \ldots, e_{n+1} \) in \(\mathbb{R}^{n+1} \)

Even more:

- # fully labeled simplices is odd.

\[\dim = 3 \]

\[1 \to 2 \]

\[2 \to 4 \]

\[3 \to \text{cycle} \]

\[4 \to 1 \]
Now, if fully labeled simplex \(\Rightarrow \) f surjective

\[\Leftrightarrow \exists x \in \text{interior of } \Delta^n : x \in \text{im } f \]

But: f is fixed-point free on the boundary of Δ^n.

So, the fixed point given by Brouwer has to lie in the interior!