
Chapter 11

Linear Programming

This lecture is about a special type of optimization problems, namely linear programs.
We start with a geometric problem that can directly be formulated as a linear program.

11.1 Linear Separability of Point Sets

Let P ⊆ R
d and Q ⊆ R

d be two finite point sets in d-dimensional space. We want to
know whether there exists a hyperplane that separates P from Q (we allow non-strict
separation, i.e. some points are allowed to be on the hyperplane). Figure 11.1 illustrates
the 2-dimensional case.

Figure 11.1: Left: there is a separating hyperplane; Right: there is no separating
hyperplane

How can we formalize this problem? A hyperplane is a set of the form

h = {x ∈ R
d : h1x1 + h2x2 + · · ·+ hdxd = h0},

where hi ∈ R, i = 0, . . . ,d. For example, a line in the plane has an equation of the form
ax+ by = c.

118

CG 2012 11.2. Linear Programming

The vector η(h) = (h1,h2, . . . ,hd) ∈ R
d is called the normal vector of h. It is

orthogonal to the hyperplane and usually visualized as in Figure 11.2(a).

h: ax + by = c

η (h) = (a,b)

(a) The normal vector of a hyperplane

h: ax + by = c

η (h) = (a,b)

h

h

+

−

(b) The two halfspaces of a hyperplane

Figure 11.2: The concepts of hyperplane, normal vector, and halfspace

Every hyperplane h defines two closed halfspaces

h+ = {x ∈ R
d : h1x1 + h2x2 + · · ·+ hdxd 6 h0},

h− = {x ∈ R
d : h1x1 + h2x2 + · · ·+ hdxd > h0}.

Each of the two halfpsaces is the region of space “on one side” of h (including h itself).
The normal vector η(h) points into h−, see Figure 11.2(b). Now we can formally define
linear separability.

Definition 11.1 Two point sets P ⊆ R
d and Q ⊆ R

d are called linearly separable if
there exists a hyperplane h such that P ⊆ h+ and Q ⊆ h−. In formulas, if there
exist real numbers h0,h1, . . . ,hd such that

h1p1 + h2p2 + · · ·+ hdpd 6 h0, p ∈ P,

h1q1 + h2q2 + · · ·+ hdqd > h0, q ∈ Q.

As we see from Figure 11.1, such h0,h1, . . . ,hd may or may not exist. How can we
find out?

11.2 Linear Programming

The problem of testing for linear separability of point sets is a special case of the general
linear programming problem.

Definition 11.2 Given n,d ∈ N and real numers

bi , i = 1, . . . ,n,

cj , j = 1, . . . ,d,

aij , i = 1, . . . ,n, j = 1, . . . ,d,

119

Chapter 11. Linear Programming CG 2012

the linear program defined by these numbers is the problem of finding real numbers
x1, x2, . . . , xd such that

(i)
∑d

j=1
aijxj 6 bi, i = 1, . . . ,n, and

(ii)
∑d

j=1
cjxj is as large as possible subject to (i).

Let us get a geometric intuition: each of the n constraints in (i) requires x =

(x1, x2, . . . , xd) ∈ R
d to be in the positive halfspace of some hyperplane. The intersection

of all these halfspaces is the feasible region of the linear program. If it is empty, there
is no solution—the linear program is called infeasible.

Otherwise—and now (ii) enters the picture—we are looking for a feasible solution x

(a point inside the feasible region) that maximizes
∑d

j=1
cjxj. For every possible value γ

of this sum, the feasible solutions for which the sum attains this value are contained in
the hyperplane

{x ∈ R
d :

d∑

j=1

cjxj = γ}

with normal vector c = (c1, . . . , cd). Increasing γ means to shift the hyperplane into
direction c. The highest γ is thus obtained from the hyperplane that is most extreme in
direction c among all hyperplanes that intersect the feasible region, see Figure 11.3.

γ = 10

c

γ

γ

γ

γ

= 20

= 30

= 40

= 50

Figure 11.3: A linear program: finding the feasible solution in the intersection of five
positive halfspaces that is most extreme in direction c (has highest value

γ =
∑d

j=1
cjxj)

In Figure 11.3, we do have an optimal solution (a feasible solution x of highest value
∑d

j=1
cjxj), but in general, there might be feasible solutions of arbitrarily high γ-value.

In this case, the linear program is called unbounded, see Figure 11.4.

120

CG 2012 11.2. Linear Programming

γ = 10

c

γ

γ

γ

γ

= 20

= 30

= 40

= 50

Figure 11.4: An unbounded linear program

It can be shown that infeasibility and unboundedness are the only obstacles for the
existence of an optimal solution. If the linear program is feasible and bounded, there
exists an optimal solution.

This is not entirely trivial, though. To appreciate the statement, consider the problem
of finding a point (x,y) that (i) satisfies y > ex and (ii) has smallest value of y among all
(x,y) that satisfy (i). This is not a linear program, but in the above sense it is feasible
(there are (x,y) that satisfy (i)) and bounded (y is bounded below from 0 over the set of
feasible solutions). Still, there is no optimal solution, since values of y arbitrarily close
to 0 can be attained but not 0 itself.

Even if a linear program has an optimal solution, it is in general not unique. For
example, if you rotate c in Figure 11.3 such that it becomes orthogonal to the top-right
edge of the feasible region, then every point of this edge is an optimal solution. Why
is this called a linear program? Because all constraints are linear inequalities, and the
objective function is a linear function. There is also a reason why it is called a linear
program, but we won’t get into this here (see [3] for more background).

Using vector and matrix notation, a linear program can succinctly be written as
follows.

121

Chapter 11. Linear Programming CG 2012

(LP) maximize cTx

subject to Ax 6 b

Here, c, x ∈ R
d,b ∈ R

n,A ∈ R
n×d, and ·T denotes the transpose operation. The in-

equality “6” is interpreted componentwise. The vector x represents the variables, c
is called the objective function vector, b the right-hand side, and A the constraint
matrix.

To solve a linear programs means to either report that the problem is infeasible or
unbounded, or to compute an optimal solution x∗. If we can solve linear programs, we
can also decide linear separability of point sets. For this, we check whether the linear
program

maximize 0
subject to h1p1 + h2p2 + · · ·+ hdpd − h0 6 0, p ∈ P,

h1q1 + h2q2 + · · ·+ hdqd − h0 > 0, q ∈ Q.

in the d+ 1 variables h0,h1,h2, . . . ,hd and objective function vector c = 0 is feasible or
not. The fact that some inequalities are of the form “>” is no problem, of course, since
we can multiply an inequality by −1 to turn “>” into “6”.

11.3 Minimum-area Enclosing Annulus

Here is another geometric problem that we can write as a linear program, although this is
less obvious. Given a point set P ⊆ R

2, find a minimum-area annulus (region between
two concentric circles) that contains P; see Figure 11.5 for an illustration.

The optimal annulus can be used to test whether the point set P is (approximately)
on a common circle which is the case if the annulus has zero (or small) area.

Let us write this as an optimization problem in the variables c = (c1, c2) ∈ R
2 (the

center) and r,R ∈ R (the small and the large radius).

minimize π(R2 − r2)

subject to r2 6 ‖p− c‖2 6 R2, p ∈ P.

This neither has a linear objective function nor are the constraints linear inequalities.
But a variable substitution will take care of this. We define new variables

u := r2 − ‖c‖2, (11.3)

v := R2 − ‖c‖2. (11.4)

Omitting the factor π in the objective function does not affect the optimal solution (only
its value), hence we can equivalently work with the objective function v − u = R2 − r2.
The constraint r2 6 ‖p− c‖2 is equivalent to r2 6 ‖p‖2 − 2pTc+ ‖c‖2, or

u+ 2pTc 6 ‖p‖2.

122

CG 2012 11.3. Minimum-area Enclosing Annulus

R

r

c

Figure 11.5: A minimum-area annulus containing P

In the same way, ‖p− c‖ 6 R turns out to be equivalent to

v+ 2pTc > ‖p‖2.

This means, we now have a linear program in the variables u, v, c1, c2:

maximize u− v

subject to u+ 2pTc 6 ‖p‖2, p ∈ P

v + 2pTc > ‖p‖2, p ∈ P.

From optimal values for u, v and c, we can also reconstruct r2 and R2 via (11.3) and (11.4).
It cannot happen that r2 obtained in this way is negative: since we have r2 6 ‖p − c‖2

for all p, we could still increase u (and hence r2 to at least 0), which is a contradicition
to u− v being maximal.

Exercise 11.5 a) Prove that the problem of finding a largest disk inside a convex
polygon can be formulated as a linear program! What is the number of variables
in your linear program?

b) Prove that the problem of testing whether a simple polygon is starshaped can be
formulated as a linear program.

Exercise 11.6 Given a simple polygon P as a list of vertices along its boundary. De-
scribe a linear time algorithm to decide whether P is star-shaped and—if so—to
construct the so-called kernel of P, that is, the set of all star-points.

123

Chapter 11. Linear Programming CG 2012

11.4 Solving a Linear Program

Linear programming was first studied in the 1930’s -1950’s, and some of its original
applications were of a military nature. In the 1950’s, Dantzig invented the simplex
method for solving linear programs, a method that is fast in practice but is not known
to come with any theoretical guarantees [1].

The computational complexity of solving linear programs was unresolved until 1979
when Leonid Khachiyan discovered a polynomial-time algorithm known as the ellipsoid
method [2]. This result even made it into the New York times.

From a computational geometry point of view, linear programs with a fixed number
of variables are of particular interest (see our two applications above, with d and 4
variables, respectively, where d may be 2 or 3 in some relavant cases). As was first shown
by Megiddo, such linear programs can be solved in time O(n), where n is the number of
constraints [4]. In the next lecture, we will describe a much simpler randomized O(n)

algorithm due to Seidel [5].

Questions

51. What is a linear program? Give a precise definition! How can you visualize
a linear program? What does it mean that the linear program is infeasible /
unbounded?

52. Show an application of linear programming! Describe a geometric problem that
can be formulated as a linear program, and give that formulation!

References

[1] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963.

[2] L. G. Khachiyan, Polynomial algorithms in linear programming, U.S.S.R. Comput.
Math. and Math. Phys 20 (1980), 53–72.

[3] J. Matoušek and B. Gärtner, Understanding and Using Linear Programming, Uni-
versitext, Springer-Verlag, 2007.

[4] N. Megiddo, Linear programming in linear time when the dimension is fixed, J. ACM
31 (1984), 114–127.

[5] R. Seidel, Small-dimensional linear programming and convex hulls made easy, Dis-
crete Comput. Geom. 6 (1991), 423–434.

124

Chapter 12

A randomized Algorithm for Linear
Programming

Let us recall the setup from last lecture: we have a linear program of the form

(LP) maximize cTx

subject to Ax 6 b,
(12.1)

where c, x ∈ R
d (there are d variables), b ∈ R

n (there are n constraints), and A ∈ R
n×d.

The scenario that we are interested in here is that d is a (small) constant, while n tends
to infinity.

The goal of this lecture is to present a randomized algorithm (due to Seidel [2]) for
solving a linear program whose expected runtime is O(n). The constant behind the
big-O will depend exponentially on d, meaning that this algorithm is practical only for
small values of d.

To prepare the ground, let us first get rid of the unboundedness issue. We add to our
linear program a set of 2d constraints

−M 6 xi 6 M, i = 1, 2, . . .d, (12.2)

where M is a symbolic constant assumed to be larger than any real number that it is
compared with. Formally, this can be done by computing with rational functions in M

(quotients of polynomials of degree d in the “variable “M), rather than real numbers.
The original problem is bounded if and only if the solution of the new (and bounded)
problem does not depend on M. This is called the big-M method.

Now let H, |H| = n, denote the set of original constraints. For h ∈ H, we write the
corresponding constraint as ahx 6 bh.

Definition 12.3 For Q,R ⊆ H,Q∩R = ∅, let x∗(Q,R) denote the lexicographically largest
optimal solution of the linear program

LP(Q,R) maximize cTx

subject to ahx 6 bh, h ∈ Q

ahx = bh, h ∈ R

−M 6 xi 6 M, i = 1, 2, . . . ,d.

125

Chapter 12. A randomized Algorithm for Linear Programming CG 2012

If this linear program has no feasible solution, we set x∗(Q,R) = ∞.

What does this mean? We delete some of the original constraints (the ones not in
Q∪R, and we require some of the constraints to hold with equality (the ones in R). Since
every linear equation ahx = bh can be simulated by two linear inequalities ahx 6 bh

and ahx > bh, this again assumes the form of a linear program. By the big-M method,
this linear program is bounded, but it may be infeasible. If it is feasible, there may
be several optimal solutions, but choosing the lexicographically largest one leads to a
unique solution x∗(Q,R).

Our algorithm will compute x∗(H, ∅), the lexicographically largest optimal solution
of (12.1) subject to the additional bounding-box constraint (12.2). We also assume that
x∗(H, ∅) 6= ∞, meaning that (12.1) is feasible. At the expense of solving an auxiliary
problem with one extra variable, this may be assumed w.l.o.g. (Exercise).

Exercise 12.4 Suppose that you have an algorithm A for solving feasible linear pro-
grams of the form

(LP) maximize cTx

subject to Ax 6 b,

where feasible means that there exists x̃ ∈ R
d such that Ax̃ 6 b. Extend algorithm

A such that it can deal with arbitrary (not necessarily feasible) linear programs of
the above form.

12.1 Helly’s Theorem

A crucial ingredient of the algorithm’s analysis is that the optimal solution x∗(H, ∅) is
already determined by a constant number (at most d) of constraints. More generally,
the following holds.

Lemma 12.5 Let Q,R ⊆ H,Q∩ R = ∅, such that the constraints in R are independent.
This means that the set {x ∈ R

d : ahx = bh,h ∈ R} has dimension d− |R|.
If x∗(Q,R) 6= ∞, then there exists S ⊆ Q, |S| 6 d − |R| such that

x∗(S,R) = x∗(Q,R).

The proof uses Helly’s Theorem, a classic result in convexity theory.

Theorem 12.6 (Helly’s Theorem [1]) Let C1, . . .Cn be n > d + 1 convex subsets of R
d.

If any d + 1 of the sets have a nonempty common intersection, then the common
intersection of all n sets is nonempty.

Even in R
1, this is not entirely obvious. There it says that for every set of intervals

with pairwise nonempty overlap there is one point contained in all the intervals. We will
not prove Helly’s Theorem here but just use it to prove Lemma 12.5.

126

CG 2012 12.2. Convexity, once more

Proof. (Lemma 12.5) The statement is trivial for |Q| 6 d − |R|, so assume |Q| > d − |R|.
Let

L(R) := {x ∈ R
d : ahx = bh,h ∈ R}

and

B := {x ∈ R
d : −M 6 xi 6 M, i = 1, . . . ,d}.

For a vector x = (x1, . . . , xd), we define x0 = cTx, and we write x > x ′ if (x0, x1, . . . , xd)
is lexicographically larger than (x ′

0
, x ′

1
, . . . , x ′

d).
Let x∗ = x∗(Q,R) and consider the |Q|+ 1 sets

Ch = {x ∈ R
d : ahx 6 bh} ∩ B ∩ L(R), h ∈ Q

and

C0 = {x ∈ R
d : x > x∗} ∩ B ∩ L(R).

The first observation (that may require a little thinking in case of C0) is that all these
sets are convex. The second observation is that their common intersection is empty.
Indeed, any point in the common intersection would be a feasible solution x̃ of LP(Q,R)
with x̃ > x∗ = x∗(Q,R), a contradiction to x∗(Q,R) being the lexicographically largest
optimal solution of LP(Q,R). The third observation is that since L(R) has dimension
d− |R|, we can after an affine transformation assume that all our |Q|+ 1 convex sets are
actually convex subsets of Rd−|R|.

Then, applying Helly’s Theorem yields a subset of d − |R| + 1 constraints with an
empty common intersection. Since all the Ch do have x∗(Q,R) in common, this set of
constraints must contain C0. This means, there is S ⊆ Q, |S| = d− |R| such that

x ∈ Ch ∀h ∈ S ⇒ x /∈ C0.

In particular, x∗(S,R) ∈ Ch for all h ∈ S, and so it follows that x∗(S,R) 6 x∗ = x∗(Q,R).
But since S ⊆ Q, we also have x∗(S,R) > x∗(Q,R), and x∗(S,R) = x∗(Q,R) follows. �
12.2 Convexity, once more

We need a second property of linear programs on top of Lemma 12.5; it is also a conse-
quence of convexity of the constraints, but a much simpler one.

Lemma 12.7 Let Q,R ⊆ H,Q ∩ R 6= ∅ and x∗(Q,R) 6= ∞. Let h ∈ Q. If

ahx
∗(Q \ {h},R) > bh,

then

x∗(Q,R) = x∗(Q \ {h},R ∪ {h}).

127

Chapter 12. A randomized Algorithm for Linear Programming CG 2012

Before we prove this, let us get an intuition. The vector x∗(Q \ {h}) is the optimal
solution of LP(Q \ {h},R). And the inequality ahx

∗(Q \ {h},R) > bh means that the
constraint h is violated by this solution. The implication of the lemma is that at the
optimal solution of LP(Q,R), the constraint h must be satisfied with equality in which
case this optimal solution is at the same time the optimal solution of the more restricted
problem LP(Q \ {h},R ∪ {h}).
Proof. Let us suppose for a contradition that

ahx
∗(Q,R) < bh

and consider the line segment s that connects x∗(Q,R) with x∗(Q \ {h},R). By the
previous strict inequality, we can make a small step (starting from x∗(Q,R)) along this
line segment without violating the constraint h (Figure 12.1). And since both x∗(Q,R)
as well as x∗(Q \ {h},R) satisfy all other constraints in (Q \ {h},R), convexity of the
constraints implies that this small step takes us to a feasible solution of LP(Q,R) again.
But this solution is lexicographically larger than x∗(Q,R), since we move towards the
lexicographically larger vector x∗(Q \ {h},R); this is a contradiction. �

x (Q\{h}, R)

x (Q, R)*

*
s

h

Figure 12.1: Proof of Lemma 12.7

12.3 The Algorithm

The algorithm reduces the computation of x∗(H, ∅) to the computation of x∗(Q,R) for
various sets Q,R, where R is an independent set of constraints. Suppose you want to
compute x∗(Q,R) (assuming that x∗(Q,R) 6= ∞). If Q = ∅, this is “easy”, since we have
a constant-size problem, defined by R with |R| 6 d and 2d bounding-box constraints
−M 6 xi 6 M.

128

CG 2012 12.4. Runtime Analysis

Otherwise, we choose h ∈ Q and recursively compute x∗(Q \ {h},R) 6= ∞. We then
check whether constraint h is violated by this solution. If not, we are done, since then
x∗(Q \ {h},R) = x∗(Q,R) (Think about why!). But if h is violated, we can use Lemma
12.7 to conclude that x∗(Q,R) = x∗(Q \ {h},R ∪ {h}), and we recursively compute the
latter solution. Here is the complete pseudocode.

LP(Q,R):
IF Q = ∅ THEN

RETURN x∗(∅,R)
ELSE

choose h ∈ Q uniformly at random
x∗ := LP(Q \ {h},R)
IF ahx

∗ 6 bh THEN

RETURN x∗

ELSE

RETURN LP(Q \ {h},R ∪ {h})

END

END

To solve the original problem, we call this algorithm with LP(H, ∅). It is clear that
the algorithm terminates since the first argument Q becomes smaller in every recursive
call. It is also true (Exercise) that every set R that comes up during this algorithm is
indeed an independent set of constraints and in particular has at most d elements. The
correctness of the algorithm then follows from Lemma 12.7.

Exercise 12.8 Prove that all sets R of constraints that arise during a call to algorithm
LP(H, ∅) are independent, meaning that the set

{x ∈ R
d : ahx = bh,h ∈ R}

of points that satisfy all constraints in R with equality has dimension d− |R|.

12.4 Runtime Analysis

Now we get to the analysis of algorithm LP, and this will also reveal why the random
choice is important.

We will analyze the algorithm in terms of the expected number of violation tests
ahx

∗ 6 bh, and in terms of the expected number of basis computations x∗(∅,R) that
it performs. This is a good measure, since these are the dominating operations of the
algorithm. Moreover, both violation test and basis computation are “cheap” operations
in the sense that they can be performed in time f(d) for some f.

129

Chapter 12. A randomized Algorithm for Linear Programming CG 2012

More specifically, a violation test can be performed in time O(d); the time needed
for a basis computation is less clear, since it amounts to solving a small linear program
itself. Let us suppose that it is done by brute-force enumeration of all vertices of the
bounded polyhedron defined by the at most 3d (in)equalities

ahx = bh,h ∈ R

and

−M 6 xi 6 M, i = 1, . . . ,d.

12.4.1 Violation Tests

Lemma 12.9 Let T(n, j) be the maximum expected number of violation tests performed
in a call to LP(Q,R) with |Q| = n and |R| = d− j. For all j = 0, . . . ,d,

T(0, j) = 0

T(n, j) 6 T(n− 1, j) + 1 +
j

n
T(n− 1, j− 1), n > 0.

Note that in case of j = 0, we may get a negative argument on the right-hand side, but
due to the factor 0/n, this does not matter.
Proof. If |Q| = ∅, there is no violation test. Otherwise, we recursively call LP(Q\ {h},R)
for some h which requires at most T(n− 1, j) violation tests in expectation. Then there
is one violation test within the call to LP(Q,R) itself, and depending on the outcome, we
perform a second recursive call LP(Q \ {h},R ∪ {h}) which requires an expected number
of at most T(n − 1, j − 1) violation tests. The crucial fact is that the probability of
performing a second recursive call is at most j/n.

To see this, fix some S ⊆ Q, |S| 6 d − |R| = j such that x∗(Q,R) = x∗(S,R). Such a
set S exists by Lemma 12.5. This means, we can remove from Q all constraints except
the ones in S, without changing the solution.

If h 6∈ S, we thus have

x∗(Q,R) = x∗(Q \ {h},R),

meaning that we have already found x∗(Q,R) after the first recursive call; in particular,
we will then have ahx

∗ 6 bh, and there is no second recursive call. Only if h ∈ S (and
this happens with probability |S|/n 6 j/n), there can be a second recursive call. �

The following can easily be verified by induction.

Theorem 12.10

T(n, j) 6

j∑

i=0

1

i!
j!n.

Since
∑j

i=0

1

i!
6

∑∞

i=0

1

i!
= e, we have T(n, j) = O(j!n). If d > j is constant, this is O(n).

130

CG 2012 12.4. Runtime Analysis

12.4.2 Basis Computations

To count the basis computations, we proceed as in Lemma 12.9, except that the “1” now
moves to a different place.

Lemma 12.11 Let B(n, j) be the maximum expected number of basis computations
performed in a call to LP(Q,R) with |Q| = n and |R| = d− j. For all j = 0, . . . ,d,

B(0, j) = 1

B(n, j) 6 B(n− 1, j) +
j

n
B(n− 1, j− 1), n > 0.

Interestingly, B(n, j) turns out to be much smaller than T(n, j) which is good since a
basic computation is much more expensive than a violation test. Here is the bound that
we get.

Theorem 12.12

B(n, j) 6 (1 +Hn)
j = O(logj n),

where Hn is the n-th Harmonic number.

Proof. This is also a simple induction, but let’s do this one since it is not entirely
obvious. The statement holds for n = 0 with the convention that H0 = 0. It also holds
for j = 0, since Lemma 12.11 implies B(n, 0) = 1 for all n. For n, j > 0, we inductively
obtain

B(n, j) 6 (1 +Hn−1)
j +

j

n
(1 +Hn−1)

j−1

6

j∑

k=0

(

j

k

)

(1 +Hn−1)
j−k(

1

n
)k

= (1 +Hn−1 +
1

n
)j = (1 +Hn)

j.

The second inequality uses the fact that the terms (1 +Hn−1)
j and j

n
(1 +Hn−1)

j−1 are
the first two terms of the sum in the second line. �
12.4.3 The Overall Bound

Putting together Theorems 12.10 and 12.12 (for j = d, corresponding to the case R = ∅),
we obtain the following

Theorem 12.13 A linear program with n constraints in d variables (d a constant) can
be solved in time O(n).

131

Chapter 12. A randomized Algorithm for Linear Programming CG 2012

Questions

53. What is Helly’s Theorem? Give a precise statement and outline the application
of the theorem for linear programming (Lemma 12.5).

54. Outline an algorithm for solving linear programs ! Sketch the main steps of
the algorithm and the correctness proof! Also explain how one may achieve the
preconditions of feasibility and boundedness.

55. Sketch the analysis of the algorithm! Explain on an intuitive level how ran-
domization helps, and how the recurrence relations for the expected number of
violation tests and basis computations are derived. What is the expected runtime
of the algorithm?

References

[1] H. Edelsbrunner, Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, Heidelberg, West
Germany, 1987.

[2] R. Seidel, Small-dimensional linear programming and convex hulls made easy, Dis-
crete Comput. Geom. 6 (1991), 423–434.

132

	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

