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Schedule of the talk

1. Pigeonhole Principle

2. Resolution refutation proofs

3. Formalization of the Pigeonhole Principle

4. Haken’s lower bound
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The Pigeonhole Principle -
The Erdős-Szekeres theorem

Definition 1. A = (a1, .., an) is a sequence of
n distinct terms.
B = (ai1, .., aik) is a subsequence of k terms of A,
where i1 < .. < ik.

Theorem 1. (Erdős-Szekeres 1935)
If n ≥ sr + 1 then either A has:
an increasing subsequence of s + 1 terms or
a decreasing subsequence of r + 1 terms (or both).

Consequences:
If A is a sequence of n terms, it contains a monotone
subsequence of length

√
n.

Lemma 1. (Dilworth 1950) In any partial order on a
set P of n ≥ rs + 1 elements, there exists a chain of
length s + 1 or an antichain of size r + 1.
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Proof.

ai has score (xi, yi).
xi is longest increasing subsequence ending at ai.
yi is longest decreasing subsequence starting at ai.

(xi, yi) 6= (xj, yj) whenever i 6= j.
Assume i < j, then:
if ai < aj → xi < xj

if ai > aj → yi > yj.

| A |= n ≥ rs + 1
Therefore there is a ai with coordinate (xi, yi) outside
the rs-quare.
This particular ai then has either xi ≥ s+1 or yi ≥ r+1
or both. 2
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Resolution refutation proofs

A Resolution refutation proof for F
is a sequence of clauses R = (C1, .., Ct), where Ct = 2

Ci ∈ F or Ci is derived from two previous clauses
by the resolution rule:
(C ′ ∨ C ′′) can be derived from (C ′ ∨ x) and (C ′′ ∨ x)

The length of the proof = # of clauses in the derivation

The resolution proof is sound:
(C ′ ∨ x) · (C ′′ ∨ x) ≤ (C ′ ∨ C ′′)
Resolution is complete:
every unsatisfiable F has a resolution refutation proof.

But how long is the resolution??
The first lower bound was found by Haken for the set of
clauses PHPn+1

n formalizing the Pigeonhole principle.

ps: general pigeonhole principle: PHPm
n

m− n larger makes the proof shorter..
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Formalizing the Pigeonhole Principle

Recall: PHPn
n−1 states, that n pigeons can not sit

in n− 1 holes.

xi,j ⇔ pigeoni sits in holej

PHPn
n−1 denotes the set of clauses:

(i) xi,1 ∨ xi,2 ∨ .. ∨ xi,n−1 for i = 1..n
(every pigeon sits in at least one hole)

(ii) xi,k ∨ xj,k for 1 ≤ i 6= j ≤ n ; 1 ≤ k ≤ n− 1.
(no two pigeons sit in the same hole)

By the pigeonhole principle, the And of the clauses
in set PHPn

n−1 is unsatisfiable.
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Haken’s lower bound

Theorem 2. (Haken 1985)
For a sufficiently large n, any Resolution proof of
PHPn

n−1 requires length 2Ω(n).
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The Proof

Definition 2. A critical assignment is a
one-to-one mapping of n − 1 pigeons to n − 1 holes,
with one pigeon unset.
Having pigeoni unset defines a i-critical assignm.

Presenting the assignments of the xi,j as a matrix, the
critical assignments would look like this:
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Positive Pseudo-proofs

Replace xi,j in all Clauses C by
Ci,j 
 x1,j ∨ .. ∨ xi−1,j ∨ xi+1,j ∨ .. ∨ xn,j

Definition 3. The resulting sequence of positive
clauses R+ = (C+

1 , .., C+
t ) is a

positive pseudo-proof of PHPn
n−1

Remark:
This is no longer a valid resolution refutation proof!
But with respect to critical assignments, it holds:
C+

1 (α) · C+
2 (α) ≤ C+(α) if

C is derived from C1, C2 in original proof R.

Lemma 2. C+(α) = C(α) ∀ critical α.

Proof. Suppose ∃ C+(α) 6= C(α).
⇒ ∃ xi,j ∈ C s.t. Ci,j(α) 6= xi,j(α).
⇔ (x1,j ∨ ..∨ xi−1,j ∨ xi+1,j ∨ ..∨ xn,j)(α) 6= xi,j(α).
This is impossible, since α is critical, therefore has
exactly one 1 in the columnj. 2
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The length of the pseudo-proof

Remember, that we want to proof Haken’s lower
bound on the length of the resolution proof!

We will show: t ≥ 2
n
32.

For a contradiction, assume t < 2
n
32,

t is the number of clauses in R+.

Definition 4. A long clause has ≥ n2

8 variables.
(more than 1

8 of all possible n(n− 1) variables).
l is the number of long clauses in R.
l ≤ t < 2

n
32.

By the pigeonhole principle, there exists a variable xi,j,
which occurs in at least l/8 of the long clauses.
This special variable is used to eliminate long clauses.
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Elimination of the long clauses

Set the special variable xi,j to 1.
Set all xi,j′, xi′,j for j′ 6= j, i′ 6= i to 0.
Clauses containing xi,j is set to 1 and therefore
disappear from the proof.
The variables set to 0 disappear from all clauses.

We are left with a pseudo-proof of PHPn−1
n−2

with at most l(1− 1/8) long clauses.
Doing this d = 8log(l) times,
we have eliminated all long clauses,
since l(1− 1/8)d < elog(l)−d/8 = 1.

We are left now with a pseudo-proof of PHPm
m−1

with no long clauses. (of length more than n2/8).
But this is a contradiction to the final Lemma, since
2m2/9 = 2(n− 8log(l))2/9 > 2(n− n/4)2/9 = n2/8
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Final Lemma

Lemma 3. Any positive pseudo-proof of PHPm
m−1

must have a clause with at least 2m2/9 variables.

Proof. R′ is a positive pseudo-proof of PHPm
m−1.

Definition 5. ∀ C ∈ R′ , W is a witness of C if
W is a set of clauses from PHPm

m−1,
whose conjunction implies C for critical assignments.
(∀ critical α : α satisfies all w ∈ W → α satisfies C).
The weight of C = # clauses in minimal witness.
∀C ∃ witness W.

Clauses of type (ii) is not part of a minimal witness.
Clauses of type (i) have weight 1.
The weight of the final clause is m.
The weight of a clause is at most the sum of the two
clauses its been derived from.
There exists a clause of weight s, m/3 ≤ s ≤ 2m/3.
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We are going to prove, that
this clause C has at least 2m2/9 variables:
Let
W = {Ci|i ∈ S}, |S| = s,
Ci = xi,1 ∨ xi,2.. ∨ xi,m−1 ; Ci ∈ PHPm

m−1.
∧Ci → C

We’ll show,
C has at least (m− s)s ≥ 2m2/9 variables.

i ∈ S. Choose i-critical α with C(α) = 0.
∃ such α.
j /∈ S. α′ is j-critical .
α′ is obtained from α, with rowi and rowj swapped.
If α maps pigeonj to holek, then α′ maps
pigeoni to holek. All other entries are equal.
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Since j /∈ S, α′ satisfies all Ci ∈ W .
Therefore C(α′) = 1.
We have already seen: C(α) = 0.
But α, α′ differ only in xi,k, xj,k.
This implies xi,k ∈ C.

To run this argument for this i-critical α,
there are (m− s) possibilities to choose the j /∈ S.
C contains the variables xi,k1, xi,k2, .., xi,km−s

Repeating this for all i ∈ S (there are s of them),
shows us, that there has to be (m− s)s distinct vari-
ables in C.

This completes the proof of the final Lemma and
therefore the Haken’s bound. 2
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