Haken's lower bound for resolution proof of pigeonhole principle

Mélanie Raemy

26.4.04

Schedule of the talk

- 1. Pigeonhole Principle
- 2. Resolution refutation proofs
- 3. Formalization of the Pigeonhole Principle
- 4. Haken's lower bound

The Pigeonhole Principle -The Erdős-Szekeres theorem

Definition 1. $A = (a_1, ..., a_n)$ is a sequence of n distinct terms. $B = (a_{i_1}, ..., a_{i_k})$ is a subsequence of k terms of A, where $i_1 < ... < i_k$.

Theorem 1. (Erdős-Szekeres 1935) If $n \ge sr + 1$ then either A has: an increasing subsequence of s + 1 terms or a decreasing subsequence of r + 1 terms (or both).

Consequences:

If A is a sequence of n terms, it contains a monotone subsequence of length \sqrt{n} .

Lemma 1. (Dilworth 1950) In any partial order on a set P of $n \ge rs + 1$ elements, there exists a chain of length s + 1 or an antichain of size r + 1.

Proof.

 a_i has score (x_i, y_i) .

 x_i is longest **increasing** subsequence **ending** at a_i . y_i is longest **decreasing** subsequence **starting** at a_i .

 $(x_i, y_i) \neq (x_j, y_j)$ whenever $i \neq j$. Assume i < j, then: if $a_i < a_j \rightarrow x_i < x_j$ if $a_i > a_j \rightarrow y_i > y_j$.

 $\mid A \mid = n \ge rs + 1$

Therefore there is a a_i with coordinate (x_i, y_i) outside the rs-quare.

This particular a_i then has either $x_i \ge s+1$ or $y_i \ge r+1$ or both. \Box

Resolution refutation proofs

A Resolution refutation proof for F

is a sequence of clauses $R = (C_1, .., C_t)$, where $C_t = \Box$

 $C_i \in F$ or C_i is derived from two previous clauses by the resolution rule: $(C' \vee C'')$ can be derived from $(C' \vee x)$ and $(C'' \vee \overline{x})$

The length of the proof = # of clauses in the derivation

The resolution proof is sound: $(C' \lor x) \cdot (C'' \lor \overline{x}) \leq (C' \lor C'')$ Resolution is complete: every unsatisfiable F has a resolution refutation proof.

But how long is the resolution?? The first lower bound was found by Haken for the set of clauses PHP_n^{n+1} formalizing the Pigeonhole principle.

```
ps: general pigeonhole principle: PHP_n^m
m-n larger makes the proof shorter..
```

Formalizing the Pigeonhole Principle

Recall: PHP_{n-1}^n states, that n pigeons can not sit in n-1 holes.

 $x_{i,j} \Leftrightarrow \mathsf{pigeon}_i \text{ sits in } \mathsf{hole}_j$

 PHP_{n-1}^n denotes the set of clauses:

(i) $x_{i,1} \lor x_{i,2} \lor .. \lor x_{i,n-1}$ for i = 1..n(every pigeon sits in at least one hole)

(ii) $\overline{x}_{i,k} \vee \overline{x}_{j,k}$ for $1 \leq i \neq j \leq n$; $1 \leq k \leq n-1$. (no two pigeons sit in the same hole)

By the pigeonhole principle, the And of the clauses in set PHP_{n-1}^n is **unsatisfiable**.

Haken's lower bound

Theorem 2. (Haken 1985) For a sufficiently large n, any Resolution proof of PHP_{n-1}^n requires length $2^{\Omega(n)}$.

The Proof

Definition 2. A critical assignment is a one-to-one mapping of n - 1 pigeons to n - 1 holes, with one pigeon unset. Having pigeon_i unset defines a **i-critical assignm**.

Presenting the assignments of the $x_{i,j}$ as a matrix, the critical assignments would look like this:

Positive Pseudo-proofs

Replace $\overline{x}_{i,j}$ in all Clauses C by $C_{i,j} \rightleftharpoons x_{1,j} \lor \ldots \lor x_{i-1,j} \lor x_{i+1,j} \lor \ldots \lor x_{n,j}$

Definition 3. The resulting sequence of positive clauses $R^+ = (C_1^+, ..., C_t^+)$ is a positive pseudo-proof of PHP_{n-1}^n

Remark:

This is no longer a valid resolution refutation proof! But with respect to critical assignments, it holds: $C_1^+(\alpha) \cdot C_2^+(\alpha) \leq C^+(\alpha)$ if C is derived from C_1, C_2 in original proof R.

Lemma 2. $C^+(\alpha) = C(\alpha) \forall$ critical α .

Proof. Suppose $\exists C^+(\alpha) \neq C(\alpha)$. $\Rightarrow \exists \overline{x}_{i,j} \in C \text{ s.t. } C_{i,j}(\alpha) \neq \overline{x}_{i,j}(\alpha)$. $\Leftrightarrow (x_{1,j} \lor .. \lor x_{i-1,j} \lor x_{i+1,j} \lor .. \lor x_{n,j})(\alpha) \neq \overline{x}_{i,j}(\alpha)$. This is impossible, since α is critical, therefore has exactly one 1 in the column_j. \Box

The length of the pseudo-proof

Remember, that we want to proof Haken's lower bound on the length of the resolution proof!

We will show: $t \ge 2^{\frac{n}{32}}$. For a contradiction, assume $t < 2^{\frac{n}{32}}$, t is the number of clauses in R^+ .

Definition 4. A long clause has $\geq \frac{n^2}{8}$ variables. (more than $\frac{1}{8}$ of all possible n(n-1) variables). I is the number of long clauses in R. $l \leq t < 2^{\frac{n}{32}}$.

By the pigeonhole principle, there exists a variable $x_{i,j}$, which occurs in at least l/8 of the long clauses. This special variable is used to eliminate long clauses.

Elimination of the long clauses

Set the special variable $x_{i,j}$ to 1. Set all $x_{i,j'}, x_{i',j}$ for $j' \neq j$, $i' \neq i$ to 0. Clauses containing $x_{i,j}$ is set to 1 and therefore disappear from the proof.

The variables set to 0 disappear from all clauses.

We are left with a pseudo-proof of PHP_{n-2}^{n-1} with at most l(1 - 1/8) long clauses. Doing this d = 8log(l) times, we have eliminated all long clauses, since $l(1 - 1/8)^d < e^{log(l) - d/8} = 1$.

We are left now with a pseudo-proof of PHP_{m-1}^m with no long clauses. (of length more than $n^2/8$). But this is a contradiction to the final Lemma, since $2m^2/9 = 2(n - 8log(l))^2/9 > 2(n - n/4)^2/9 = n^2/8$

Final Lemma

Lemma 3. Any positive pseudo-proof of PHP_{m-1}^m must have a clause with at least $2m^2/9$ variables.

Proof. R' is a positive pseudo-proof of PHP_{m-1}^m .

Definition 5. $\forall C \in R'$, W is a witness of C if W is a set of clauses from PHP_{m-1}^m , whose conjunction implies C for critical assignments. (\forall critical α : α satisfies all $w \in W \rightarrow \alpha$ satisfies C). The weight of C = # clauses in minimal witness. $\forall C \exists$ witness W.

Clauses of type (ii) is not part of a minimal witness. Clauses of type (i) have weight 1.

The weight of the final clause is m.

The weight of a clause is at most the sum of the two clauses its been derived from.

There exists a clause of weight s, $m/3 \le s \le 2m/3$.

We are going to prove, that this clause C has at least $2m^2/9$ variables: Let $W = \{C_i | i \in S\}, |S| = s,$ $C_i = x_{i,1} \lor x_{i,2} .. \lor x_{i,m-1}; C_i \in PHP_{m-1}^m.$ $\land C_i \to C$

We'll show, C has at least $(m-s)s \geq 2m^2/9$ variables.

 $i \in S$. Choose i-critical α with $C(\alpha) = 0$. \exists such α . $j \notin S$. α' is j-critical . α' is obtained from α , with row_i and row_j swapped. If α maps pigeon_j to hole_k, then α' maps

pigeon_i to hole_k. All other entries are equal.

Since $j \notin S$, α' satisfies all $C_i \in W$. Therefore $C(\alpha') = 1$. We have already seen: $C(\alpha) = 0$. But α, α' differ only in $x_{i,k}, x_{j,k}$. This implies $x_{i,k} \in C$.

To run this argument for this i-critical α , there are (m-s) possibilities to choose the $j \notin S$. C contains the variables $x_{i,k_1}, x_{i,k_2}, ..., x_{i,k_{m-s}}$

Repeating this for all $i \in S$ (there are s of them), shows us, that there has to be (m - s)s distinct variables in C.

This completes the proof of the final Lemma and therefore the Haken's bound. \Box