Frugality in Path Mechanisms

Sven Kosub

Lehrstuhl für Effiziente Algorithmen
Fakultät für Informatik, Technische Universität München

Seminar Game-Theoretic Analyses of the Internet, IBFI Schloss Dagstuhl,
August 30 through September 3, 2004
Implementation Theory
Environments

- $N = \{1, \ldots, n\}$ set of agents (players)
- $A = \{a_1, \ldots, a_k\}$ set of social alternatives (outcomes)
- T domain of possible states (informations held by agents):
 - (T, p), where $T \subseteq T$ and p density function on T, is called information structure
 - $T = \{t\}$ means complete information
- $v_i : A \times T \to \mathbb{R}$ private preference function of agent i
 - $v_i(a, t) > v_i(b, t)$ means agent i prefers a over b in state t
- $E = (N, A, \{v_i(\cdot, t)\}_{i \in N})$ environment (with state t)
Let \mathcal{E} be a class of environments (for fixed N and A).

Social Choice Rules:

- $F : \mathcal{E} \rightarrow \mathcal{P}(A) \setminus \emptyset$ is an SCR
- $f : \mathcal{E} \rightarrow A$ (total) is an SCF

Write $F(t)$ instead of $F(E)$, where $E \in \mathcal{E}$
Mechanisms

Standard:

- M_i set of messages (strategies) for agent $i \in N$
- $g: M_1 \times \cdots \times M_n \rightarrow A$ (total) outcome function
- $\Gamma = (\{M_i\}_{i \in N}, g)$ is a mechanism

Using payments:

- $p_i : M_1 \times \cdots \times M_m \rightarrow \mathbb{R}$ side payments to agent i
- $u_i(a, t) = v_i(a, t) + p_i(m)$ quasi-linear utility function of agent i
- $\Gamma = (\{M_i\}_{i \in N}, g, \{p_i\}_{i \in N})$ is mechanism (with side payments)
Let \(\Gamma = (\{M_i\}_{i \in N}, g) \) be a mechanism, and let \(E \) be an environment.

\[S(\Gamma, E) \subseteq M_1 \times \cdots \times M_n \] is solution concept for game \((\Gamma, E)\).

Typical solution concepts:

- **dominant strategy profiles**: \(m_i \in M_i \) is dominant for agent \(i \) iff
 \[v_i(g(m_i, m_{-i}), t) \geq v_i(g(m'_i, m_{-i}), t) \]
 for all \(m'_i \in M_i, m_{-i} \in M_{-i} \).

- **Nash equilibria**: strategy profile \(m \) is Nash iff for all \(i \in N \) and for all \(m'_i \in M_i, v_i(g(m_i, m_{-i}), t) \geq v_i(g(m'_i, m_{-i}), t) \).

- **Bayes-Nash equilibria** for incomplete information
 \[\longrightarrow \text{Nash is Bayes-Nash with complete information} \]

Remark: Direct translation to mechanisms with payments.
Implementability

Let \mathcal{E} be a class of environments.

- **SCR F is (fully) S-implementable** \iff there exists $\Gamma = (\{M_i\}_{i \in N}, g)$ such that $g(S(\Gamma, E)) = F(E)$ for every $E \in \mathcal{E}$.

- **SCR F is weakly S-implementable** \iff there exists $\Gamma = (\{M_i\}_{i \in N}, g)$ such that $g(S(\Gamma, E)) \subseteq F(E)$ for every $E \in \mathcal{E}$.

For SCF: Full implementation $=$ weak implementation

- Direct (revelation) mechanism for SCF f:
 $$M_1 \times \cdots \times M_n = \mathcal{T} \text{ and } f = g.$$

Theorem [Gibbard-Satterthwaite]. Suppose $\|A\| \geq 3$ and preference functions admit all strict preference rankings. If an SCF f is implementable by dominant strategies, then f is dictatorial.
Directed mechanism is **truthful** (w.r.t. solution concept S) \[\iff \text{for all } E \in \mathcal{E}, \text{ } v \text{ is in } S. \]

Revelation principle.

Suppose there is an SCR F implementable (w.r.t. Nash equilibriums) by a mechanism $\Gamma = (\{M_i\}_{i \in N}, g, \{p_i\}_{i \in N})$. Then there exists a mechanism $\Gamma' = (\{M_i\}_{i \in N}, g', \{p'_i\}_{i \in N})$ such that for all $E \in \mathcal{E},$

\begin{itemize}
 \item $g'(N(\Gamma', E)) = F(E),$
 \item $p_i(m) = p'_i(m)$ for all $m \in N(\Gamma', E),$ \\
 \item truth-telling $m = v$ is a strategy in $N(\Gamma', E).$
\end{itemize}
Path Mechanisms
Let $G = (V, E)$ be any bi-connected (multi)graph, $s, t \in V$. We have one packet to send over G from s to t.

- $N = E$ (i.e., agents are edges)
- $A = \{(r_0, r_1, \ldots, r_\ell) \mid \ell \geq 1, r_0 = s, r_\ell = t, \{r_j, r_{j-1}\} \in E\}$ (i.e., set of all s-t paths)
- $T = \{(c_1, \ldots, c_n) \mid c_j \in \mathbb{R}_+\}$ (i.e., c_i is edge i’s transit cost per packet)
- edge i’s preference function is
 \[v_i(a, t) = \begin{cases}
 -c_i & \text{if edge } i \text{ belongs to path } a \in A, \\
 0 & \text{otherwise}
 \end{cases} \]
Shortest-Path Implementation (I)

Social Choice Rule:

\[F(t) = \arg \max_{a \in A} \sum_{i \in N} v_i(a, t) \]

VCG implementation:

\[M_i = \mathbb{R}_+ \text{ for all } i \] (direct revelation mechanism)

agents report messages \((m_1, \ldots, m_n)\)

outcome \(g(m) = \) any shortest path in \(G\) with edge weights \(m_j\)

payment \(p_i(m) = d_{G|m_i=\infty}(s, t) - d_{G|m_i=0}(s, t)\)

Remark: VCG is weak implementation
Shortest-Path Implementation (II)

Theorem. VCG truthfully implements F.

Proof: Consider agent i and messages (m_i, m_{-i}) with $m_i = v_i$.

- Suppose $i \in g(m_i, m_{-i})$. Then

 $$u_i = m_i + d_{G|m_i=\infty}(s, t) - d_{G|m_i=0}(s, t)$$
 $$= d_{G|m_i=\infty}(s, t) - d_{G}(s, t) \geq 0.$$

 Consider message $m'_i \neq v_i$.

 - If $i \in g(m'_i, m_{-i})$ then $u_i(g(m'_i, m_{-i})) = u_i(g(m_i, m_{-i}))$.
 - If $i \notin g(m'_i, m_{-i})$ then $u_i(g(m'_i, m_{-i})) = 0$.

- Case $i \notin g(m_i, m_{-i})$ using similar arguments.
Analyzing Total VCG Payments (I)

Overall payments for VCG:

\[C = \sum_{i \in N} p_i(m) = \sum_{i \in g(m)} d_{G|m_i=\infty}(s, t) - d_{G|m_i=0}(s, t) \]

How large can \(C \) be?

Example 1. Let \(G \) consist of two parallel edges \(P \) and \(Q \) between \(s \) and \(t \), \(c(P) \leq c(Q) \).

\(\implies \) VCG chooses \(P \) (with payment equal to second-best alternative).

Thus,

\[C = c(Q) = c(P) + (c(Q) - c(P)) \]
Example 2. Let G consist of two (node-)disjoint paths P and Q of length k between s and t, $c(P) \leq c(Q)$.

\implies VCG chooses P

Total payment:

$$C = k \cdot c(Q) - (k - 1) \cdot c(P)$$

$$= c(P) + k \cdot (c(Q) - c(P))$$

Interpretation.
Even if the alternatives are very close in costs (tight market), the total payment is not:

For fixed $c(P) = L$ and $c(Q) = L(1 + \varepsilon)$, we obtain $C = O(k)$.
Frugality
Frugality

Frugal Path Problem: [Archer, Tardos, 2002]

Are there (truthful) path mechanisms with significantly lower worst-case payments than for VCG?

Fundamental property of truthful mechanisms:

Depending on the message vector m and outcome g, there exists a threshold bid

$$m_i^*(g, m_{-i}) = \inf \{m_i \mid i \in g(m_i, m_{-i})\}$$

\implies For truthfulness, we pay this threshold bid, if $i \in g(m)$.

Consequence. We can only vary over path selection rule g (this means loss in social welfare)
Theorem. [Elkind, Sahai, Steiglitz, 2004]

Any truthful path mechanism Γ (w.r.t. dominant strategies) induces total payments of at least

$$c(P) + \frac{1}{2} \cdot k \cdot |c(Q) - c(P)|$$

in the worst case, where

- $c(P)$ is the cost of the best path w.r.t. to Γ
- $c(Q)$ is the cost of the second-best path w.r.t. to Γ
- k is the number of edges in P
Dominant Strategy Implementation (II)

Proof idea:
Consider graph G having two (node-)disjoint paths P and Q of length k (k even).
Define $\varepsilon = |c(Q) - c(P)|$.
Let $m^{P,i}$ denote the message vector of path P edges, defined as follows

$$
 m^{P,i}_j = \begin{cases}
 -\frac{c(P)}{k} & \text{if } i \neq j \\
 -\frac{c(P)}{k} - \varepsilon & \text{if } i = j
\end{cases}
$$

Message vector $m^{Q,i}$ is defined in the same way.
Fix any truthful path mechanism Γ.

Consider the directed (complete) bipartite graph G_Γ with:

- vertex sets $\{m^{P,1}, \ldots, m^{P,k}\}$ and $\{m^{Q,1}, \ldots, m^{Q,k}\}$
- edge set:

$$(m^{P,i}, m^{Q,j}) \in E(G_\Gamma) \iff Q = g(m^{P,i}, m^{Q,j})$$
$$(m^{Q,i}, m^{P,j}) \in E(G_\Gamma) \iff P = g(m^{P,i}, m^{Q,j})$$

We have $\|V(G_\Gamma)\| = 2k$ and $\|E(G_\Gamma)\| = k^2$.

\implies there exists a vertex with out-degree at least $\ell = \frac{k}{2}$.

W.l.o.g. let $m^{Q,1}$ be such vertex, let $m^{P,i_1}, \ldots, m^{P,i_t}$ be the endpoints of the out-going edges, i.e., $P = g(m^{P,i_j}, m^{Q,1})$.
What are the payments to edges in P?

- each edge in P is paid at least its bid $\frac{c(P)}{k}$
- each edge i_j with $(m^{Q,1}, m^{P,i_j}) \in E(G_T)$ is paid its threshold bid, i.e., $\frac{c(P)}{k} + \varepsilon$.

$$\implies C \geq c(P) + \frac{k}{2} \cdot \varepsilon = c(P) + \frac{k}{2} \cdot |c(Q) - c(P)|.$$
Dominant Strategy Implementation (V)

Remarks:

- Lower bound holds for all bi-connected graphs (by embedding of the bad example)
- There are examples with total payments almost $c(P) + k \cdot (c(Q) - c(P))$ for any truthful mechanism
- Lower bound holds for randomized mechanisms as well
Bayes-Nash Equilibrium Implementation (I)

Scenario with incomplete information.

- $T_i = [0, \omega_i]$ is the set of possible transit costs for edge i
- f_i density function on T_i
- $\mathcal{T} = T_1 \times \cdots \times T_n$ set of possible states
- $f = \prod_{i\in N} f_i$ density function on \mathcal{T}

Note: We omit prior beliefs and conditional probabilities
Bayes-Nash Equilibrium Implementation (II)

Probability that edge \(i \) will be in the winning path:

\[
q_i(m_i) = \int_{M_{-i}} Q_i(m_i, m_{-i}) \cdot f_{-i}(m_{-i}) \, dm_{-i}
\]

Expected payment to edge \(i \):

\[
p_i(m_i) = \int_{M_{-i}} P_i(m_i, m_{-i}) \cdot f_{-i}(m_{-i}) \, dm_{-i}
\]

Expected utility of edge \(i \) with private cost \(-c_i = m_i\):

\[
U_i(c_i) = -c_i \cdot q_i(c_i) + p_i(c_i).
\]
Mechanism is **optimal** iff \(\sum_{i \in N} E_{T_i} p_i(c_i) \) is minimal.

- **Regular** mechanism design problem: \(c_i + \frac{F_i(c_i)}{f_i(c_i)} \) is nondecreasing for all \(i \in N \)

 (Background: Mechanism is truthful iff all \(q_i \)'s are nonincreasing.)

- \(x_i(c_i) = c_i + \frac{F_i(c_i)}{f_i(c_i)} \) is called **virtual cost** of edge \(i \)
Bayes-Nash Equilibrium Implementation (IV)

Theorem. [Elkind, Sahai, Steiglitz, 2004], [Myerson, 1981]

For regular mechanism design problems, the optimal mechanism \((\{M_i\}_{i \in N}, Q, P)\) is given by an allocation rule \(Q\) and a payment rule \(P\) such that for all message vectors \(m\),

- \(Q(m)\) is the path with smallest virtual costs

\[
P_i(m) = Q_i(m) \cdot m_i + \int_{-m_i}^{\omega_i} Q_i(r, m_{-i}) \, dr.
\]

Remark: Payments correspond to threshold bids of an agent
In some cases payments in optimal mechanism are significantly lower than payments in VCG!

Example. Exponential distribution $f(x) = e^{-x}$:

- VCG overpayment per edge $\Omega(\sqrt{n})$
- Optimal mechanism overpayment per edge $O(\log n)$
Summary
What do we have learnt?

- Truthfulness in dominant strategies can cause very high cost (even in tight markets)
- There is no significantly cheaper mechanism in dominant strategies than VCG (even if social welfare is allowed to be suboptimal)
- Optimal mechanisms for Bayes-Nash equilibria can do cheaper in many cases than VCG does
Questions

Some open questions:

- What about frugality for different solution concepts (without guaranteeing truthfulness)?
- What about frugality for repeated games?
- What about frugality for all-pairs shortest path problems? Formulation as combinatorial auctions?
- What about frugality for policy routing (not all packet are allowed to go over each edge, as e.g., in BGP)?