Foundation of Algorithmic Mechanism Design

GI-Dagstuhl-Seminar
“Game-theoretic Analyses of the Internet”
August 30, 2004

Reinder B. Lok
Sascha Wolf

R.Lok@KE.unimaas.nl / S.Wolf@KE.unimaas.nl

Maastricht University
Algorithmic Mechanism Design

- Mechanism design: incentives
- Computer science: computational complexity
- Algorithmic mechanism design: both
- Focus: direct revelation, dominant strategy, centralized computation
- Distributed algorithmic mechanism design: decentralized computation
Outline 1

- Introduction
- Basic definitions and assumptions
- VCG calculation in utilitarian problems
 - Utilitarian problems
 - VCG mechanisms
 - Accelerated computation of VCG-payments
 - Infeasibility of VCG
Outline 2

- Alternative solution techniques for non-utilitarian problems
- Distributed algorithmic mechanism design
- Further issues
Conflicting interests

- Set of agents N
- Private information of agents: $t^i \in T^i$, $i \in N$
- Set of outputs: O
- Agents have preferences over outputs: $v^i(t^i, o)$, $o \in O$
- Social Choice Function: $g(t, o)$

Conflict: o^* optimizes $g() \Leftrightarrow o^i$ optimizes $v^i()$
Definitions: Mechanism

Basic structure:

1. Choose mechanism $m = (o, p)$
2. Agents choose action $a^i \in A^i$, $i \in N$
3. Output and payments are calculated: $o(a)$,
 $$p(a) = (p^1(a), \ldots, p^n(a))$$

Goal: Choose m such that

- Agents have dominant strategies $a = (a^1, \ldots, a^n)$
- $o(a)$ optimizes $g(t, .)$
Definitions: Dominant strategy

\[a = (a^1, \ldots, a^n), \ a \in A = A^1 \times \ldots \times A^n \]
\[a^{-i} = (a^1, \ldots, a^{i-1}, a^{i+1}, \ldots, a^n), \ a^{-i} \in A^{-i} \]

Dominant Strategy
A strategy \(a^i \in A^i \) is called dominant if for all \(\tilde{a}^i \in A^i \) and for all \(a^{-i} \in A^{-i} \) we have

\[v^i(t^i, o(a)) + p^i(a) \geq v^i(t^i, o(\tilde{a}^i, a^{-i})) + p^i(\tilde{a}^i, a^{-i}) \]
Definitions: Revelation principle

Direct revelation mechanism:
Agents have to report their type, i.e. $A^i = T^i$.

Truthful mechanism:
Truth-telling is a dominant strategy.

Revelation principle
Suppose $a \in A$ is a dominant strategy for $m = (o, p)$, and $o(a)$ optimizes $g(t, \cdot)$. Then:
\[\exists \text{ a direct revelation mechanism } \tilde{m} = (\tilde{o}, \tilde{p}) \text{ such that:} \]
- it is truthful (reporting the true types $t \in T$)
- $\tilde{o}(t)$ optimizes $g(t, \cdot)$.
Definitions: EFF IR BB

Desirable properties of mechanisms:

Efficiency $o(a)$ maximizes $g(t, .)$

Individual Rationality $v^i(t^i, o(a)) + p^i(a) \geq 0$

Budget-Balance $\sum_{i \in N} p^i(a) \leq 0$
Definitions: Algorithms

- The output and the payments are determined with algorithms.
- An **algorithm** is a precise and universally understood sequence of instructions that solve any instances of rigorously defined computational problems.
- Algorithmic mechanism design: how *fast* are the algorithms that compute the mechanism.
An algorithm is called *polynomial time computable* if the maximum number of basic calculations is bounded by a polynomial function of the problem size.

Problem class P of polynomial time computable (=tractable=easy) problems

Problem class NP-hard of problems that can not be solved by polynomial algorithms (unless ‘$P = NP$’)

Definitions: Complexity
Overview

- Utilitarian problems and the VCG mechanism
 - Accelerated computation of VCG payments
 - Using approximation algorithms

- Non-utilitarian problems
 - Task scheduling
 - Deterministic and randomized algorithms
 - Verification mechanisms

- Distributed algorithmic mechanism design
 - Examples
Utilitarian Problems

Definition:

- mechanism design optimization problem
- select outcome $o \in O$ maximizing

$$g(o, t) = \sum_{i=1}^{n} v^i(t^i, o)$$
VCG Mechanism

Definition: Let \(w = (w^1, \ldots, w^n) \) denote a vector of declared types. A direct revelation mechanism \(m = (o, p) \) belongs to the VCG family if:

1. output \(o(w) \) maximizes \(g(o, w) = \sum_{i=1}^{n} v^i(w^i, o) \)
2. payments: \(p^i(w) = \sum_{j \neq i} v^j(w^j, o) + h^i(w^{-i}) \), where \(h^i(w^{-i}) \) is arbitrary function

Theorem: (Groves (1973)) A VCG mechanism is truthful.

Example: Vickrey’s second price auction

Computational problem:
1. output determination
2. payment calculation
Accelerated computation: payments

Payment in VCG mechanisms:

\[p^i = (V - h(t^{-i})) - v^i(t^i, o) \]

Choose \(h(t^{-i})) = V^{-i} \) (called Vickrey-payment), then:

- The mechanism is Individual Rational (IR)
- Non-contributing agents have zero utility
- Mechanism calculates \(V \) and \(V^{-i} \), \(i \in N: \)
 \(n + 1 \) optimization problems

For some problems: calculation of two optimization problems is enough.
Accelerated computation: LP

- Marginal product: $V - V^{-i}$, the ‘price’ of an agent
- Known result in Linear Programming: dual variables correspond to prices
- Idea: find an appropriate LP-formulation
Accelerated computation: Example

Assignment problem (Leonard (1983))

- A set of n agents (N) have to be assigned to n positions (M)
- Mechanism:
 - Output: an optimal assignment of agents to positions
 - Payments: Vickrey-payments
Accelerated computation: Example

LP of Assignment problem

\[
\max_x \sum_{i \in N} \sum_{j \in M} v_{ij} \cdot x_{ij}
\]

Subject to:

\[
\sum_{i \in N} x_{ij} \leq 1 \quad \forall j \in M \tag{AP}
\]

\[
\sum_{j \in M} x_{ij} \leq 1 \quad \forall i \in N \tag{1}
\]

\[
x_{ij} \geq 0 \quad \forall i \in N, \forall j \in M
\]
Accelerated computation: Example

- Remark: integral optimal solution.
- Dual variables of constraints (1) correspond to marginal product
- Problem: multiple optimal solutions possible
 Solution: Leonard (1983) showed which solution
Accelerated computation: Example

Dual program of Assignment problem

\[
\min \pi \sum_{i \in N} \pi^1_i + \sum_{j \in M} \pi^2_j
\]

Subject to:

\[
\pi^1_i + \pi^2_j \geq v_{ij} \quad \forall i \in N, \forall j \in M
\]

\[
\pi^1_i, \pi^2_j \geq 0 \quad \forall i \in N, \forall j \in M
\]

\(\pi^1_i \) corresponds to marginal product of agent \(i \)
Accelerated computation: Example

Find the MP-yielding solution:

\[
\min_{\pi} \sum_{i \in N} \pi^1_i
\]

Subject to:

\[
\begin{align*}
\sum_{i \in N} \pi^1_i + \sum_{j \in M} \pi^2_j &= V \\
\pi^1_i + \pi^2_j &\geq v_{ij} \quad \forall i \in N, \forall j \in M \\
\pi^1_i, \pi^2_j &\geq 0 \quad \forall i \in N, \forall j \in M
\end{align*}
\]
Examples: Combinatorial Auction

- Combinatorial Vickrey Auction
- Bidders bid on packages of items
- Bikhchandani et al. (2002) made an assignment based LP-formulation
- Use the same approach as Leonard (1983) for Assignment problem
- Approach is only valid if Agents are substitutes
Agents are substitutes

Let $V(K)$ be the maximal welfare that can be achieved if the set of agents $K \subseteq N$ participates.

$$V(N) - V(K) \geq \sum_{j \in N \setminus K} [V(N) - V(N \setminus j)] \quad \forall K \subseteq N.$$

Meaning: the marginal contribution of a group of agents is more than the sum of the marginal contributions of the individual agents.
Examples: Minimum spanning tree

- Minimum spanning tree in Graph $G = (W, E)$
- Agents each own one or more edges
- Mechanism
 - Agents report the cost of an edge
 - The cheapest spanning tree is chosen
 - Agents pay the Vickrey-payments
- Bikhchandani et al. (2002) made an LP-formulation
- If agents are substitutes: Marginal Products in dual solution
- Theorem: Agents are substitutes if no agent owns a cut
Examples: Shortest path problem

- Shortest path in Graph $G = (W, E)$
- For directed graphs:
 - Bikhchandani et al. (2002) have the Linear programming approach
 - Valid if substitutes property holds
 - Proven for problems that are equivalent with transportation problem
Examples: Shortest path problem

- For undirected graphs: Hershberger and Suri (2001,2002) use approach that makes use of the graph structure:
 - No substitutes property needed
 - Calculates all payment with the same time complexity as the optimization problem
 - Mechanism needs the same time as two optimization problems
Approximate Output Algorithms

What if output determination is infeasible?

- use approximation or heuristic

Example: combinatorial auction

- Rothkopf et al. (1998): \(NP\)-hard problem
- Sandholm (2002): inapproximable within reasonable bound
VCG-based Mechanism

Definition: Let \(w = (w^1, \ldots, w^n) \) denote a vector of declared types. A direct revelation mechanism \(m = (o, p) \) is called a VCG mechanism based on \(o \) if:

- output function \(o(w) \) maps type declarations into allowable outputs
- payments: \(p^i(w) = \sum_{j \neq i} w^j(o) + h^i(w^{-i}) \), where \(h^i(w^{-i}) \) is arbitrary function

Problem: VCG-based mechanisms not necessarily truthful
Example Lehmann et al. (1999)

- Lehmann, O’Callaghan, Shoham (1999)
- combinatorial auction
- set of items S, n bidders
- no externalities: $v^i(s)$, $\forall s \subseteq S$
- $T^i = \mathbb{R}^{2^{|S|}}_+$
- assume single-minded bidders

Definition: Bidder i is called single-minded if and only if there exists a set $s \subseteq S$ and a value $v \in \mathbb{R}_+$ such that his valuation for \tilde{s} is given by v if $s \subseteq \tilde{s}$ and by 0 otherwise.

- type declaration $w^i = (s^i, a^i)$
Greedy Allocation

Greedy allocation:

- **Phase 1:** (runs in time of order $n \log n$)
 - sort type declarations in decreasing order by a norm criterion
 - result: list L

- **Phase 2:** (runs in time linear in n)
 - allocation generated by greedy algorithm
 - first bid in L granted
 - following bids in L examined according to ordering
 - bid granted if not conflicting with previously granted bids
 - otherwise not granted
Norm Criterion

- should satisfy bid-monotonicity

Definition: The norm of a bid increases if changing \(s \) to \(\tilde{s} \) with \(\tilde{s} \subset s \) or if changing \(a \) to \(\tilde{a} \) with \(\tilde{a} > a \).

- use average amount per good \(\frac{a}{|s|} \)

\[
\frac{a}{|s|^\frac{1}{2}} \text{ yields approximation within a factor of } \sqrt{|S|}
\]
Use VCG Payments?

- **Problem:** Greedy allocation and VCG payments do not form a truthful mechanism for single-minded agents.

- **Solution:** non-VCG payment scheme

let \(w_j = (s_j, a_j) \) be \(j \)th bid in \(L \)

define: \(r(j) = \min \{ i | j < i, s_j \cap s_i \neq \emptyset \} \)

\[A \quad B \quad C \quad D \]

\[\forall l, l < i, l \neq j, l \text{ granted } \Rightarrow s_l \cap s_i = \emptyset \]

reads: \(r(j) \) is the first bid (A) following \(j \) (B) that has been denied (C) but would have been granted if \(j \) were not there (D).
Greedy Payment Scheme: The payment associated with the jth bid in L is calculated as follows:

- If w_j is not granted or if there is no bid $r(j)$ then the corresponding agent pays 0.
- If w_j is granted and there exists a $r(j)$ then the corresponding agent pays $|s_j| \frac{a_{r(j)}}{|s_{r(j)}|}$.

Theorem: The mechanism composed of the greedy allocation and payment schemes is truthful for single-minded agents.
Nisan and Ronen (2000)

- combinatorial auction
- no externalities
- free disposal

Definition: For each agent i we have that $v^i(\emptyset) = 0$. Furthermore, take $s, \tilde{s} \subseteq S$. If $s \subseteq \tilde{s}$ then $v^i(s) \leq v^i(\tilde{s})$.
Reasonable Mechanism

Definition: A mechanism for combinatorial auctions is called reasonable if whenever there exists an item $l \in S$ and an agent $i \in N$ s.t.

- For all $s \subset S$, if $l \notin s$ then $v^i(s \cup \{l\}) > v^i(s)$.
- For all agents $j \neq i$, $v^j(s \cup \{l\}) = v^j(s)$.
then the item l is allocated to agent i.

Means: If item desired by only one agent then this agents gets it.

Result: Any reasonable, non-optimal VCG-based mechanism for considered combinatorial auctions is not truthful.
negative result for cost minimization allocation problems (CMAP)

example: minimum spanning tree

degenerate algorithm: solution arbitrarily far from the optimal one

Result: Any non-optimal, non-degenerate VCG-based mechanism for considered CMAPs is not truthful.
so far: agents can perfectly compute best response functions

Strategic knowledge: describes how agent would like to react in any given situation he can think of

partial function $b^i : A^{-i} \rightarrow A^i$

exists at start of game (not gathered during game)

Feasible Best Response:
- if a^{-i} not in domain: any a^i
- if a^{-i} in domain: best a^i agent is aware of

Feasibly Dominant Action: feasible best response against all a^{-i}
Appeals

- **Appeal Function:** An appeal is a function \(l : T \mapsto T \).
- let \(w = (w^1, \ldots, w^n) \) be a type
- agent thinks \(\tilde{w} = (\tilde{w}^1, \ldots, \tilde{w}^n) \) yields better outcome
- send appeal \(l(w) = \tilde{w} \)
- using this construct a new mechanism out of any VCG-based mechanism
Second-chance Mechanism

Definition: Given an output algorithm $o(w)$, the second-chance mechanism looks as follows:

- Each agent reports a type declaration w^i and an appeal function l^i, i.e. $a^i = (w^i, l^i)$.
- The mechanism computes $o(w), o(l^1(w)), \ldots, o(l^n(w))$ and chooses among these outputs the one that yields the best value for the objective function, i.e. highest social welfare. Denote the chosen output by \hat{o}.
- The payments are given by $p^i = \sum_{j \neq i} w^j(\hat{o}) + h^i(w^{-i})$, where $h^i(w^{-i})$ is an arbitrary function of w^{-i}.
Second-chance Mechanism

- action $a^i = (w^i, l^i)$ truthful if $w^i = v^i$
- mechanism feasibly truthful if truth-telling is feasibly dominant for all agents

Result: Take a second-chance mechanism with output algorithm o. For all types $v \in T$, if all agents report truthfully then the output chosen by the mechanism is at least as good as $o(v)$.

Result: If the output algorithm is computationally feasible and agents have declaration based / appeal independent / d-obtainable knowledge then the second-chance mechanism is feasibly truthful.
Definition: Knowledge b^i is called declaration based if it is of the form $b^i : T^{-i} \rightarrow T^i$.

- agent explores only output algorithm
- agent thinks about declaring w^i
- question for possible types w^{-i}: Which own report yields best outcome?
- Let’s say he thinks: if others have types w^{-i} then report \tilde{w}^i better than w^i
- appeal $l^i(w) = (\tilde{w}^i, w^{-i})$
Appeal Independent Knowledge

Definition: Knowledge b^i is called appeal independent if it is of the form $b^i : T^{-i} \rightarrow A^i$.

- agent explores only output algorithm
- question for possible types w^{-i}: Which report vector yields best outcome?
- Let’s say he thinks: if others have types w^{-i} then report $\tilde{w} = (\tilde{w}^1, \ldots, \tilde{w}^n)$ better than $w = (w^i, w^{-i})$
- appeal $l^i(w^i, w^{-i}) = \tilde{w}$
d-obtainable Knowledge

Definition: An agent's knowledge b^i is called d-obtainable if:

- b^i is of degree d.
- Every appeal function that appears, in the domain or range of b^i, is of degree d.
- There are at most n^d appeal functions that appear in the domain or in the range of b^i. Moreover there exists a representative family L^i of no more than n^d $(n-1)$-tuples of appeals s.t. for every tuple ϕ^{-i} that appears in the domain of b^i there exists a $\psi^{-i} \in L^i$ s.t. $\forall w^{-i}, b^i((w^{-i}, \phi^{-i})) = b^i((w^{-i}, \psi^{-i}))$.
Overview

- Utilitarian problems and the VCG mechanism
 - Accelerated computation of VCG payments
 - Using approximation algorithms
- Non-utilitarian problems
 - Task scheduling
 - Deterministic and randomized algorithms
 - Verification mechanisms
- Distributed algorithmic mechanism design
 - Examples
Example: Task scheduling

- k tasks, n agents to do the tasks
- solution: partition x of tasks over the agents

$t^i = (t^i_1, \ldots, t^i_k)$:
- t^i_1 time needed by i to do task j
- $v^i(t^i, x) = - \sum_{j \in x^i} t^i_j$

- Non-utilitarian objective
 - Minimize the make span
 - $g(x, t) = \max_i \sum_{j \in x^i} t^i_j$
MinWork

MinWork mechanism:

- Assign each task to its fastest agent
- Payment: \(p^i(t) = \sum_{j \in x^i(t)} \min_{i' \neq i} t^i_{j} \)

Theorem (Nisan and Ronen (2001))
MinWork is a strongly truthful \(n \)-approximation of the task scheduling problem

MinWork is polynomial time computable
Theorem (Nisan and Ronen (2001))
There does not exist a mechanism that implements a c-approximation for the task scheduling problem for any $c < 2$.

Proof: Construction of counterexample.

Conjecture (Nisan and Ronen (2001))
There does not exist a mechanism that implements a c-approximation for the task scheduling problem for any $c < n$.

(Proven for two special cases.)
Randomization

Randomized mechanism:
A randomized mechanism is a probability distribution over a set of mechanisms that have the same sets of strategies and possible outputs.

- **Objective:** $E_{m \in M} g(o_m(a), t)$
- M is a set of mechanisms
- $o_m()$ is the output function of mechanism $m \in M$
Example: Randomization

Randomly biased MinWork mechanism:

- Two agents: \(n = 2 \)
- Randomization: tasks are randomly assigned to agents (50/50)
- Bias:
 - suppose task \(k \) is assigned to agent \(i \)
 - Reassign if agent \(j \) is \textit{much} faster

\[
 t^i_k > \beta \cdot t^j_k
\]

\[
 \beta = \frac{4}{3}
\]
Example: Randomization

Theorem 4.16 (Nisan and Ronen (2001))
The randomly biased Min Work Mechanism is a
- (polynomial time computable)
- strongly truthful implementation of a
- \(\frac{7}{4} \)-approximation

for task scheduling with two agents.
Proof: Construction of a worst case example.
Verification mechanisms

- Verification of agents’ reports
- Task scheduling:
 - agents report execution times
 - agents actually do the jobs
- Idea: payments based on used time
- Strategy: report + execution (agents can slow down)
Example: verification

Compensation-and-bonus-mechanism

- Compensation: for time actually used
- Bonus: based on own execution and others’ reports
- Optimal allocation rule

Theorem (Nisan and Ronen (2001))
The Compensation-and-Bonus mechanism is a strongly truthful implementation of the task scheduling problem.

- Problem: not polynomial time computable
Example: polynomial verification

Rounding mechanism
- Subclass of task scheduling:
 - Fixed number of agents
 - Bounded type space
- Output: use optimal algorithm for rounded problem
- Payments: rounded version of ‘Compensation and bonus’

Theorem (Nisan and Ronen (2001))
For every fixed $\epsilon > 0$ the rounding mechanism is a polynomial time mechanism with verification that truthfully implements a $1 + \epsilon$ approximation.
Distributed Algorithmic MD

- Distributed computation
- ⇒ need for communication between agents
- ⇒ communication complexity
 - absolute
 - relative
Example: Independent set

- n linearly linked processors (agents)
- active agents **exclusively** need both left and right link
- valuation for being active: v^i

Nisan (1999): two-phase algorithm
- only communication between directly linked agents
- gives optimal solution
- truthful: if only consistent actions
- otherwise: truth-telling is Nash-equilibrium
Example: Multicast cost sharing

- Network with some source node s
- Agents are located on nodes
- Valuation for being connected with s
- edge costs $c(e)$
- Solution: find an optimal tree
- Feigenbaum et al. (2001):
 - Marginal-cost mechanism: VCG, two messages per link
 - Shapley-value mechanism: BB, $\Theta(nm)$ messages per link
Example: Interdomain routing

- Extension of the shortest path problem
- Routing of packages between Autonomous systems
- Feigenbaum et al. (2002): distributed mechanism based on BGP-protocol
 - VCG
 - roughly the same communication complexity as BGP-protocol