How bad is Selfish Routing?

Bounding and Handling Selfishness

Silvia Schwarze, University of Kaiserslautern
Dirk Stegemann, University of Mannheim
Silke Wagner, University of Karlsruhe
Overview

- The Price of Anarchy (Silvia)
- Designing of Networks for Selfish Users (Dirk)
- Stackelberg Routing (Silke)
The Price of Anarchy

Can the negative effect of selfish behavior be bounded?
The Price of Anarchy

- Introduction
- The Model
- Bounding the Price of Anarchy
- Conclusions
The Price of Anarchy

- Introduction
- The Model
- Bounding the Price of Anarchy
- Conclusions
Introduction

Given:
- Network
- OD-pairs
- flow rate
- infinitely many users
- load-dependent latency

Problem: Selfish users act independently, considering own benefit, not overall social benefit
Introduction

- congestion of paths is produced by all users
- selfish user chooses way that minimizes the latency from origin to destination
- system ends up with an equilibrium situation, which is usual not optimal
Introduction

- congestion of paths is produced by all users
- selfish user chooses way that minimizes the latency from origin to destination
- system ends up with an equilibrium situation, which is usual not optimal

Question:
How much does the performance of the network suffer from selfish behavior?
The Price of Anarchy

- Introduction
- The Model
- Bounding The Price of Anarchy
- Conclusions
Preliminaries

- Directed Network $G = (V, E)$
 - parallel edges allowed, no self-loops
- k origin-destination pairs ${s_1, t_1}, \ldots, {s_k, t_k}$ with flow rate r_i
- \mathcal{P}_i: set of $s_i - t_i$ paths, $\mathcal{P} = \bigcup_i \mathcal{P}_i$
- flow: $f : \mathcal{P} \rightarrow \mathbb{R}^+$ for a fixed flow: $f_e = \sum_{P : e \in P} f_P$
- feasible flow: $\sum_{P \in \mathcal{P}_i} f_P = r_i \ \forall \ i$
Preliminaries

- latency functions: $l_e(f_e)$
 Assumption: $l_e(f_e)$ nonnegative, differentiable, nondecreasing
- instance: (G, r, l)
- latency of a path: $l_P(f_P) = \sum_{e \in P} l_e(f_e)$
- Cost of a flow:

$$C(f) = \sum_{P \in \mathcal{P}} l_P(f_P)f_P = \sum_{e \in E} l_e(f_e)f_e$$
Nash Flow

Definition (1)

A feasible flow f is at a Nash equilibrium if

$$l_{P_1}(f) \leq l_{P_2}(\tilde{f}), \forall P_1, P_2 \in \mathcal{P}_i \text{ with } f_{P_1} > 0, i = 1, \ldots, k \text{ and } \forall \delta \in (0, f_{P_1}],$$

where

$$\tilde{f}_P = \begin{cases}
 f_P - \delta & \text{if } P = P_1 \\
 f_P + \delta & \text{if } P = P_2 \\
 f_P & \text{if } P \notin \{P_1, P_2\}
\end{cases}.$$
Proposition (1)

Wardrop’s principle

A flow f feasible for (G, r, l) is at Nash equilibrium if and only if $l_{P_1}(f) \leq l_{P_2}(f)$ $\forall P_1, P_2 \in \mathcal{P}_i$ with $f_{P_1} > 0, i = 1, \ldots, k$.
Observation (1)

\(f \) Nash flow \(\Rightarrow \) all \(s_i - t_i \) paths with positive flow have the same latency \(L_i(f) \)
Definition (2)

- \(l(x) \) is standard if \(l(x)x \) is convex on \([0, \infty)\).

- Class of latency functions \(\mathcal{L} \) is standard if it contains a nonzero function and each \(l(x) \in \mathcal{L} \) is standard.

- Marginal cost function \(l^*(x) \):
 \[
 l^*(x) = \frac{d}{dx}(l(x)x) = l(x) + l'(x)x
 \]
Optimal flow

Optimal flow: flow that minimizes $C(f)$
Optimal flow

- Optimal flow: flow that minimizes $C(f)$

- Formulation as NLP:

 \[
 \begin{align*}
 \text{minimize} \quad & \sum_{e \in E} l_e(f_e) f_e \\
 \text{s.t.} \quad & \sum_{P \in \mathcal{P}_i} f_P = r_i \quad \forall i = 1, \ldots, k \\
 \quad & f_e = \sum_{P \in \mathcal{P}: e \in E} f_P \quad \forall e \in E \\
 \quad & f_P \geq 0 \quad \forall P \in \mathcal{P}
 \end{align*}
 \]

NLP is convex for standard latency functions.
Optimal flow

- Optimal flow: flow that minimizes $C(f)$
- Formulation as NLP:

$$\begin{align*}
&\text{minimize} \quad \sum_{e \in E} l_e(f_e) f_e \\
&s.t. \quad \sum_{P \in \mathcal{P}_i} f_P = r_i \quad \forall i = 1, \ldots, k \\
&\quad f_e = \sum_{P \in \mathcal{P} : e \in E} f_P \quad \forall e \in E \\
&\quad f_P \geq 0 \quad \forall P \in \mathcal{P}
\end{align*}$$

- NLP is convex for standard latency functions.
Lemma (1)

\(f \) is optimal for a convex NLP if and only if for every \(P_1, P_2 \in \mathcal{P}_i \) with \(f_{P_1} > 0 \) holds that

\[
(l_{P_1}(f_{P_1})f_{P_1})' \leq (l_{P_2}(f_{P_2})f_{P_2})',
\]

\(i = 1, \ldots, k \)
Optimal Flow

Conditions of Lemma 1 are similar to conditions for Nash flow:

\[l_{P_1}(f) \leq l_{P_2}(f) \text{ with } f_{P_1} > 0 \]

Corollary (1)

\(l(x) \text{ standard, } l^*(x) = (l(x)x)' \):

\(f \) feasible in \((G, r, l)\) is optimal if and only if \(f \) is a Nash flow for \((G, r, l^*)\).
Observation (2)

Corollary 1

⇒ Existence and Uniqueness of Nash
⇒ For an optimal flow the marginal costs have to be equal
Pigou’s Example

\[r = 1 \quad l_1(x) = 1 \]

\[s \quad \quad l_2(x) = x \quad \quad t \]

\[C(f) = 1 \cdot f_1 + f_2^2 \]
Pigou’s Example

\[r = 1 \quad l_1(x) = 1 \]

\[l_2(x) = x \]

\[C(f) = 1 \cdot f_1 + f_2^2 \]

Nash:

\[f_1 = 0, f_2 = 1 \Rightarrow C(f) = 1 \]
Pigou’s Example

\[r = 1 \quad l_1(x) = 1 \]
\[l_2(x) = x \]

\[C(f) = 1 \cdot f_1 + f_2^2 \]

Nash:
\[f_1 = 0, \quad f_2 = 1 \Rightarrow C(f) = 1 \]

Optimal Flow:
\[f_1^* = f_2^* = \frac{1}{2} \Rightarrow C(f^*) = \frac{3}{4} \]
Pigou’s Example

\[r = 1 \quad l_1(x) = 1 \]
\[s \quad l_2(x) = x \quad t \]
\[C(f) = 1 \cdot f_1 + f_2^2 \]

Nash:
\[f_1 = 0, \quad f_2 = 1 \Rightarrow C(f) = 1 \]

Optimal Flow:
\[f_1^* = f_2^* = \frac{1}{2} \Rightarrow C(f^*) = \frac{3}{4} \]

marginal costs:
\[l_1^*(x) = 1, \quad l_2^*(x) = 2x \]
Pigou’s Example

\[r = 1 \quad l_1(x) = 1 \]

\[l_2(x) = x \]

\[C(f) = 1 \cdot f_1 + f_2^2 \]

Nash:
\[f_1 = 0, \quad f_2 = 1 \Rightarrow C(f) = 1 \]

Optimal Flow:
\[f_1^* = f_2^* = \frac{1}{2} \Rightarrow C(f^*) = \frac{3}{4} \]

marginal costs:
\[l_1^*(x) = 1, \quad l_2^*(x) = 2x \]

Nash for \((G, r, l^*)\):
\[f_1^* = f_2^* = \frac{1}{2} \]

\[\rightarrow \text{Corollary 1} \]
Pigou’s Example

\[r = 1 \]
\[l_1(x) = 1 \]
\[l_2(x) = x \]

\[C(f) = 1 \cdot f_1 + f_2^2 \]

Nash:
\[f_1 = 0, f_2 = 1 \implies C(f) = 1 \]

Optimal Flow:
\[f_1^* = f_2^* = \frac{1}{2} \implies C(f^*) = \frac{3}{4} \]

marginal costs:
\[l_1^*(x) = 1, l_2^*(x) = 2x \]

Nash for \((G, r, l^*)\):
\[f_1^* = f_2^* = \frac{1}{2} \]

→ Corollary 1

Price of Anarchy:
\[\rho(G, r, l) = \frac{C(f)}{C(f^*)} = \frac{4}{3} \]
Pigou’s Example (modified)

\[l_1(x) = 1 \]

\[l_2(x) = 2x \]
Pigou’s Example (modified)

\[l_1(x) = 1 \]

\[l_2(x) = 2x \]

Nash - unchanged -
Pigou’s Example (modified)

\[l_1(x) = 1 \]

Optimal Flow:

\[C(f^*) \xrightarrow{p \to \infty} 0 \]

Price of Anarchy:

\[\rho(G, r, l) \xrightarrow{p \to \infty} \infty \]

Nash - unchanged -
Bad News:

There is no upper bound on the Price of Anarchy for instances with general latency functions.
The Price of Anarchy

- Introduction
- The Model
- Bounding the Price of Anarchy
- Conclusion
Some first bounds

- A Bound on $C(f)$
- Non-optimal bound for „not too steep” functions
- Tight bound for linear latency functions:
 \[
 \rho(G, r, l) \leq \frac{4}{3}
 \]
The Anarchy Value

Define a bound on \(\rho \) valid for classes of latency functions \(\mathcal{L} \)

\[l_1(x) = c \]

\[l_2(x) \]

\(l_2(0) < c, l_2(x) > c \) for some \(x \), \(l_2(x) \) as steep as possible
The Anarchy Value

choose \(r : l_2(r) = c \)
The Anarchy Value

- Nash: routes all flow via \(e_2 \Rightarrow C(f) = l_2(r)r = cr \)

- Optimal flow: routes share \(\lambda \in [0, 1] \) via \(e_2 \):
 \[
 f_2 = \lambda r \Rightarrow C(f^*) = \lambda rl_2(\lambda r) + (1 - \lambda)rc
 \]

- Optimal flow: marginal cost functions have to be equal:
 \[
 l_2^*(\lambda r) = l_1^*((1 - \lambda)r) = c = l_2(r)
 \]

- Set \(\mu = \frac{l_2(\lambda r)}{l_2(r)} = \frac{l_2(\lambda r)}{c} \)

 \[
 \Rightarrow \rho(G', r, l) = \frac{cr}{cr(\lambda \mu + (1 - \lambda))} = [\lambda \mu + (1 - \lambda)]^{-1}
 \]
The Anarchy Value

Definition (3)

Anarchy Value:

\[
\alpha(l) = \sup_{r>0: l(r)>0} \left[\lambda \mu + (1 - \lambda) \right]^{-1}
\]

\[
\alpha(\mathcal{L}) = \sup_{0 \neq l \in \mathcal{L}} \alpha(l)
\]
The Anarchy Value

Theorem 3

L standard class, (G, r, l) with $l \in L$:

$$\rho(G, r, l) \leq \alpha(L)$$
Anarchy Value and Network Topology

Simplest networks provide worst-cases

- Class \mathcal{L} that contains all constant functions
- G_2: Graph with two vertices, two edges
- \mathcal{I}_2: single-commodity instances on G_2
- \mathcal{I}: instances with $l \in \mathcal{L}$

$$
\sup_{(G_2, r, l) \in \mathcal{I}_2} \rho(G_2, r, l) = \alpha(\mathcal{L}) = \sup_{(G, r, l) \in \mathcal{I}} \rho(G, r, l)
$$

\Rightarrow Price of Anarchy is independent of the network topology
Conclusion

- Nash equilibrium f
- Optimal flow f^*
- Compare Nash and optimum by price of anarchy $\rho(G, r, l)$
- no general upper bound on $\rho(G, r, l)$
- anarchy value $\alpha(\mathcal{L})$:
 - upper bound on $\rho(G, r, l)$
 - already tight bound for simple instances
Designing Networks for Selfish Users

Coping with Selfishness I
Overview

1. Introduction to the Network Design Problem
Overview

1. Introduction to the Network Design Problem
2. Possible approaches
Overview

1. Introduction to the Network Design Problem
2. Possible approaches
3. Performance of the approaches
Overview

1. Introduction to the Network Design Problem
2. Possible approaches
3. Performance of the approaches
 - Networks with Linear Latency Functions
Overview

1. Introduction to the Network Design Problem
2. Possible approaches
3. Performance of the approaches
 - Networks with Linear Latency Functions
 - Networks with General Latency Functions
Overview

1. Introduction to the Network Design Problem
2. Possible approaches
3. Performance of the approaches
 - Networks with Linear Latency Functions
 - Networks with General Latency Functions
4. Summary and Extensions
Selfish users want to route traffic from a source s to a destination t via a network.
Selfish users want to route traffic from a source s to a destination t via a network.

Examples:
- packets in a local area network
Selfish users want to route traffic from a source s to a destination t via a network.

Examples:
- packets in a local area network
- cars in a highway system
Selfish users want to route traffic from a source s to a destination t via a network.

Examples:

- packets in a local area network
- cars in a highway system

Recall: At Nash equilibrium, the end-to-end latency is the same on all st-paths.
Introduction

Selfish users want to route traffic from a source s to a destination t via a network.

Examples:
- packets in a local area network
- cars in a highway system

Recall: At Nash equilibrium, the end-to-end latency is the same on all st-paths.

Problem: How to build the network such that the common end-to-end latency is as small as possible?
The Model

We model this setting by

- a graph G consisting of
 - a set V of vertices
 - a set E of candidate edges
- a source-destination pair $\{s, t\}$
The Model

We model this setting by

- a graph G consisting of
 - a set V of vertices
 - a set E of candidate edges
- a source-destination pair $\{s, t\}$
- a flow rate r to be routed from s to t
The Model

We model this setting by

- a graph G consisting of
 - a set V of vertices
 - a set E of candidate edges
- a source-destination pair $\{s, t\}$
- a flow rate r to be routed from s to t
- continuous, non-decreasing latency functions l_e for all edges $e \in E$

Denote the common end-to-end latency at equilibrium by $L(G, r, l)$. How bad is Selfish Routing?
The Model

We model this setting by

- a graph G consisting of
 - a set V of vertices
 - a set E of candidate edges
- a source-destination pair $\{s, t\}$
- a flow rate r to be routed from s to t
- continuous, non-decreasing latency functions l_e for all edges $e \in E$

Denote the common end-to-end latency at equilibrium by $L(G, r, l)$.
The Network Design Problem

Network Design Problem:

Given an instance \((G, r, l)\), find a set of edges \(E' \subseteq E\) such that for the subgraph \(H = (V, E')\), the common end-to-end latency \(L(H, r, l)\) is minimum among all subgraphs.
The Network Design Problem

Possible Approaches:

Approximate the optimal solution in polynomial time

Definition. A\(^\circ\)approximation algorithm is a polynomial-time algorithm that, given an instance\((G; r; l)\), computes a subgraph\(H\) of\(G\) such that

\[L(H; r; l) \leq \alpha L(H^\ast; r; l)\]

where\(H^\ast\) denotes the optimal subgraph.

Look for an approximation algorithm with minimal\(\alpha\).
The Network Design Problem

Possible Approaches:

- Compute the optimal solution → time consuming
The Network Design Problem

Possible Approaches:

- Compute the optimal solution → time consuming
- Approximate the optimal solution in polynomial time
The Network Design Problem

Possible Approaches:

- Compute the optimal solution \rightarrow time consuming
- Approximate the optimal solution in polynomial time

Definition. A γ-approximation algorithm is a polynomial-time algorithm that, given an instance (G, r, l), computes a subgraph H of G such that

$$L(H, r, l) \leq \gamma \cdot L(H^*, r, l)$$

where H^* denotes the optimal subgraph.
The Network Design Problem

Possible Approaches:

- Compute the optimal solution → time consuming
- Approximate the optimal solution in polynomial time

Definition. A γ-approximation algorithm is a polynomial-time algorithm that, given an instance (G, r, l), computes a subgraph H of G such that

$$L(H, r, l) \leq \gamma \cdot L(H^*, r, l)$$

where H^* denotes the optimal subgraph.

→ Look for an approximation algorithm with minimal γ.

How bad is Selfish Routing? – p. 35/66
The Network Design Problem

Trivial algorithm:

Build all candidate edges, i.e. choose $H := G$.
The Network Design Problem

Trivial algorithm:

Build all candidate edges, i.e. choose $H := G$.

How good is this strategy?
Braess’s Paradox - Basic Example

\[l(x) = x \]
\[l(x) = x \]
\[l(x) = 1 \]
\[l(x) = 0 \]
\[l(x) = 1 \]
\[l(x) = x \]

Braess's paradox: Removing (seemingly harmless) edges can decrease the common latency.

The trivial algorithm is not optimal.
Braess’s Paradox - Basic Example

\[L(G, 1, l) = 2 \]
Braess’s Paradox - Basic Example

\[L(G, 1, l) = 2 \]
Braess’s Paradox - Basic Example

\[L(G, 1, l) = 2 \]

\[L(H^*, 1, l) = \frac{3}{2} \]
Braess’s Paradox - Basic Example

Braess’s paradox: Removing (seemingly harmless) edges can decrease the common latency.
Braess’s Paradox: Removing (seemingly harmless) edges can decrease the common latency.

→ The trivial algorithm is not optimal.
Recall: For a Nash flow f and a feasible flow f^* for an instance (G, r, l) with linear latency functions, we have $C(f) \leq \frac{4}{3} \cdot C(f^*)$.

Theorem. The trivial algorithm is a $\frac{4}{3}$-approximation algorithm for instances with linear latency functions.
Linear Latency Functions

Recall: For a Nash flow f and a feasible flow f^* for an instance (G, r, l) with linear latency functions, we have $C(f) \leq \frac{4}{3} \cdot C(f^*)$.

Let H^* be the subgraph of G that minimizes $L(H, r, l)$, and let f^* denote a Nash flow for H^*.
Linear Latency Functions

Recall: For a Nash flow f and a feasible flow f^* for an instance (G, r, l) with linear latency functions, we have $C(f) \leq \frac{4}{3} \cdot C(f^*)$.

Let H^* be the subgraph of G that minimizes $L(H, r, l)$, and let f^* denote a Nash flow for H^*. Since f^* is a feasible flow for G, we get

$$C(f) \leq \frac{4}{3} \cdot C(f^*)$$
Linear Latency Functions

Recall: For a Nash flow f and a feasible flow f^* for an instance (G, r, l) with linear latency functions, we have $C(f) \leq \frac{4}{3} \cdot C(f^*)$.

Let H^* be the subgraph of G that minimizes $L(H, r, l)$, and let f^* denote a Nash flow for H^*. Since f^* is a feasible flow for G, we get

$$C(f) \leq \frac{4}{3} \cdot C(f^*)$$

$$\Leftrightarrow r \cdot L(G, r, l) \leq \frac{4}{3} \cdot r \cdot L(H^*, r, l)$$
Linear Latency Functions

Recall: For a Nash flow f and a feasible flow f^* for an instance (G, r, l) with linear latency functions, we have $C(f) \leq \frac{4}{3} \cdot C(f^*)$.

Let H^* be the subgraph of G that minimizes $L(H, r, l)$, and let f^* denote a Nash flow for H^*. Since f^* is a feasible flow for G, we get

$$C(f) \leq \frac{4}{3} \cdot C(f^*)$$

$$\Leftrightarrow r \cdot L(G, r, l) \leq \frac{4}{3} \cdot r \cdot L(H^*, r, l)$$

$$\Leftrightarrow L(G, r, l) \leq \frac{4}{3} \cdot L(H^*, r, l)$$
Recall: For a Nash flow f and a feasible flow f^* for an instance (G, r, l) with linear latency functions, we have $C(f) \leq \frac{4}{3} \cdot C(f^*)$.

Let H^* be the subgraph of G that minimizes $L(H, r, l)$, and let f^* denote a Nash flow for H^*. Since f^* is a feasible flow for G, we get

$$C(f) \leq \frac{4}{3} \cdot C(f^*)$$

$$\iff r \cdot L(G, r, l) \leq \frac{4}{3} \cdot r \cdot L(H^*, r, l)$$

$$\iff L(G, r, l) \leq \frac{4}{3} \cdot L(H^*, r, l)$$

→ **Theorem.** *The trivial algorithm is a $\frac{4}{3}$-approximation algorithm for instances with linear latency functions.*
Linear Latency Functions

Worst-case for the trivial algorithm: Braess’s paradox basic example

\[L(G, 1, l) = 2 \]

\[L(H^*, 1, l) = \frac{3}{2} \]
Linear Latency Functions

Worst-case for the trivial algorithm: Braess’s paradox basic example

\[L(G, 1, l) = 2 \]

\[L(H^*, 1, l) = \frac{3}{2} \]

\[L(G, 1, l) = 2 = \frac{4}{3} \cdot \frac{3}{2} = \frac{4}{3} \cdot L(H^*, 1, l) \]
Linear Latency Functions

Can we do better than $\gamma = \frac{4}{3}$?

Theorem. For every $\epsilon > 0$, there is no $O\left(\frac{1}{\epsilon}\right)$-approximation algorithm for instances with linear latency functions, unless $P = NP$.

Definition. An instance $(G; r; l)$ with linear latency functions is

- **paradox-free** if $L(G; r; l) \cdot L(H; r; l)$ for all subgraphs H of G
- **paradox-ridden** if $L(G; r; l) = \frac{4}{3} \cdot L(H; r; l)$ for some subgraph H of G.

Corollary. It is NP-hard to distinguish between paradox-free and paradox-ridden instances.
Can we do better than $\gamma = \frac{4}{3}$? No!
Linear Latency Functions

Can we do better than $\gamma = \frac{4}{3}$? No!

Theorem. For every $\epsilon > 0$, there is no $(\frac{4}{3} - \epsilon)$-approximation algorithm for instances with linear latency functions, unless $P = NP$.
Linear Latency Functions

Can we do better than $\gamma = \frac{4}{3}$? No!

Theorem. For every $\epsilon > 0$, there is no $(\frac{4}{3} - \epsilon)$-approximation algorithm for instances with linear latency functions, unless $P = NP$.

Definition. An instance (G, r, l) with linear latency functions is

- **paradox-free** if $L(G, r, l) \leq L(H, r, l)$ for all subgraphs H of G.
Linear Latency Functions

Can we do better than $\gamma = \frac{4}{3}$? No!

Theorem. For every $\epsilon > 0$, there is no $(\frac{4}{3} - \epsilon)$-approximation algorithm for instances with linear latency functions, unless $P = NP$.

Definition. An instance (G, r, l) with linear latency functions is

- **paradox-free** if $L(G, r, l) \leq L(H, r, l)$ for all subgraphs H of G
- **paradox-ridden** if $L(G, r, l) = \frac{4}{3} \cdot L(H, r, l)$ for some subgraph H of G.

How bad is Selfish Routing? – p. 40/66
Linear Latency Functions

Can we do better than $\gamma = \frac{4}{3}$? No!

Theorem. For every $\epsilon > 0$, there is no $(\frac{4}{3} - \epsilon)$-approximation algorithm for instances with linear latency functions, unless $P = NP$.

Definition. An instance (G, r, l) with linear latency functions is

- **paradox-free** if $L(G, r, l) \leq L(H, r, l)$ for all subgraphs H of G
- **paradox-ridden** if $L(G, r, l) = \frac{4}{3} \cdot L(H, r, l)$ for some subgraph H of G.

Corollary. It is NP-hard to distinguish between paradox-free and paradox-ridden instances.
General Latency Functions

Recall: Pigou's example

No upper bound on \(\frac{1}{2} \) for general latency functions.

Bad news: Comparing the cost of a Nash flow and the cost of other feasible flows in \(G \) like in the linear case does not work.

New approach: Directly compare the common latency in \(G \) and the common latency in the subgraphs at equilibrium.

Theorem. The trivial algorithm is an \(b \)-approximation algorithm for instances \((G; r; l) \) with general latency functions where \(G \) has \(n \) vertices.
General Latency Functions

Recall: Pigou’s example

No upper bound on $\rho(G, r, l)$ for general latency functions.

![Diagram of a network with nodes s and t and latency functions $l(x) = 1$ and $l(x) = x^p$.]
Recall: Pigou’s example
No upper bound on $\rho(G, r, l)$ *for general latency functions.*

Bad news: Comparing the cost of a Nash flow and the cost of other feasible flows in G like in the linear case does not work.
Recall: Pigou’s example

No upper bound on $\rho(G, r, l)$ for general latency functions.

Bad news: Comparing the cost of a Nash flow and the cost of other feasible flows in G like in the linear case does not work.

New approach: Directly compare the common latency in G and the common latency in the subgraphs at equilibrium.
Recall: Pigou’s example
No upper bound on $\rho(G, r, l)$ for general latency functions.

Bad news: Comparing the cost of a Nash flow and the cost of other feasible flows in G like in the linear case does not work.

New approach: Directly compare the common latency in G and the common latency in the subgraphs at equilibrium.

\rightarrow **Theorem.** *The trivial algorithm is an $\left\lfloor \frac{n}{2} \right\rfloor$-approximation algorithm for instances (G, r, l) with general latency functions where G has n vertices.*
General Latency Functions

Worst-case for the trivial algorithm: Braess graphs B^k with $n = 2k + 2$ vertices
General Latency Functions

Worst-case for the trivial algorithm: Braess graphs B^k with $n = 2k + 2$ vertices

Example: B^3 with 8 vertices

How bad is Selfish Routing? – p. 42/66
General Latency Functions

Worst-case for the trivial algorithm: Braess graphs B^k with $n = 2k + 2$ vertices

Example: B^3 with 8 vertices

Latency Functions:

Type A: $l(x) = 0$
General Latency Functions

Worst-case for the trivial algorithm: Braess graphs B^k with $n = 2k + 2$ vertices

Example: B^3 with 8 vertices

Latency Functions:
Type A: $l(x) = 0$
Type B: $l(x) = 1$
General Latency Functions

Worst-case for the trivial algorithm: Braess graphs B^k with $n = 2k + 2$ vertices

Example: B^3 with 8 vertices

Latency Functions:

Type A: $l(x) = 0$

Type B: $l(x) = 1$

Type C_i: $l(x) = \begin{cases}
0 & x = \frac{k}{k+1} \\
i & x = 1
\end{cases}$

continuous and non-decreasing elsewhere
General Latency Functions

\[G = B^3 \]
General Latency Functions

\[G = B^3 \]

\[L(G, 3, l) = 4 \]
General Latency Functions

\[G = B^3 \]

\[H^* = B^3 \text{ without } A\text{-edges} \]

\[L(G, 3, l) = 4 \]
General Latency Functions

\[G = B^3 \]

\[H^* = B^3 \text{ without } A\text{-edges} \]

\[L(G, 3, l) = 4 \]

\[L(H^*, 3, l) = 1 \]
General Latency Functions

\[G = B^3 \]

\[H^* = B^3 \text{ without } A\text{-edges} \]

\[L(G, 3, l) = 4 \]

\[L(H^*, 3, l) = 1 \]

\[L(G, 3, l) = 4 = \left\lfloor \frac{8}{2} \right\rfloor \cdot 1 = \left\lfloor \frac{n}{2} \right\rfloor \cdot L(H^*, 3, l) \]
Observation. We removed 3 A-edges from G in order to improve the common latency by a factor of 4.
Observation. We removed 3 A-edges from G in order to improve the common latency by a factor of 4.

In general we have:
General Latency Functions

Observation. We removed 3 A-edges from G in order to improve the common latency by a factor of 4.

In general we have:

Theorem. If H is obtained from G by removing k edges, then

$$L(H, r, l) \geq \frac{1}{k + 1} \cdot L(G, r, l)$$
General Latency Functions

Observation. We removed 3 A-edges from G in order to improve the common latency by a factor of 4.

In general we have:

Theorem. If H is obtained from G by removing k edges, then

$$L(H, r, l) \geq \frac{1}{k + 1} \cdot L(G, r, l)$$

→ In order to improve the common latency by a factor greater than k, we need to remove at least k edges.
General Latency Functions

Can we do better than $\gamma = \left\lfloor \frac{n}{2} \right\rfloor$?
General Latency Functions

Can we do better than $\gamma = \lfloor \frac{n}{2} \rfloor$? No!

Theorem. For every $\epsilon > 0$, there is no ϵ-approximation algorithm for instances with general latency functions, unless $P = NP$.

Definition. An instance $(G; r; l)$ with general latency functions is paradox-free if $L(G; r; l) \leq L(H; r; l)$ for all subgraphs H of G. A paradox-ridden instance is one with $L(G; r; l) = \lfloor \frac{n}{2} \rfloor \cdot L(H; r; l)$ for some subgraph H of G.

Corollary. It is NP-hard to distinguish between paradox-free and paradox-ridden instances.
General Latency Functions

Can we do better than \(\gamma = \lceil \frac{n}{2} \rceil \)? No!

Theorem. For every \(\epsilon > 0 \), there is no \((\lfloor \frac{n}{2} \rfloor - \epsilon) \)-approximation algorithm for instances with general latency functions, unless \(P = NP \).
General Latency Functions

Can we do better than $\gamma = \left\lfloor \frac{n}{2} \right\rfloor$? No!

Theorem. For every $\epsilon > 0$, there is no $(\left\lfloor \frac{n}{2} \right\rfloor - \epsilon)$-approximation algorithm for instances with general latency functions, unless $P = NP$.

Definition. An instance (G, r, l) with general latency functions is

- **paradox-free** if $L(G, r, l) \leq L(H, r, l)$ for all subgraphs H of G.
Can we do better than $\gamma = \lfloor \frac{n}{2} \rfloor$? No!

Theorem. For every $\epsilon > 0$, there is no $(\lfloor \frac{n}{2} \rfloor - \epsilon)$-approximation algorithm for instances with general latency functions, unless $P = NP$.

Definition. An instance (G, r, l) with general latency functions is

- **paradox-free** if $L(G, r, l) \leq L(H, r, l)$ for all subgraphs H of G

- **paradox-ridden** if $L(G, r, l) = \lfloor \frac{n}{2} \rfloor \cdot L(H, r, l)$ for some subgraph H of G.

How bad is Selfish Routing? – p. 45/66
Can we do better than $\gamma = \lfloor \frac{n}{2} \rfloor$? No!

Theorem. For every $\epsilon > 0$, there is no ($\lfloor \frac{n}{2} \rfloor - \epsilon$)-approximation algorithm for instances with general latency functions, unless $P = NP$.

Definition. An instance (G, r, l) with general latency functions is

- **paradox-free** if $L(G, r, l) \leq L(H, r, l)$ for all subgraphs H of G,

- **paradox-ridden** if $L(G, r, l) = \lfloor \frac{n}{2} \rfloor \cdot L(H, r, l)$ for some subgraph H of G.

Corollary. It is NP-hard to distinguish between paradox-free and paradox-ridden instances.
Summary

<table>
<thead>
<tr>
<th>Latency functions</th>
<th>Best γ (for $P \neq NP$)</th>
<th>Trivial Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>$\frac{4}{3}$</td>
<td>$\frac{4}{3}$ Braess’s paradox basic example</td>
</tr>
<tr>
<td>general (continuous and non-decreasing)</td>
<td>$\lfloor \frac{n}{2} \rfloor$</td>
<td>$\lfloor \frac{n}{2} \rfloor$ Braess graphs B^k</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Latency functions</th>
<th>Best γ \hspace{1cm} (for $P \neq NP$)</th>
<th>Trivial Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>$\frac{4}{3}$</td>
<td>$\frac{4}{3}$</td>
</tr>
<tr>
<td>general \hspace{1cm} (continuous and non-decreasing)</td>
<td>$\left\lfloor \frac{n}{2} \right\rfloor$</td>
<td>$\left\lfloor \frac{n}{2} \right\rfloor$</td>
</tr>
</tbody>
</table>

For polynomial latency functions of degree $p \geq 2$, a sharper bound can be proved:
Summary

<table>
<thead>
<tr>
<th>Latency functions</th>
<th>Best γ (for $P \neq NP$)</th>
<th>Trivial Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>$\frac{4}{3}$</td>
<td>$\frac{4}{3}$ Braess’s paradox basic example</td>
</tr>
<tr>
<td>general (continuous and non-decreasing)</td>
<td>$\lfloor \frac{n}{2} \rfloor$</td>
<td>$\lfloor \frac{n}{2} \rfloor$ Braess graphs B^k</td>
</tr>
</tbody>
</table>

For polynomial latency functions of degree $p \geq 2$, a sharper bound can be proved:

- Polynomials of degree p:
 - $c_1 \frac{p}{\ln p}$ for a constant $c_1 > 0$
 - $c_2 \frac{p}{\ln p}$ for a constant $c_2 > 0$

 modified Braess graphs \tilde{B}^k
Summary

<table>
<thead>
<tr>
<th>Latency functions</th>
<th>Best γ (for $P \neq NP$)</th>
<th>Trivial Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ</td>
<td>Worst case example</td>
</tr>
<tr>
<td>linear</td>
<td>$\frac{4}{3}$</td>
<td>$\frac{4}{3}$ Braess’s paradox basic example</td>
</tr>
<tr>
<td>general (continuous and non-decreasing)</td>
<td>$\lceil \frac{n}{2} \rceil$</td>
<td>$\lceil \frac{n}{2} \rceil$ Braess graphs \tilde{B}^k</td>
</tr>
</tbody>
</table>

For polynomial latency functions of degree $p \geq 2$, a sharper bound can be proved:

| polynomials of degree p | $c_1 \frac{p}{\ln p}$ for a constant $c_1 > 0$ | $c_2 \frac{p}{\ln p}$ for a constant $c_2 > 0$ | modified Braess graphs \tilde{B}^k |

→ **Building all candidate edges yields a (nearly) optimal approximation algorithm.**
Stackelberg Strategies

Coping with Selfishness II
In many systems: mix of

- "selfishly controlled" traffic
- "centrally controlled" traffic

~→ How should centrally controlled traffic be routed to induce "good" behaviour from the noncooperative users?
Stackelberg game: the model

- one player = leader
 - strategy for routing the centrally controlled flow (remains fixed)
 - goal: minimizing total latency

- other players = followers
 - choose personal strategy w.r.t. the leader’s strategy
 - goal: minimizing personal latency
Stackelberg game: the model

Definition: Stackelberg instance

Instance \((G, r, \ell, \beta)\) where

- \(G = (V, E)\) network of parallel links (one \(s-t\)-pair)
- \(r\) rate of flow
- \(\ell = \{\ell_e | e \in E\}\) set of latency functions
- \(\beta \in [0, 1]\) fraction of centrally controlled flow
Stackelberg game: the model

Definitions

- **Stackelberg strategy**
 Centrally controlled flow f, feasible for (G, r, ℓ).

- **Induced equilibrium**
 Flow g of selfish users.
 (is a Nash flow w.r.t. $\ell_e(x) = \ell_e(f_e + x) \leadsto$ all selfish users experience the same latency)

- **Induced flow** $= f + g$
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

$\ell_1(x) = 1$

$\ell_2(x) = x$
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

$\ell_1(x) = 1$

$\ell_2(x) = x$

strategy f
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

$\ell_1(x) = 1$

$\ell_2(x) = x$

strategy f

induced equilibrium g
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

\[\ell_1(x) = 1 \]
\[\ell_2(x) = x \]

strategy f
induced equilibrium g
induced flow $f + g$
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

$\ell_1(x) = 1$
$\ell_2(x) = x$

strategy f
induced equilibrium g
induced flow $f + g$

variation of Pigou

$\ell_1(x) = 1$
$\ell_2(x) = 2x$
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

\[
\begin{align*}
\ell_1(x) &= 1 \\
\ell_2(x) &= x
\end{align*}
\]

strategy f
induced equilibrium g
induced flow $f + g$

variation of Pigou

\[
\begin{align*}
\ell_1(x) &= 1 \\
\ell_2(x) &= 2x
\end{align*}
\]

flow induced by any strategy
Two examples for $\beta = \frac{1}{2}$

Pigou’s example

\[\ell_1(x) = 1 \]
\[\ell_2(x) = x \]

strategy f
induced equilibrium g
induced flow $f + g$

variation of Pigou

\[\ell_1(x) = 1 \]
\[\ell_2(x) = 2x \]

optimal flow

flow induced by any strategy
Two examples for $\beta = \frac{1}{2}$

Pigou's example

\[\ell_1(x) = 1 \]

\[\ell_2(x) = x \]

strategy f

induced equilibrium g

induced flow $f + g$

variation of Pigou

\[\ell_1(x) = 1 \]

\[\ell_2(x) = 2x \]

optimal flow

flow induced by any strategy

\Rightarrow not optimal

How bad is Selfish Routing? – p. 52/66
Basic questions

- What’s a good / the best strategy?
- Can we compute it?
- How (in)efficient is the induced equilibrium?
The Aloof Strategy

To get a strategy \(f \) for instance \((G, r, \ell, \beta) \)

- compute the minimum latency flow \(f^* \) for \((G, \beta \cdot r, \ell) \)
- put \(f = f^* \)
The Aloof Strategy

performs poorly: example for $\beta = \frac{1}{2}$

\[
\ell_1(x) = 1
\]

\[
\ell_2(x) = x
\]
The Aloof Strategy

performs poorly: example for $\beta = \frac{1}{2}$

\[\ell_1(x) = 1 \quad \text{optimal flow for } (G, \frac{1}{2}, \ell) = \text{strategy } f \n\]

\[\ell_2(x) = x \]
The Aloof Strategy

performs poorly: example for $\beta = \frac{1}{2}$

\[\ell_1(x) = 1 \]

optimal flow for \((G, \frac{1}{2}, \ell) = \text{strategy } f\)

\[\ell_2(x) = x \]

induced flow for \((G, 1, \ell) \leadsto \text{cost: } 1\)

How bad is Selfish Routing? – p. 55/66
The Aloof Strategy

performs poorly: example for $\beta = \frac{1}{2}$

optimal flow for $(G, \frac{1}{2}, \ell) = \text{strategy } f$
induced flow for $(G, 1, \ell) \rightsquigarrow \text{cost: } 1$
optimal flow for $(G, 1, \ell) \rightsquigarrow \text{cost: } \frac{3}{4}$
The Aloof Strategy

performs poorly: example for $\beta = \frac{1}{2}$

optimal flow for $(G, 1, \ell) = \text{strategy } f$

induced flow for $(G, 1, \ell) \leadsto \text{cost: } 1$

optimal flow for $(G, 1, \ell) \leadsto \text{cost: } \frac{3}{4}$

\leadsto arbitrarily bad for nonlinear latency functions (e.g. for $\ell_2(x) = x^p$, $p \in \mathbb{N}^+$)
To get a strategy f for instance $\langle G, r, \ell, \beta \rangle$

- compute a minimum latency flow f^* for $\langle G, r, \ell \rangle$
- put $f = \beta \cdot f^*$
The Scale Strategy

performs poorly: example for $\beta = \frac{1}{2}$

\[\ell_1(x) = 1 \]

\[\ell_2(x) = \frac{3}{2}x \]
The Scale Strategy performs poorly: example for $\beta = \frac{1}{2}$

optimal flow for $(G, 1, \ell) \leadsto$ cost: $\frac{5}{6}$
The Scale Strategy

performs poorly: example for $\beta = \frac{1}{2}$

optimal flow for $(G, 1, \ell)$ \leadsto cost: $\frac{5}{6}$

strategy f
The Scale Strategy

performs poorly: example for $\beta = \frac{1}{2}$

$\ell_1(x) = 1$

optimal flow for $(G, 1, \ell)$ \leadsto cost: $\frac{5}{6}$

strategy f

induced flow for $(G, 1, \ell)$ \leadsto cost: 1
The Scale Strategy

performs poorly: example for $\beta = \frac{1}{2}$

$$\ell_1(x) = 1$$

optimal flow for $(G, 1, \ell) \rightsquigarrow \text{cost: } \frac{5}{6}$

strategy f

induced flow for $(G, 1, \ell) \rightsquigarrow \text{cost: } 1$

better strategy: route all centrally controlled flow on the upper edge

\rightsquigarrow induced flow $(\frac{1}{2}, \frac{1}{2})$ has cost $\frac{7}{8}$
Insights

What have we learned?

avoid edges that selfish users will use anyway
use edges that are not very attractive to selfish users, i.e. edges with high latency
Insights

What have we learned?

- avoid edges that selfish users will use anyway
Insights

What have we learned?

- avoid edges that selfish users will use anyway
- use edges that are not very attractive to selfish users, i.e. edges with high latency
Largest Latency First (LLF) Strategy

For instance \((G, r, \ell, \beta)\)

1. compute a min latency flow \(f^*\) for \((G, r, \ell)\)
2. label the edges of \(G\) from 1 to \(m = |E|\) so that
 \[\ell_1(f_1^*) \leq \cdots \leq \ell_m(f_m^*)\]
3. let \(k \leq m\) be minimal with \(\sum_{i=k+1}^{m} f_i^* \leq \beta r\)
4. put
 \[f_i = \begin{cases}
 f_i^* & i > k \\
 \beta r - \sum_{i=k+1}^{m} f_i^* & i = k \\
 0 & i < k
 \end{cases}\]
Largest Latency First (LLF) Strategy

The LLF strategy

- can be computed in polynomial time
- always induces a flow with near-optimal total latency
Theorem

In a network of parallel links and arbitrary (nondecreasing, differentiable) latency functions the LLF strategy always induces a flow with cost no more than $\frac{1}{\beta}$ times the cost of a minimum latency flow.
Theorem

In a network of parallel links and arbitrary (nondecreasing, differentiable) latency functions the LLF strategy always induces a flow with cost no more than $\frac{1}{\beta}$ times the cost of a minimum latency flow.

\leadsto price of anarchy can now be bounded for general latency functions!
Performance guarantee II

Theorem

In a network of parallel links and linear (nondecreasing, differentiable) latency functions the LLF strategy always induces a flow with cost no more than \(\frac{4}{3+\beta} \) times the cost of a minimum latency flow.
Performance guarantee

best possible worst case guarantee:

\[
\ell_1(x) = 1
\]

\[
\ell_2(x) = \left(\frac{x}{1-\beta}\right)^p \quad (p \in \mathbb{Z}^+)
\]
Performance guarantee

best possible worst case guarantee:

\[
\ell_1(x) = 1
\]

\[
\ell_2(x) = \left(\frac{x}{1-\beta} \right)^p \quad (p \in \mathbb{Z}^+)
\]

cost of induced flow (any strategy): 1
Performance guarantee

best possible worst case guarantee:

\[\beta + \delta_p \quad \ell_1(x) = 1 \]

\[s \quad \beta \quad t \]

\[1 - \beta - \delta_p \quad 1 - \beta \quad \ell_2(x) = \left(\frac{x}{1-\beta}\right)^p \quad (p \in \mathbb{Z}^+) \]

cost of induced flow (any strategy): 1

cost of optimal flow: \((\beta + \delta_p) + (1 - \beta - \delta_p) \left(\frac{1-\beta-\delta_p}{1-\beta}\right)^p \quad p \to \infty \quad \delta_p \to 0 \quad \beta\)
Optimal strategy

Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)?
Optimal strategy

Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)? Unfortunately not:

\[\ell_1(x) = x \]
\[\ell_2(x) = 1 + x \]
\[\ell_3(x) = 1 + x \]
Optimal strategy

Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)? Unfortunately not:

\[\ell_1(x) = x \]
\[\ell_2(x) = 1 + x \]
\[\ell_3(x) = 1 + x \]
Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)? Unfortunately not:

\[\ell_1(x) = x \]
\[\ell_2(x) = 1 + x \]
\[\ell_3(x) = 1 + x \]
Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)?

Unfortunately not:

\[\ell_1(x) = x \]
\[\ell_2(x) = 1 + x \]
\[\ell_3(x) = 1 + x \]

Cost: \(\frac{8}{9} \)
Optimal strategy

Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)?
Unfortunately not:

\[\ell_1(x) = x \]
\[\ell_2(x) = 1 + x \]
\[\ell_3(x) = 1 + x \]

LLF strategy (induced flow)
better strategy

optimal flow

cost: \(\frac{8}{9} \)
Is the LLF strategy optimal (i.e. always inducing a flow with minimal cost within all flows induced by any strategy)? Unfortunately not:

\[
\begin{align*}
\ell_1(x) &= x \\
\ell_2(x) &= 1 + x \\
\ell_3(x) &= 1 + x
\end{align*}
\]

Optimal flow
LLF strategy (induced flow)
better strategy (induced flow)

cost: $\frac{8}{9}$

How bad is Selfish Routing? – p. 64/66
Optimal strategy

Can we compute the optimal Stackelberg strategy in polynomial time?
Can we compute the optimal Stackelberg strategy in polynomial time?

NO!

Theorem

Computing the optimal Stackelberg strategy is \mathcal{NP}-hard, even for networks of parallel links and with linear latency functions.
Thank you!

schwarze@mathematik.uni-kl.de

dirk.stegemann@uni-mannheim.de

swagner@ira.uka.de