RECAP — How to find a maximum matching?

First characterize maximum matchings

A maximal matching cannot be enlarged by adding another edge.
A maximum matching of G is one of maximum size.

Example. Maximum \neq Maximal

Let M be a matching. A path that alternates between edges in M and edges not in M is called an M-alternating path.
An M-alternating path whose endpoints are unsaturated by M is called an M-augmenting path.

Theorem (Berge, 1957) A matching M is a maximum matching of graph G iff G has no M-augmenting path.
RECAP — Combinatorial approach

Augmenting Path Algorithm

Input graph G on n vertices
Output matching $M \subseteq E(G)$ of maximum size

$M := \emptyset$

WHILE there exists an M-augmenting path P

- augment M along P

output M

Problem: How to find an augmenting path fast?

Easier in bipartite graphs:

Naive approach: $O(mn)$
Hopcroft-Karp: $O(m\sqrt{n})$

Tougher for general graphs:

Edmonds’ Blossom Algorithm* (1965): $O(n^2 m)$

*In his paper “Paths, Trees, and Flowers” Edmonds defined the notion of polynomial time algorithm
History of maximum matching algorithms

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Order of Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edmonds</td>
<td>1965</td>
<td>n^2m</td>
</tr>
<tr>
<td>Even-Kariv</td>
<td>1975</td>
<td>$\min{\sqrt{nm}\log n, n^{2.5}}$</td>
</tr>
<tr>
<td>Micali-Vazirani</td>
<td>1980</td>
<td>\sqrt{nm}</td>
</tr>
<tr>
<td>Rabin-Vazirani</td>
<td>1989</td>
<td>$n^{\omega+1}$</td>
</tr>
<tr>
<td>Mucha-Sankowski</td>
<td>2004</td>
<td>n^ω</td>
</tr>
<tr>
<td>Harvey</td>
<td>2006</td>
<td>n^ω</td>
</tr>
</tbody>
</table>

$\omega := \inf\{c : \text{two } n \times n \text{ matrices can be multiplied in time } O(n^c)\}$

“time” is actually the number of arithmetic operations
The determinant, the inverse, or a submatrix of maximum rank of an $n \times n$ matrix can also be found in time $O(n^\omega)$.

Clear: $\omega \geq 2$

Naive algorithm: $\omega \leq 3$

Theorem (Coppersmith-Winograd, 1990) $\omega < 2.38$
First question: **Is there a perfect matching in** G?

First let G be **bipartite** with parts $U = \{u_1, \ldots, u_n\}$, $W = \{w_1, \ldots, w_n\}$.

Let B be the southwest $n \times n$ submatrix of the adjacency matrix of G:

$$b_{ij} := \begin{cases} 1 & \text{if } u_i w_j \in E(G) \\ 0 & \text{otherwise} \end{cases}$$

The **permanent** of B is

$$\text{per}B := \sum_{\pi \in S_n} b_{1,\pi(1)} b_{2,\pi(2)} \cdots b_{n,\pi(n)}$$

Claim M has a perfect matching iff $\text{per}(B) \neq 0$

Problem: permanent is hard to compute
Determinant is similar and easy to compute

\[\det B := \sum_{\pi \in S_n} (-1)^{\text{sgn}(\pi)} b_{1, \pi(1)} b_{2, \pi(2)} \cdots b_{n, \pi(n)} \]

Problem: \(\det(B) \) could be 0 even if \(\text{per}(B) \neq 0 \).

Solution: Introduce one variable \(x_{ij} \) for each edge \(u_i w_j \in G, u_i \in U, w_j \in W \) and define a matrix \(A \):

\[a_{ij} := \begin{cases} x_{ij} & \text{if } u_i w_j \in E(G) \\ 0 & \text{otherwise} \end{cases} \]

Claim \(M \) has a perfect matching iff \(\det(A) \neq 0 \)

Problem: Exponentially many terms.

Solution: Substitution and then determinant calculation takes only \(O(n^\omega) \).

How to ensure that “nonzero-ness” is preserved?
Choose a prime \(p, 2n \leq p \leq 4n \), work over \(\mathbb{F}_p \).
Substitute randomly (Schwartz-Zippel Lemma)

Claim \(\det(A) \neq 0 \Rightarrow \text{Prob}[\det(A) \neq 0] > \frac{1}{2} \)
RECAP — Schwartz-Zippel Lemma

Let \(q(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n] \) be nonzero polynomial of degree \(d \geq 0 \), and let \(S \subseteq \mathbb{F} \) be a finite set. Then the number of \(n \)-tuples \((r_1, \ldots, r_n) \in S^n \) with \(q(r_1, \ldots, r_n) = 0 \) is at most \(d |S|^{n-1} \). In particular, if \(r_1, \ldots, r_n \in S \) is chosen independently and uniformly at random, then

\[
\Pr[q(r_1, \ldots, r_n) = 0] \leq \frac{d}{|S|}
\]

General remark: Correctness proofs proceed in \(\mathbb{Z}(x_1, \ldots, x_n) \) arithmetic.

Randomization proofs, i.e., that the probability of an incorrect answer is small, depends on selecting a large enough prime \(p \) to substitute randomly over \(\mathbb{F}_p \).

If the algorithm performs \(t \) zero-tests of polynomials of degree at most \(d \), then selecting \(p \geq 2td \) gives that the success probability is at least \(\frac{1}{2} \).

In the previous perfect matching test algorithm for bipartite graphs there was \(t = 1 \) zero-test of a polynomial of degree \(n \) (the determinant).
Let now $G = (V, E)$ be an arbitrary graph.

Define the Tutte matrix $T(G) = T$ of G

$$t_{ij} := \begin{cases} x_{ij} & \text{if } v_i v_j \in E(G) \text{ snd } i < j \\ -x_{ij} & \text{if } v_i v_j \in E(G) \text{ snd } i > j \\ 0 & \text{otherwise} \end{cases}$$

Theorem (Tutte)

G has a perfect matching iff $\det(T) \neq 0$

Then again: random substitution and evaluation of the determinant gives a randomized algorithm to check whether G has a perfect matching.
How to find a perfect matching?

A first try

Input graph G containing a perfect matching
Output perfect matching $M \subseteq E(G)$

$E(G) = \{e_1, \ldots, e_m\}$
$M := G, i := 0$
WHILE $i < m$ DO $i := i + 1$
\hspace{1cm} IF $\det T(M - e_i) \neq 0$ THEN $M := M - e_i$
output M

Running time: $O(mn^\omega)$
Rabin-Vazirani

Edge $e \in G$ is allowed if it is contained in a perfect matching.

Let $N = T^{-1}$ be the inverse Tutte matrix.

Lemma (Rabin-Vazirani)
Assume that G has a perfect matching.
Then edge $e = ij \in E(G)$ is allowed $\iff N_{i,j} \neq 0$

Proof. $e = ij$ is allowed $\iff G - \{i, j\}$ has a perfect matching $\iff \det T_{\text{del}}(\{i,j\},\{i,j\}) \neq 0$ By Fact 1 and Fact 0, we have

$$\det T_{\text{del}}(\{i,j\},\{i,j\}) = \pm \det T \cdot \det N_{\{i,j\},\{i,j\}}$$
$$= \pm \det T \cdot (N_{i,j})^2$$
Definitions and Facts from Linear Algebra

$n \times n$ matrix $M; S \subseteq [n]$

submatrix containing rows and columns of S: $M[S]$

ith column (row) denoted by $M_{*,i}$ ($M_{i,*}$)

when column set S and row set T is deleted: $M_{\text{del}(S,T)}$

M is non-singular if $\det M \neq 0$.

The inverse M^{-1} of M is given by

$$(M^{-1})_{i,j} = (-1)^{i+j} \cdot \frac{\det M_{\text{del}(j,i)}}{\det M}.$$

M is skew-symmetric if $M = -M^T$.

Remark M is skew-symmetric \Rightarrow M is square, all diagonal entries are 0.

Fact 0. M is skew-symmetric, non-singular

$\Rightarrow M^{-1}$ is skew-symmetric
One more fact from Linear Algebra

Let $M = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix}$, where Z is square

If M is non-singular, let $M^{-1} = \begin{pmatrix} \hat{W} & \hat{X} \\ \hat{Y} & \hat{Z} \end{pmatrix}$

Fact 1. (Jacobi’s Determinant Identity)

$$\det Z = \pm \det M \cdot \det \hat{W}.$$

Proof of Fact 1.

$$\begin{pmatrix} W & X \\ Y & Z \end{pmatrix} \cdot \begin{pmatrix} \hat{W} & 0 \\ \hat{Y} & I \end{pmatrix} = \begin{pmatrix} I & X \\ 0 & Z \end{pmatrix}$$
The Algorithm

Rabin-Vazirani Algorithm

Input graph G containing a perfect matching

Output perfect matching $M \subseteq E(G)$

$H := G$, $M := \emptyset$

WHILE $|M| < n/2$ DO
 compute H^{-1}
 find $ij \in E(H)$ with $(H^{-1})_{i,j} \neq 0$
 $M := M \cup \{ij\}$
 $H := H - \{i, j\}$

output M

Running time: $O(n^{\omega+1})$

Question: Do we really have to calculate the inverse always from scratch?
Rank-1 update

\(M \) \(n \times n \) matrix
\(u, v \in \mathbb{F}^n \) (column) vectors
\(c \in \mathbb{F} \) scalar

Then \(\tilde{M} = M + cuv^T \) is a rank-1 update of \(M \).

Fact 3. \(\hat{W} \) is non-singular \(\Leftrightarrow \hat{Z} \) is nonsingular. Also,

\[
W^{-1} = \hat{W} - \hat{X} \hat{Z}^{-1} \hat{Y}
\]

Proof. First part follows from Fact 1.

\[
\begin{pmatrix}
(W - XZ^{-1}Y)^{-1} & 0 \\
Z^{-1}Y(W - XZ^{-1}Y)^{-1} & I
\end{pmatrix} =
\begin{pmatrix}
\hat{W} & \hat{X} \\
\hat{Y} & \hat{Z}
\end{pmatrix} \cdot
\begin{pmatrix}
I & 0 \\
0 & Z
\end{pmatrix} \cdot
\begin{pmatrix}
I & X \\
0 & I
\end{pmatrix}
\]

\[
=
\begin{pmatrix}
\hat{W} & \hat{WX} + \hat{XZ} \\
\hat{Y} & \hat{YX} + \hat{ZZ}
\end{pmatrix}
\]
Speed-up via rank-1 updates

Rabin-Vazirani Algorithm with rank 1-updates
(Mucha-Sankowski)

Input graph G containing a perfect matching
Output perfect matching $M \subseteq E(G)$

$M := \emptyset$

compute $N = T^{-1}$

WHILE $|M| < n/2$ DO

find $ij \in E(G)$ with $N_{i,j} \neq 0$

$M := M \cup \{ij\}$

$N := N - \frac{1}{N_{i,j}} N_{*,j} N_{i,*} + \frac{1}{N_{i,j}} N_{*,i} N_{j,*}$

output M

Correctness: After an update of N:
1. in the ith and jth columns all entries are 0.
2. By Fact 3, $N[V \setminus V(M)]$ is the inverse of the Tutte matrix of $G - V(M)$.

Running time: $O(n^3)$
Harvey’s divide-and-conquer implementation

\textbf{FindPerfectMatching}(G)
\textbf{Input} graph \(G \) containing a perfect matching
\textbf{Output} perfect matching \(M \subseteq E(G) \)

compute \(N = T^{-1} \)
\textbf{output} \text{BuildMatching}(V(G), N)

\textbf{BuildMatching}(S, N, \alpha)
\textbf{Input} subset \(S \subseteq V(G) \); integer \(\alpha \);
\hspace{1cm} matrix \(N \) with \(N[S] \) up-to-date;
\textbf{Output} perfect matching \(M \subseteq E(G) \)

\(M := \emptyset \)
IF \(|S| > 2 \) THEN
\hspace{1cm} partition \(S = S_1 \cup \cdots \cup S_\alpha, |S_1| = \cdots = |S_\alpha| \)
\hspace{1cm} FOR each \(1 \leq a < b \leq \alpha \) DO
\hspace{2cm} \text{BuildMatching}(S_a \cup S_b, N, \alpha)
\hspace{2cm} Update \(N \)
ELSE \((|S| = 2)\)
\hspace{1cm} IF \(T_{i,j} \neq 0 \) and \(N_{i,j} \neq 0 \) THEN
\hspace{2cm} \(M := M \cup \{ij\} \)
\hspace{2cm} Update \(N \)
\hspace{1cm} output \(M \)
Correctness and Recursion

Correctness: implementation of Rabin-Vazirani; every edge is considered at least once

$h(s)$: running time of \texttt{BuildMatching} for $|S| = s$

Assuming that the “Update” lines can be performed in time $O(s^\omega)$ for a subproblem of size $|S| = s$, we have the recursion

$$h(s) \leq \binom{\alpha}{2} h\left(\frac{s}{\alpha/2}\right) + O\left(\binom{\alpha}{2} s^\omega\right)$$

$$h(n) = O(n^\omega) \text{ provided } \log_{\alpha/2}\left(\frac{\alpha}{2}\right) < \omega$$

For $\omega = 2.38$, $\alpha = 13$ will do
Efficient updates

A little bit technical...

Idea: At the end of each recursive subproblem do not update the full matrix, only the part belonging to the parent subproblem.

It turns out: for a subproblem of size s, this can be done with a constant number of matrix multiplications and inversions of $O(s) \times O(s)$ matrices.

Remark: How to generalize all these algorithms finding a perfect matching to find a maximum matching? First, in time $O(n^\omega)$ find a maximum rank submatrix of T. For a skew-symmetric matrix this could be chosen to be a principal submatrix. Then find a perfect matching in the subgraph corresponding to this full rank principal submatrix.