THE LIST COLORING CONJECTURE

nicla bernasconi
Introduction - The LCC
Kernels and choosability
Proof of the bipartite LCC
Introduction and the list coloring conjecture
vertex coloring

- **k-coloring** of a graph G: labelling $f: V(G) \rightarrow S$ with $|S|=k$. The labels are called **colors**
- A k-coloring is called **proper** if adjacent vertices have different colors
- G is **k-colorable** if it has a proper k-coloring
- Chromatic number:
 $$\chi(G) := \min\{k | G \text{ is } k\text{-colorable}\}$$
example

3-coloring

Proper 3-coloring

$\chi(C_5) = 3$
edge coloring

- k-edge-coloring of a graph G: labelling $f: E(G) \rightarrow S$ with $|S| = k$.
- A k-edge-coloring is called proper if incident edges have different colors.
- G is k-edge-colorable if it has a proper k-edge-coloring.
- Chromatic index: $\chi'(G) := \min\{k | G \text{ is } k\text{-edge-colorable}\}$.
example

3-edge-coloring Proper 3-edge-coloring

$\chi'(C_5) = 3$
The line graph $L(G)$ of a graph G is the graph with vertex set $V(L(G))=E(G)$ and edge set $E(L(G))=\{\{e,f\} \mid e \text{ incident with } f\}$.
example
example
List coloring is a more general concept of coloring a graph. A graph G is n-choosable if, given any set of n colors for each vertex, we can find a proper coloring.
C_5 is not 2-choosable
Choice number:

\[\text{ch}(G) := \min \{ n \mid G \text{ is } n\text{-choosable} \} \]

The list chromatic index of \(H \) is the choice number of \(\text{L}(H) \)

Clearly: \(\text{ch}(G) \geq \chi(G) \)
$\text{ch}(K_{3,3}) > \chi(K_{3,3})$
list coloring conjecture

\[
\text{ch}(G) = \chi(G) \text{ whenever } G \text{ is a line graph}
\]
Kernels and choosability
Consider a digraph $D=(V,E)$

Notation: $u \rightarrow v$ means that $(u,v) \in E$:

The outdegree of v is $d^+(v) = |\{ u \mid v \rightarrow u\}|$

The closed neighborhood of v is $N[v] = \{ u \mid v \rightarrow u \text{ or } v=u \}$

The underlying graph of D is $G=(V,E')$ with $E' = \{ \{ u,v \} \mid u \rightarrow v \text{ or } v \rightarrow u \}$
A kernel of D is an independent set $K \subseteq V$ s.t. \[\forall v \in V \setminus K \text{ there exists an } u \in K \text{ with } v \rightarrow u \]

A kernel of $S \subseteq V$ is a kernel of the subdigraph induced by S.
example
(f:g)-choosable

Consider two functions \(f, g : V \to \mathbb{N} \)

\(G \) is (f:g)-choosable if, given any sets \(A_v \) of colors with \(f(v) = |A_v| \), we can choose subsets \(B_v \subseteq A_v \) with \(g(v) = |B_v| \) such that \(B_u \cap B_v = \emptyset \) whenever \(\{u, v\} \in E \)

Example: \(G \) is \(n \)-choosable if we take \(f(v) = n \) and \(g(v) = 1 \)
lemma 1

Bondy, Boppana and Siegel

Let D be a digraph in which
i. every induced subdigraph has a kernel
ii. $f, g: V(D) \rightarrow \mathbb{N}$ are so, that $f(v) \geq \sum_{u \in N[v]} g(u)$
whenver $g(v) > 0$

Then D is $(f:g)$-choosable
Proof:

- Induction on $\sum_{v \in V} g(v)$
- Given: sets A_v with $|A_v| = f(v)$
- Goal: find B_v with $|B_v| = g(v)$ and $B_u \cap B_v = \emptyset$ whenever u, v adjacent
- Define $W := \{v \in V | g(v) > 0\}$
- Choose color $c \in \bigcup_{v \in W} A_v$
- Define $S := \{v \in V | c \in A_v\}$
- Let K be a kernel of S
• Define functions $f', g': V(D) \rightarrow \mathbb{N}$

\[
g'(v) = \begin{cases}
 g(v) - 1 & (v \in K) \\
 g(v) & (v \not\in K)
\end{cases}
\]

\[
f'(v) = |A_v \setminus \{c\}| = \begin{cases}
 f(v) - 1 & (c \in A_v) \\
 f(v) & (c \not\in A_v)
\end{cases}
\]

• i) holds, check ii)

• We have that $\sum_{u \in N[v]} g'(u) < \sum_{u \in N[v]} g(u)$

\[
f'(v) \geq \sum_{u \in N[v]} g'(u)
\]
• Induction hypothesis \(\Rightarrow G \text{ is } (f':g')\)-choosable

• This means: \(\exists B_v' \subseteq A_v \{c\} \text{ with } |B_v'| = g'(v), \text{ s.t. } B_v' \cap B_v' = \emptyset \text{ if } u,v \text{ adjacent} \)

• Define \(B_v := \begin{cases} B_v ' \cup \{c\} & (v \in K) \\ B_v ' & (v \notin K) \end{cases} \)

• It holds: \(|B_v| = g(v) \) and \(B_u \cap B_v = \emptyset \text{ if } u,v \text{ adjacent} \)

• \(\Rightarrow G \text{ is } (f:g)\)-choosable
G is called \((m:n)\)-choosable if it is \((f:g)\)-choosable for the constant functions \(f(v)=m\) and \(g(v)=n\)
corollary 1

Let D be a digraph in which
i. the maximum outdegree is n-1
ii. every induced subdigraph has a kernel
Then D is (kn:k)-choosable for every k.
In particular D is n-choosable.
Proof of the bipartite LCC
An orientation of a graph \(G \) is any digraph having \(G \) as underlying graph.

Let \(K \) be a set of vertices in a digraph. Then \(K \) absorbs a vertex \(v \) if \(\text{N}[v] \cap K \neq \emptyset \).

\(K \) absorbs a set \(S \) if \(K \) absorbs every vertex of \(S \).

Example: a kernel of \(S \) is an independent subset of \(S \) that absorbs \(S \).
Let H be a bipartite multigraph, and $G := L(H)$. Suppose that G is n-colorable. Then G is $(kn:k)$-choosable for every k. In particular G is n-choosable.
Proof:

- Let $V := V(G) = E(H)$
- Define $A_x := \{v \in V | \ v \text{ is incident with } x, \ x \in V(H)\}$. A_x is called row if $x \in X$, column if $x \in Y$
- If v is a vertex of G, then $R(v)$ is the row and $C(v)$ the column containing v
- Take a proper coloring $f: V \rightarrow \{1, \ldots, n\}$ of V
- Define an orientation D of G in which $u \rightarrow v$ if $R(u)=R(v)$ and $f(u)>f(v)$ or $C(u)=C(v)$ and $f(u)<f(v)$
• Check i) and ii) of Corollary 1

• i): ✓ (since f is one-to-one on N[v])

• ii): induction on |S|

• Given S ⊆ V, show the existence of a kernel in S

• Define

\[T := \{ v \in S \mid f(v) < f(u) \text{ whenever } v \neq u \in R(v) \cap S \} \]

• T absorbs S

• If T is independent, then it’s a kernel ✓
• Assume T is not independent, then it has two elements in the same column, say $v_1, v_2 \in T$ with $C(v_1) = C(v_2) =: C$, $f(v_1) < f(v_2)$

• Choose $v_0 \in C \cap S$ s.t. $f(v_0) < f(u)$ whenever $v_0 \neq u \in C \cap S$

• Induction hypothesis $\Rightarrow S \setminus \{v_0\}$ has a kernel K, and K absorbs v_2, this means $N[v_2] \cap K \neq \emptyset$

• $N[v_0] \cap K \supseteq N[v_2] \cap K \Rightarrow K$ absorbs v_0

$\Rightarrow K$ is a kernel of S
• Corollary 1 ⇒ D is $(kn:k)$-choosable $\forall k$
• $\Rightarrow G$ is $(kn:k)$-choosable for every k