General rules for solving exercises

- When handing in your solutions, please write your exercise group on the front sheet:

 Group A/B: Wed 13–15 CAB G 56
 Group C: Wed 16–18 CAB G 52

- This is a theory course, which means: if an exercise does not explicitly say “you do not need to prove your answer”, then a formal proof is always required.

The following exercises will be discussed in the exercise class on November 15, 2016. Please hand in your solutions not later than November 14.

Exercise 1: Finding a Separating Line

Let \(R, B \subseteq \mathbb{R}^2 \) be given finite sets (“red and blue points”). A \((\text{strictly})\) \textit{separating line} is a line \(\ell \) with the property that all red points lie strictly on one side of \(\ell \), and all blue points strictly on the other side.

Formulate a linear program such that, given an optimal solution of your LP, you can decide if a separating line exists and, if so, compute one.

Exercise 2: Fitting a Ball into a Convex Polytope

Let \(H_1, \ldots, H_m \) be halfspaces in \(\mathbb{R}^n \) given by \(H_i = \{x: a_i^T x \leq b_i\} \) where \(a_i \in \mathbb{R}^n \) and \(b_i \in \mathbb{R} \). We want to find the largest \(n \)-dimensional ball that is completely contained in the intersection \(\bigcap_{i=1}^m H_i \), which is assumed to be non-empty.

Formulate a linear program with variables \(c \in \mathbb{R}^n \) and \(r \in \mathbb{R} \) whose optimal solution is the center point \(c^* \) and radius \(r^* \) of this largest ball.
Exercise 3: Linear Programs in Equational Form

Show that every linear program can also be converted into the following *equational form*:

\[
\text{maximize } c^T x \text{ subject to } Ax = b, \quad x \geq 0.
\]

What is the maximum increase in the number of variables and in the number of constraints in such a transformation?

Exercise 4: Maximum Number of Vertices of 3-dimensional Convex Polytopes

Let \(P \) be a convex polytope which is defined as the intersection of \(n \) given closed half-spaces in \(\mathbb{R}^3 \). Show that the number of vertices of \(P \) is at most \(2n - 4 \).

Hint: Use Euler’s formula for plane graphs, \(v - e + f = 2 \).

Exercise 5: Certificates for Infeasibility of Systems of Linear Equations

(Preparation for chapter 6.5.)

Prove that a system \(Ax = b \) of linear equations is unsolvable if and only if there is \(y \) with \(A^Ty = 0 \) and \(b^Ty = 1 \).