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Solution 1: Dependency

(a) Since X; and X; are independent, we have
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where we have used that Pr[X, = 7] = 0, while all other probabilities are 1/6.
(b) By the definition of conditional probability, we have

PriX;+X;>6AX; <2
PrX +%: > 6] X <2 = T RX < -

P =1 s PrXo =1+ PrXi =23 7, PrXo =1 _ g g+l _ 5

(c) In each of the following cases, we calculate (by manually counting how many of
the 36 possible outcomes are contained in the events) the values of p; = Pr[&],
p2 = Prl&], and p1; = Pr(& N &, respectively. The events are then independent

iff p1p2 = pu2-
(i) ep=1/2
«py—1/2.
o P =1/4.
e independent
(i) o p=1/2
o p,=5/12.
e p1;=3/12.

e dependent



(iii) e p;=1/6.
e p,=1/6.
e pi;=1/18.
e dependent

(iv) e py=7/12.
e po=1/12.
e pi =1/18.
e dependent

Solution 2: Geometric Distributions

(a) Let X be the random variable that describes the number of runs until we encounter
the first success. For example, abbreviating ‘failure’ by F and ‘success’ by S, if we
encounter the sequence FF'S then X would assume the value 3. The distribution of
X is given by

PriX=kK=(1-p)"'p (k=1,2,...).

As we remember from the course Probability and statistics,

k=1
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k=1
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!
o

(b) We sum over all even values for X and obtain (using the standard formula for
geometric series)
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(c) According to the same calculation,

o0

Pr[X even] = Z PriX=2j] = Z(l —p)¥

=1 =1

Solution 3: Expected running time

(a) Applying the definition of expected value,

EX] =) PriX=x]-x=

Likewise,

3
E[XZ]:ZPr[X:x]-xzzlﬂ+l-4+l-9:1:).

x=1

Thus we are reminded that the numbers E[XZ] and E[X])? are, in general, not equal.

Indeed our example has E[XZ} =2, but EX]* = Z.

(b) The random variables X;, X; are independent and have the same distribution as X.

(Note: This is only true because of the specific way the question is phrased. In
general we have to be careful whether our random variables are really independent.)

For (i), by applying linearity of expectation, we get
EX; 4+ Xa] = E[Xi] + E[Xy] = 2E[X] = <.
Note that this would hold true even if X; and X, were dependent. For (ii), on the

other hand, we use that X;,X, are independent, and then

49

EIX) - X] = EDX] - EDG] = EX)* = .

For (iii), to get a sum of X; 4+ X; < 4, there are only the following possibilities:
L X] = ])
e X; =2and X; €{1,2}, or

° X1:3andX2:1.



Since these three events are disjoint, we find
PriX; +X; <4] =Pr[X; = 1] +Pr[X; =2 and X; € {1,2}] + Pr[X; =3 and X; =1].

Since X; and X, are independent, we obtain

PI‘[X] —|—X2 S 4] = PI‘[X] = ]] -+ PI’[X] = 2] . PI’[XZ - {],2}] + PI’[X] = 3] . PI’[XZ = 1]
113 1
2 4 4 4 2 16

(c) It might seem as if the running time is described by the random variable X - N,
which would lead to the result E[X]- E[N] as long as X and N are independent.

However, it is important to note that X - N does not describe our situation. It
would only be correct to use X - N if, for some reason, every subroutine call had
the exact same running time. (Why?)

The correct way to express the overall running time is to use a sequence of random
variables Xj,...,Xn, where X; describes the running time of the ith subroutine
call. In order to be able to compute with the strange formula X; + --- + Xy, we
actually use an infinite sequence of variables X;, X,,..., where the variable X; is
defined to assume the value 0 whenever i > N.

We then have, for all i > 1:

E[X:|i < N] = E[X],
E[X;|i> N] =0.

Now we can calculate

EXi+...Xn] = E{in}

i=1
oo

= Z E[X;] (by montone convergence)

i=1
o

=Y (E[Xi|i<NJ-Prli <NJ+ E[X;|i>N]-Prfi>N])
= E(X] 0

= EX]- ) Prli<N]
i=1

= E[X] - E[N].

Solution 4: Random Walks

(a) For any v € {A,B, C,D, E}, let us write e, to denote the expected number of days
needed to reach vertex A given that the worm starts from vertex v. The value we
are looking for in this task is ec.



When starting from vertex C, the worm has a probability of 1/2 to go to B in the
first step, and a probability of 1/2 to go to D. If it reaches B, it needs another
e number of days on average to reach A. If it reaches D, it needs ep expected
number of days. Therefore

1
ec=§€B+§eD+1.

We can write analogous relations for the other quantities:

eax = 0,

eg = EeA+§eC+]’
ep = EQC—FEeE"—],
eg = e +1e +1
E = yéptseatl

This way, we have a linear system of five equations and five unknowns that we can
solve. The result is that ec = 6.

(b) According to Markov’s inequality, we have

100 6
> = > — < —.
Pr [T > 100] Pr[T_ c ec] =< 700

The probability for the worm to take at least 100 days until dinner is at most 6%.

Solution 5: Independence of Three Events

Recall that the events A, B, C are called pairwise independent if they satisfy

Pr[ANB] = Pr[A]- Pr[B],
Pr[ANC] = Pr[A]- Pr[C],
Pr[BNC] = Pr([B]: Pr[C];

—3

and they are called mutually independent if in addition they satisfy

Pr[ANBNC] = Pr[A]- Pr[B]- Pr[C].

A typical example would be tossing two fair coins. Let A be the event that the first
coin lands head. Let B be the event that the second coin lands head. And let C be the



event that the two coin tosses land the same. Each event has a probability of 1/2. By
calculating

1
P = -
r[A N B] D
1
Pr[AﬂC] :Z,
1
PI'[BQC] —Z,

we see that A, B, C are pairwise independent. But PrfANB N C] = 1/4, not 1/8 as we
would expect for jointly independent events.

Solution 6: Conditional Probability

(a)

(b)

Intuition: the event that the egg is spoiled is completely independent of the event
that the milk is spoiled. Therefore the probability that the egg is spoiled is not
influenced by the information that the milk is spoiled.

Formally: Let E be the event that the egg is spoiled and M the event that the milk
is spoiled. We are interested in the probability Pr[E|/M]. We have
PrEnM] 1/4 1

PriEMl = — i =72~ 7

Intuition: having exactly one boy and exactly one girl is more likely (1/2) than
having two boys (1/4). Thus if we know that there is at least one boy, it is more
likely for the other child to be a girl than that both are boys. Note the important
difference to the situation in (a). There, the information we were conditioning on
concerned exactly one of the two experiments (“the milk”).

In this case, the information concerns both experiments jointly (“one of the two
is”). If the information given were that the older child is a boy, then the probability
to get another boy would not be influenced by it (given our simplifying assumption
on independence).

Formally: Let B be the event that at least one child is a boy and C the event that
both children are boys. We are interested in Pr[C|B].

Pr[CNB] _ 1/4 1

PriCBl =~ =34~ 3

Solution 7: Paradoxes

(a)

We model steps 1 and 2 (but not step 3) of the described game show as a probability
space Q ={CG;,CG;, G;G;, G,G;}. The meaning of the four elementary events is
as follows.



CG; — You point at the car, and the show master reveals goat number 1.
CG; — You point at the car, and the show master reveals goat number 2.
GG, — You point at goat number 1, and the show master reveals goat number 2.
G,G; — You point at goat number 2, and the show master reveals goat number 1.

In step 1 of the game show, you choose either (i) the car, or you choose (ii) one of
the two goats with probabilty 1/3 each. In step 2, the show master reveals (i) one
of the two goats with probabilty 1/2 each, or he reveals (ii) the unique remaining
goat with probability 1. Hence, it is not hard to see that the four elementary events
must have the following probabilities.

PI[CG1] = PI[CGz] = ; . ; = 16 PI[G1Gz] = PI’[GzG1] = ; 1= ;

We define two additional events. Let S be the event that switching in step 3 would
turn out to be beneficial to you. More formally, S = {G;G;, G,G;} is the event that
in step 1 you point at one of the two goats (or, more precisely, at a door behind
which there is a goat). Furthermord] let R be the event that the show master
reveals a goat in step 2. By inspecting the list of elementary events, or simply by
rereading the rules, we see that trivially R = Q). In other words, the show master
always reveals a goat in step 2 no matter what happens in step 1.

All that is left to do for a complete solution is to ask the right question. Given
that the show master has revealed a goat in step 2, how likely is it that you would
win the car if you were to switch your chosen door in step 37
Pr[SNR] Pr[S] 2/3 2
IS IR = R "B T 1 3
In the concrete situation described on the exercise sheet, it is therefore advisable
to switch from door 1 to door 3 since that gives a winning chance of 2/3.

As far as intuition is concerned, observe that conditioning on R does not change the
probability of any event that is expressible as a subset of (O because R is a certain
eventf in that space. In particular, the probability that the car is behind the door
chosen in step 1 remains 1/3 even after the show master reveals one of the goats,
which in turn means that the car is behind the third door with probability 2/3. In
other words, when the show master reveals a goat in step 2 there is absolutely no
gain of information with respect to our model Q.

(b) Assume that goat number 1 is black and that goat number 2 is white. Compared
with the previous task, the probabilities of the four elementary events have changed
as follows.

1— 1
Pr[CG,] = g Pr[CG,] = Tp P1[G) G2l = PrlGaGil =

!Defining this second event R is not really necessary for a complete solution of task (a). However, it is
key in understanding the difference between tasks (a) and (c).
2dt. Sicheres Ereignis



Let us further define the events Ry = {CG;,G,G;} and R, = {CG;, G;G,} that the
show master reveals the black goat or the white goat, respectively, in step 2. As
follows, we can now calculate the corresponding winning chances for switching in
step 3 for each revealed color goat individually.

_ PrSNRy] Pr[G,G,] B 1/3 1
Pr[S | Ry] = Pr[Ry]  Pr[CGi] +Pr[G,Gi] p/3+1/3 T4y
Pr[S | Ry — Pr[SNR,] Pr[G;G,] B 1/3 1

Pr[R,]  Pr[CGy +Pr[GiG)) (1—-p)/3+1/3  2—p

For any value of p, the above numbers are at least 1/2, which means that switching
in step 3 is always at least as good as sticking with the original choice. In fact,
unless p = 0 or p = 1, switching is even the strictly better option.

If p = 0 then Pr[S | R;] = 1/2. That is, if the show master always reveals the
white goat if he has the choice, and you actually see him revealing the white goat
in step 2 of the game show, then switching and sticking with the original choice
are both equally good. A similar thing can be said if p = 1 and you see the black
goat revealed in step 2.

Similar to what we did in task (a), we model the situation up to the point where
Hermione chooses and drinks one of the cups as a probability space. Here, we have
the following set QO ={GP;, GP,, P1G, PP, P2G, PP} of elementary events.

GP; — Harry picks the good potion, Hermione drinks poison number 1.
GP, — Harry picks the good potion, Hermione drinks poison number 2.
P;G — Harry picks poison number 1, Hermione drinks the good potion.
PyP, — Harry picks poison number 1, Hermione drinks poison number 2.
P,G — Harry picks poison number 2, Hermione drinks the good potion.
P,P; — Harry picks poison number 2, Hermione drinks poison number 1.

Given that all choices are made uniformly at random, we arrive at the following
probabilities.

PI‘[GP]] = PI’[GPz] = PI'[P] G] = PI‘[P]Pz] = PI‘[PzG] = PI’[PzP]] = 1

Let now S = {P;P,, P,P;} be the event that switching his choice is beneficial to Harry
after Hermione has drunk her cup. Furthermore, let R = {GP;, GP;, P1P,, PP} be
the event that Hermione reveals one of the 2 poisoned cups by dying after drinking
from such a cup. It is crucial to note that here, in contrast to task (a), we do not
have R = Q. In other words, Hermione does not always reveal a poisoned cup.

We are left again with asking the right question. Given that Hermione has died
after drinking from her cup, how likely is it that Harry would drink the good potion



if he were to switch his choice to the unclaimed third cup?

B Pr[S N R] B Pr[S] _2/6 l
PriS IR = =5 R~ " PR —4/6 2

The surprising answer here is therefore that it does not matter if Harry sticks with
his first choice or not. After Hermione has died from drinking one of the cups, the
two remaining cups hold the good potion with probability 1/2 each.

Observe that here we have R # Q, which means that conditioning on R has the
potential of changing the probability of any event that is expressible as a subset
of Q). In particular, the probability of Harry having picked the good potion in the
beginning increases from 1/3 to 1/2. Intuitively, when Hermione dies we get the
information that she was unlucky and did not manage to pick the good potion,
which makes it more likely that Harry is holding it already in his hand.



