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Solution 1: Reducing the Number of Colors in a Single Round

To be precise, the method reduces the number of colors from k to k 0 = 2dlog2 ke. (We can

set C0 = 2, i. e. we do not really need the constant C0 { except that we should take note of

the fact that k 0 < k holds only for k � 7. For some small values it can even happen that the

number of colors increases.)

Let φold : V → {0, . . . , k− 1} be given.

Well-de�nedness: Let v 2 V and let u be its parent. Since φold is a proper coloring, we

have φold(v) 6= φold(u) and hence there actually exists a smallest index iv wherein these two

numbers di�er. If we let ` = blog2(k− 1)c+ 1 = dlog2 ke denote the number of bits in the bit

representation of the largest color (k− 1), then we have iv 2 {1, . . . , `}. Hence we have de�ned

a map
φnew : V −→ [`]� {0, 1}

v 7−→ (iv, bv)

whose range is indeed of cardinality at most 2` = k 0.

Properness: Assume that v and w are neighbours such that φnew(v) = φnew(w). Assume

without loss of generality that v is the parent of w, and let u denote the parent of v. Also

without loss of generality assume that bv = 0. Then the ivth bit of φold(u) is 1, and from

iv = iw it follows that bw is the ivth bit of w and bw = 1. This contradicts the assumption

(bv = bw).

Solution 2: 7-Coloring Planar graphs

Let G = (V, E) be the planar graph we are interested in with n = |V |.

(a) A planar graph has at most 3n − 6 vertices and therefore
∑
v2V deg(v) � 6n. If the

number of vertices of degree at least 7 was more than 6
7n, then it would hold that∑

v2V deg(v) > 7 � 67n = 6n, a contradiction.

(b) We do the same peeling process as in the proof of Theorem 8.14. We partition the

vertex set into sets L1, . . . , Lt for some t similarly as we did in the proof of Theorem 8.14.

Speci�cally, for every i = 1, . . . , t we consider the graph that remains after removing all

vertices in L1, . . . , Li−1 from G and we let Li be the set of vertices with degree at most 6

in this graph. Because every subgraph of a planar graph is planar and because there is

always at least 1
7 -fraction of vertices with degree at most 6, we have that t 2 O(logn).

We get the orientation asked in the exercise description by orienting the edges when they

get removed (due to removing a vertex). Every edge that is to be removed we orient it
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edge away from the vertex removed and we break ties arbitrarily. Because of the degree

property this guarantees that every vertex will have at most 6 outgoing edges.

(c) Each vertex labels one of its � 6 outgoing edges with a label {1, . . . , 6}. Now we have

6 labeled graphs and each of the labeled graphs has at most one outgoing edge per

vertex. As is mentioned in the lecture, the O(log� n) algorithm for coloring rooted trees

also works in this setting so we can 3-color each of these 6 labeled graphs (in parallel)

in O(log� n) rounds. By considering the Cartesian products of the colorings we get a

36-coloring.

(d) For avoiding confusion, let us consider that the 36-coloring we constructed in (c) uses the

colors {1, . . . , 36} and the new 7-coloring uses the colors {a, b, c, d, e, f, g}. We consider

t = O(logn) phases, where each phase consists of 36 rounds. Starting with an initially

empty coloring we will maintain the invariant that after the ith phase, i = 0, . . . , t we

have properly 7-colored all vertices in Lt, . . . , Lt−i+1. This invariant holds initially so we

consider properly coloring all vertices in Lt−i given a proper 7-coloring of the vertices

in Lt, . . . , Lt−i+1. For that we consider the 36 coloring from (c) which we think of as a

scheduling so that a vertex from v 2 Lt−i that was assigned the color c 2 {1, . . . , 36} will

choose its �nal color from {a, . . . , g} on the c'th round of the (i+ 1)st phase. Say that a

vertex v 2 Lt−i was given the color c in (c) and it is now the round for v to choose its

color. Then by construction v has at most 6 edges adjacent to vertices in Lt, . . . , Lt−i.

Vertex v can also not be adjacent to any other vertex in Lt−i with color c that is choosing

its color at the same round. Therefore vertex v has one free color it can choose that will

produce a proper coloring.

(e) Consider a graph consisting of a clique with roughly
p
n vertices and a matching with

roughly 2(n−
p
n) vertices. Then the number of edges is upper bounded by 3n but for

every orientation of this graph there will be a vertex with Θ(
p
n) outgoing edges.
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