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Solution 1: Reducing the Number of Colors in a Single Round

To be precise, the method reduces the number of colors from k to k' = 2[log, k]. (We can
set Cp = 2, i.e. we do not really need the constant Cy — except that we should take note of
the fact that k' < k holds only for k > 7. For some small values it can even happen that the
number of colors increases.)

Let doig: V —{0,...,k — 1} be given.

Well-definedness: Let v € V and let u be its parent. Since o1 is a proper coloring, we
have ¢eog(v) # dog(u) and hence there actually exists a smallest index 1, wherein these two
numbers differ. If we let { = |log,(k —1)| + 1 = [log, k| denote the number of bits in the bit
representation of the largest color (k — 1), then we have i, € {1,...,{}. Hence we have defined
a map
Pnew = V. — [l x{0,1}
v — (iy,by)

whose range is indeed of cardinality at most 2¢ = k'.

Properness: Assume that v and w are neighbours such that Gpew (V) = dpew(w). Assume
without loss of generality that v is the parent of w, and let u denote the parent of v. Also
without loss of generality assume that b, = 0. Then the i,th bit of ¢pgq(u) is 1, and from
i, = i,y it follows that b,, is the i,th bit of w and b,, = 1. This contradicts the assumption

(by =by).

Solution 2: 7-Coloring Planar graphs

Let G = (V,E) be the planar graph we are interested in with n =|V/|.

(a) A planar graph has at most 3n — 6 vertices and therefore ) ., deg(v) < én. If the
number of vertices of degree at least 7 was more than %n, then it would hold that
2 vevdeg(v) >7- %n = 6n, a contradiction.

(b) We do the same peeling process as in the proof of Theorem 8.14. We partition the
vertex set into sets Ly,..., L; for some t similarly as we did in the proof of Theorem 8.14.
Specifically, for every i =1,...,t we consider the graph that remains after removing all
vertices in Ly,...,Li_7 from G and we let L; be the set of vertices with degree at most 6
in this graph. Because every subgraph of a planar graph is planar and because there is
always at least 17—fraction of vertices with degree at most 6, we have that t € O(logn).
We get the orientation asked in the exercise description by orienting the edges when they
get removed (due to removing a vertex). Every edge that is to be removed we orient it



edge away from the vertex removed and we break ties arbitrarily. Because of the degree
property this guarantees that every vertex will have at most 6 outgoing edges.

Each vertex labels one of its < 6 outgoing edges with a label {1,...,6}. Now we have
6 labeled graphs and each of the labeled graphs has at most one outgoing edge per
vertex. As is mentioned in the lecture, the O(log* n) algorithm for coloring rooted trees
also works in this setting so we can 3-color each of these 6 labeled graphs (in parallel)
in O(log*n) rounds. By considering the Cartesian products of the colorings we get a
3%-coloring.

For avoiding confusion, let us consider that the 3°-coloring we constructed in (c) uses the
colors {1,...,3% and the new 7-coloring uses the colors {a,b,c,d,e,f,g}. We consider
t = O(logn) phases, where each phase consists of 3° rounds. Starting with an initially
empty coloring we will maintain the invariant that after the ith phase, i = 0,...,t we
have properly 7-colored all vertices in Ly,...,Li_i+1. This invariant holds initially so we
consider properly coloring all vertices in [{_; given a proper 7-coloring of the vertices
in Lt,...,L{—i+1. For that we consider the 36 coloring from (c) which we think of as a
scheduling so that a vertex from v € [;_; that was assigned the color c € {1,..., 36} will
choose its final color from {a,..., g} on the c'th round of the (i+ 1)st phase. Say that a
vertex v € L_; was given the color ¢ in (c) and it is now the round for v to choose its
color. Then by construction v has at most 6 edges adjacent to vertices in Ly,..., L.
Vertex v can also not be adjacent to any other vertex in [_; with color c that is choosing
its color at the same round. Therefore vertex v has one free color it can choose that will
produce a proper coloring.

Consider a graph consisting of a clique with roughly /n vertices and a matching with
roughly 2(n — 4/n) vertices. Then the number of edges is upper bounded by 3n but for
every orientation of this graph there will be a vertex with ©(4/n) outgoing edges.



