Algorithms, Probability, and Computing

Angelika Steger
Institut für Theoretische Informatik
steger@inf.ethz.ch
Borůvka’s Algorithm \((G):\)

\[
\forall v \in V: \text{compute } e_{\min}(v), \text{ insert } e_{\min}(v) \text{ in the MST and contract } e_{\min}(v) \\
\text{(removing loops and double edges by keeping only the cheapest edge)} \\
\text{recurse (until the graph contains only one vertex)}
\]

Run time analysis:

- #vertices \(n \) \(\leq n/2 \) \(\leq n/4 \) \(\leq n/8 \) ... \(O(m \log n) \)
- #edges \(m \) \(\leq m \) \(\leq m \) \(\leq m \) ... \(O(m) \)

If we could show:

\(\leq m/2 \) \(\leq m/4 \) \(\leq m/8 \) ... \(O(m) \)
Randomized MST

Randomized Minimum Spanning Tree Algorithm (G):

Perform three iterations of Borůvka’s algorithm (which reduces the number of vertices to at most $n/8$)

In the new graph select edges with probability $1/2$ and compute recursively a MSF for the graph consisting of the selected edges. Call this forest T.

Use `FINDHEAVY` to find all unselected edges that are not T-heavy.

Add all edges that are *not* T-heavy to T and delete all other edges.

Recursively (until the graph contains only one vertex)

Assumptions:

- Run time of `FindHeavy` $\leq C_{FH}(n+m)$ (for a graph with n vertices and m edges)
- Run time of three Boruvka steps $\leq C_B(n+m)$ (for a graph with n vertices and m edges)

Claim:

Run time of Randomized MST $\leq C(n+m)$ (for a graph with n vertices and m edges)
Randomized Minimum Spanning Tree Algorithm (G):

Perform three iterations of Borůvka’s algorithm (which reduces the number of vertices to at most \(n/8 \))

In the new graph select edges with probability 1/2 and compute recursively a MSF for the graph consisting of the selected edges. Call this forest \(T \).

Use **FINDHEAVY** to find all unselected edges that are not \(T \)-heavy.

Add all edges that are *not* \(T \)-heavy to \(T \) and delete all other edges.

Assumptions:

- Run time of **FindHeavy** \(\leq C_{FH}(n+m) \) (for a graph with \(n \) vertices and \(m \) edges)
- Run time of three Borůvka steps \(\leq C_B(n+m) \) (for a graph with \(n \) vertices and \(m \) edges)

Claim: there exists \(C \) s.t.

- Run time of Randomized MST \(\leq C(n+m) \) (for a graph with \(n \) vertices and \(m \) edges)
BasicMinCut(G):
 while G has more than 2 vertices do
 pick a random edge e in G
 G ← G/e
 end while
 return the size of the only cut in G

run time:
 each iteration: $O(n)$
 total: $O(n^2)$
Correctness Analysis

Observation 1.1. Let G be a multigraph and e an edge of G. Then $\mu(G/e) \geq \mu(G)$. Moreover, if there exists a minimum cut C in G such that $e \notin C$, then $\mu(G/e) = \mu(G)$.

Lemma 1.2. Let G be a multigraph with n vertices. Then the probability of $\mu(G) = \mu(G/e)$ for a randomly chosen edge $e \in E(G)$ is at least $1 - \frac{2}{n}$.

Thus:

$$\Pr[\text{BasicMinCut}(G) \text{ returns size of min cut }] \geq \frac{n - 2}{n} \cdot \frac{n - 3}{n - 1} \cdot \frac{n - 4}{n - 2} \cdot \frac{2}{4} \cdot \frac{1}{3} \cdot p_0(2) = \frac{2}{n(n-1)}.$$
Probability Amplification

failure probability of N repetitions:

$$\leq \left(1 - \frac{2}{n(n-1)}\right)^N \leq e^{-2N/n(n-1)}$$

$N = 10n(n-1)$: failure probability $\leq 10^{-8}$
run time $O(n^4)$

BasicMinCut

BasicMinCut(G):
while G has more than 2 vertices do
 pick a random edge e in G
 $G \leftarrow G/e$
end while
return the size of the only cut in G
Claim: There exist algorithms $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \ldots$ s.t. $\forall i \geq 0$

- $\Pr[\mathcal{A}_i(G) = \mu(G)] \geq 1/2 \; \forall G$

- run time of \mathcal{A}_i is $O(n^{f(i)})$, where $f(0) = 4$, $f(i+1) = 4(1 - 1/f(i))$

Proof: induction on i:

- $i = 0$: BasicMinCut
- $i \Rightarrow i+1$: contract until size $t = t(n)$, then call algorithm \mathcal{A}_i

apply probability amplification
MinCut - Bootstrapping

\[\mathcal{A}_{i+1}(G) : \]
- set parameters \(t \) and \(N \) suitably
- repeat \(N \) times:
 - \(H \leftarrow \text{RandomContract}(G, t) \)
 - call \(\mathcal{A}_i(H) \)
- return smallest value

\[\text{RandomContract}(G, t) : \]
- while \(|V(G)| > t \) do
 - for random \(e \in E(G) \)
 - \(G \leftarrow G/e \)
- end while
- return \(G \)

Correctness of RandomContract:

\[\geq (1 - \frac{2}{n}) \cdot (1 - \frac{2}{n-1}) \cdot \ldots \cdot (1 - \frac{2}{t+1}) = \frac{t(t-1)}{n(n-1)} \]

Correctness probability of one iteration:

\[\geq \frac{t(t-1)}{n(n-1)} \cdot \frac{1}{2} \]

Failure probability of \(N \) repetitions:

\[\leq \left(1 - \frac{t(t-1)}{2n(n-1)} \right)^N \leq e^{-N \cdot \frac{t(t-1)}{2n(n-1)}} \]