Algorithms, Probability, and Computing

Angelika Steger
Institut für Theoretische Informatik

steger@inf.ethz.ch

Borůvka's Algorithm(G):

$\forall v \in \mathrm{~V}$: compute $e_{\min }(v)$, insert $e_{\min }(v)$ in the MST and contract $e_{\min }(v)$ (removing loops and double edges by keeping only the cheapest edge)
recurse (until the graph contains only one vertex)
run time analysis:

\#vertices	n	$\leqq \mathrm{n} / 2$	$\leqq \mathrm{n} / 4$	$\leqq \mathrm{n} / 8$	\ldots
\#edges	m	$\leqq \mathrm{m}$	$\leqq \mathrm{m}$	$\leqq \mathrm{m}$	\ldots

$\mathrm{O}(\mathrm{m} \log \mathrm{n})$
$\mathrm{O}(\mathrm{m})$

Randomized MST

Randomized Minumum Spanning Tree Algorithm(G):
Perform three iterations of Borůvka's algorithm (which reduces $\leqq C_{B}(n+m)$ the number of vertices to at most $n / 8$)
In the new graph select edges with probability $1 / 2$ and compute recursively a MSF for the graph consisting of the selected edges.
Call this forest T.
Use FindHeavy to find all unselected edges that are not T-heavy.
Add all edges that are not T-heavy to T and delete all other edges.
recurse (until the graph contains only one vertex)

$$
\leqq C(n / 8+n+?)
$$

Assumptions:
run time of
FindHeavy $\leqq \mathrm{C}_{\text {FH }}(\mathrm{n}+\mathrm{m})$ (for a graph with n vertices and m edges) run time of three Boruvka steps $\leqq \mathrm{C}_{\mathrm{B}}(\mathrm{n}+\mathrm{m}) \quad$ (tor a graph with n vertices and m edges)

Claim:
run time of Randomized MST $\leqq \mathrm{C}(\mathrm{n}+\mathrm{m}) \quad$ (for a graph with n vericies and m edges)

Randomized MST

Randomized Minumum Spanning Tree Algorithm(G):
Perform three iterations of Borůvka's algorithm (which reduces $\leqq C_{B}(n+m)$ the number of vertices to at most $n / 8$)
In the new graph select edges with probability $1 / 2$ and compute recursively a MSF for the graph consisting of the selected edges.
Call this forest T.
Use FindHeavy to find all unselected edges that are not T-heavy.
Add all edges that are not T-heavy to T and delete all other edges.
recurse (until the graph contains only one vertex)

$$
\leqq C(n / 8+n+?)
$$

Assumptions:
run time of FindHeavy $\leqq \mathrm{C}_{\mathrm{FH}}(\mathrm{n}+\mathrm{m})$ (for a graph with n verices and m edges) run time of three Boruvka steps $\leqq C_{B}(n+m) \quad$ (for a graph with n vertices and m edges)

Claim: there exists C s.t.
run time of Randomized MST $\leqq \mathrm{C}(\mathrm{n}+\mathrm{m}) \quad$ (for a graph with n vertices and m edges)

BasicMinCut

BasicMinCut(G):

while G has more than 2 vertices do pick a random edge e in G
$\mathrm{G} \leftarrow \mathrm{G} / \mathrm{e}$
end while
return the size of the only cut in G
run time:
each iteration: $O(n)$
total: $\quad \mathrm{O}\left(\mathrm{n}^{2}\right)$

BasicMinCut

Correctness Analysis

BasicMinCut(G):

while G has more than 2 vertices do pick a random edge e in G $\mathrm{G} \leftarrow \mathrm{G} / \mathrm{e}$
end while
return the size of the only cut in G
Observation 1.1. Let G be a multigraph and e an edge of G . Then $\mu(\mathrm{G} / \mathrm{e}) \geq \mu(\mathrm{G})$. Moreover, if there exists a minimum cut C in G such that $e \notin \mathrm{C}$, then $\mu(\mathrm{G} / \mathrm{e})=\mu(\mathrm{G})$.

Lemma 1.2. Let G be a multigraph with n vertices. Then the probability of $\mu(\mathrm{G})=\mu(\mathrm{G} / \mathrm{e})$ for a randomly chosen edge $\mathrm{e} \in \mathrm{E}(\mathrm{G})$ is at least $1-\frac{2}{n}$.

Thus:

$\operatorname{Pr}[$ BasicMinCut(G) returns size of min cut]

$$
\geq \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdots \frac{2}{4} \cdot \frac{1}{3} \cdot p_{0}(2)=\frac{2}{n(n-1)}
$$

BasicMinCut

Probability Amplification

failure probability of N repetitions:

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{N} \leq e^{-2 N / n(n-1)}
$$

$$
\begin{array}{lll}
\mathrm{N}=10 \mathrm{n}(\mathrm{n}-1): & \text { failure probability } & \leqq 10^{-8} \\
& \text { run time } & \mathrm{O}\left(\mathrm{n}^{4}\right)
\end{array}
$$

MinCut - Bootstrapping

Claim: There exist algorithms $\boldsymbol{\mathcal { A }}_{0}, \boldsymbol{\mathcal { A }}_{1}, \boldsymbol{\mathcal { A }}_{2}, \ldots$ s.t. $\forall \mathrm{i} \geqq 0$

- $\operatorname{Pr}\left[\mathcal{A}_{\mathrm{i}}(\mathrm{G})=\mu(\mathrm{G})\right] \geqq 1 / 2 \quad \forall \mathrm{G}$
- run time of \mathcal{A}_{i} is $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\mathrm{i})}\right)$, where $\mathrm{f}(0)=4, \mathrm{f}(\mathrm{i}+1)=4(1-1 / \mathrm{f}(\mathrm{i}))$

Proof: induction on i:
$i=0: \quad$ BasicMinCut
$\mathrm{i} \Rightarrow \mathrm{i}+1$: contract until size $\mathrm{t}=\mathrm{t}(\mathrm{n})$, then call algorithm \mathcal{A}_{i} apply probability amplification

MinCut - Bootstrapping

$\underline{\mathcal{A}_{i+1}}(\mathrm{G}):$
set parameters t and N suitably repeat N times:
$\mathrm{H} \leftarrow \operatorname{RandomContract}(\mathrm{G}, \mathrm{t})$ call $\mathcal{A}_{i}(\mathrm{H})$
return smallest value

RandomContract(G, t): while $|\mathrm{V}(\mathrm{G})|>\mathrm{t}$ do for random $e \in E(G)$
$\mathrm{G} \leftarrow \mathrm{G} / e$
end while
return G
correctness of RandomContract:

$$
\geq\left(1-\frac{2}{n}\right) \cdot\left(1-\frac{2}{n-1}\right) \cdot \ldots \cdot\left(1-\frac{2}{t+1}\right)=\frac{t(t-1)}{n(n-1)}
$$

correctness probability of one iteration:

$$
\geq \frac{t(t-1)}{n(n-1)} \cdot 1 / 2
$$

failure probability of N repetitions:

$$
\leq\left(1-\frac{t(t-1)}{2 n(n-1)}\right)^{N} \leq e^{-N \cdot \frac{t(t-1)}{2 n(n-1)}}
$$

