Algorithms, Probability, and Computing

Angelika Steger Institut für Theoretische Informatik

steger@inf.ethz.ch

MST

Borůvka's Algorithm(G):

 $\forall v \in V$: compute $e_{\min}(v)$, insert $e_{\min}(v)$ in the MST and contract $e_{\min}(v)$ (removing loops and double edges by keeping only the cheapest edge) recurse (until the graph contains only one vertex)

run time analysis:

#vertices #edges		—		≦ n/8 ≦ m	 O(m log n)
if we could sho	W:	≦ m/2	≦ m/4	≦ m/8	 O(m)

Randomized MST

Randomized Minumum Spanning Tree Algorithm(G):

Perform three iterations of Borůvka's algorithm (which reduces $\leq C_{B}(n+m)$

the number of vertices to at most n/8)

In the new graph select edges with probability 1/2 and compute recursively a MSF for the graph consisting of the selected edges. Call this forest T. $\leq C(n/8+m/2)$

Use FINDHEAVY to find all unselected edges that are not T-heavy. Add all edges that are *not* T-heavy to T and delete all other edges. recurse (until the graph contains only one vertex) $\leq C (n/8+n+?)$

Assumptions:

run time ofFindHeavy $\leq C_{FH}(n+m)$ (for a graph with n vertices and m edges)run time ofthree Boruvka steps $\leq C_B(n+m)$ (for a graph with n vertices and m edges)

Claim:

run time of Randomized MST $\leq C(n+m)$

Randomized MST

RANDOMIZED MINUMUM SPANNING TREE Algorithm(G):

Perform three iterations of Borůvka's algorithm (which reduces $\leq C_{B}(n+m)$

the number of vertices to at most n/8)

In the new graph select edges with probability 1/2 and compute recursively a MSF for the graph consisting of the selected edges. Call this forest T. $\leq C(n/8+m/2)$

Use FINDHEAVY to find all unselected edges that are not T-heavy. Add all edges that are *not* T-heavy to T and delete all other edges. recurse (until the graph contains only one vertex) $\leq C (n/8+n+?)$

Assumptions:

run time ofFindHeavy $\leq C_{FH}(n+m)$ (for a graph with n vertices and m edges)run time of three Boruvka steps $\leq C_B(n+m)$ (for a graph with n vertices and m edges)

Claim: there exists C s.t. run time of Randomized MST $\leq C(n+m)$

(for a graph with n vertices and m edges)

BasicMinCut

 $\begin{array}{c} \underline{\mathsf{BASICMINCUT}(G):}\\ \text{while G has more than 2 vertices do}\\ \text{pick a random edge e in G}\\ G \leftarrow G/e\\ \text{end while}\\ \text{return the size of the only cut in G} \end{array}$

run time:

each iteration: O(n)total: $O(n^2)$

BasicMinCut

Correctness Analysis

 $\frac{\text{BASICMINCUT}(G):}{\text{while G has more than 2 vertices do}}$ $\begin{array}{c} \text{while G has more than 2 vertices do} \\ \text{pick a random edge } e \text{ in G} \\ \text{G} \leftarrow \text{G}/e \\ \text{end while} \\ \text{return the size of the only cut in G} \end{array}$

Observation 1.1. Let G be a multigraph and e an edge of G. Then $\mu(G/e) \ge \mu(G)$. Moreover, if there exists a minimum cut C in G such that $e \notin C$, then $\mu(G/e) = \mu(G)$.

Lemma 1.2. Let G be a multigraph with n vertices. Then the probability of $\mu(G) = \mu(G/e)$ for a randomly chosen edge $e \in E(G)$ is at least $1 - \frac{2}{n}$.

Thus:

Pr[BasicMinCut(G) returns size of min cut]

$$\geq \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdots \frac{2}{4} \cdot \frac{1}{3} \cdot p_0(2) = \frac{2}{n(n-1)}.$$

BasicMinCut

Probability Amplification

 $\frac{\text{BASICMINCUT}(G):}{\text{while G has more than 2 vertices do}}$ $\begin{array}{c} \text{pick a random edge e in G} \\ \text{G} \leftarrow \text{G}/e \\ \text{end while} \\ \text{return the size of the only cut in G} \end{array}$

failure probability of N repetitions:

$$\leq \left(1 - \frac{2}{n(n-1)}\right)^{N} \leq e^{-2N/n(n-1)}$$

N = 10n(n-1):

 $\begin{array}{ll} \mbox{failure probability} & \leq 10^{-8} \\ \mbox{run time} & O(n^4) \end{array}$

MinCut - Bootstrapping

Claim: There exist algorithms $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \dots$ s.t. $\forall i \ge 0$

- $\Pr[\mathcal{A}_{i}(G) = \mu(G)] \ge 1/2 \quad \forall G$
- run time of \mathcal{A}_i is O(n^{f(i)}), where f(0) = 4, f(i+1) = 4(1-1/f(i))
- **Proof:** induction on i:
 - i = 0: BasicMinCut
 - i \Rightarrow i+1: contract until size t=t(n), then call algorithm \mathcal{A}_i apply probability amplification

MinCut - Bootstrapping

 $\begin{array}{l} \underline{\mathcal{A}_{i+1}(G):}\\ \text{set parameters t and N suitably}\\ \text{repeat N times:}\\ H \leftarrow \text{RANDOMCONTRACT}(G,t)\\ \text{call } \mathcal{A}_i(H)\\ \text{return smallest value} \end{array}$

 $\frac{\text{RANDOMCONTRACT}(G,t):}{\text{while } |V(G)| > t \text{ do}}$ for random $e \in E(G)$ $G \leftarrow G/e$ end while return G

correctness of RandomContract:

$$\geq (1 - \frac{2}{n}) \cdot (1 - \frac{2}{n-1}) \cdot \ldots \cdot (1 - \frac{2}{t+1}) = \frac{t(t-1)}{n(n-1)}$$

correctness probability of one iteration:

$$\geq \frac{t(t-1)}{n(n-1)} \cdot 1/2$$

failure probability of N repetitions:

$$\leq \left(1 - \frac{t(t-1)}{2n(n-1)}\right)^{N} \leq e^{-N \cdot \frac{t(t-1)}{2n(n-1)}}$$