
Algorithms, Probability,

and Computing

Angelika Steger

Institut für Theoretische Informatik

steger@inf.ethz.ch

Random Search Trees

Depth of Smallest Key

Dn := depth of smallest key; dn := E[Dn]

n=3:

1 1

1 1

1

2

2

2

2

2

3

3 3
3 3

∙ 0 ∙ 0 ∙ 1 ∙ 1 ∙ 2

d1 = 0, d2 = 1/2, d3= 5/6

Depth of Smallest Key

Dn := depth of smallest key; dn := E[Dn]

d1 = 0, d2 = 1/2, d3= 5/6

Overall Depths of Keys

Xn := sum of depths of all keys in tree; xn := E[Xn]

n=3:

1 1

1 1

1

2

2

2

2

2

3

3 3
3 3

∙ (0+1+2) ∙ (0+1+2) ∙ (0+1+1) ∙ (0+1+2) ∙ (0+1+2)

x1 = 0, x2 = 1, x3= 8/3

Overall Depths of Keys

x1 = 0, x2 = 1, x3= 8/3

Xn := sum of depths of all keys in tree; xn := E[Xn]

Height

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i)

n=3:

1 1

1 1

1

2

2

2

2

2

3

3 3
3 3

∙ 2 ∙ 2 ∙ 1 ∙ 2 ∙ 2

x1 = 0, x2 = 1, x3= 5/3

Height

x1 = 0, x2 = 1, x3= 5/3

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i)

E[Xn] = E[max1≦i≦n Dn
(i)] = ? ? ?

Height

x1 = 0, x2 = 1, x3= 5/3

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i) ; xn := E[Xn]

Height

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i) ; xn := E[Xn]

=: Zn

Height

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i) ; E[Xn] ≦ log2(E[Zn])

Zn := zn := E[Zn]

n=3:

1 1

1 1

1

2

2

2

2

2

3

3 3
3 3

∙ 22 ∙ 22 ∙ 2 ∙ 21 ∙ 22 ∙ 22

z1 = 1, z2 = 2, z3 = 4

Height

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i) ; E[Xn] ≦ log2(E[Zn])

Zn := zn := E[Zn]

Improving the Constant

Dn
(i) := depth of key of rank i

Xn := max1≦i≦n Dn
(i)

C
C C

Repeat calculations from before:

Optimize C:

E[Xn] ≦ 4.311.. ln(n)

(constant is known to be best possible, cf Devroye’86)

Depth of Key of Rank i

Dn
(i) := depth of key of rank i; di,n := E[Dn

(i)]

Random Search Trees

E[depth of smallest key] = Hn -1 = ln n + O(1)

E[sum of depths] = 2(n + 1) Hn − 4n = 2n ln n + O(n)

E[max depth] ≤ 4.311.. ln n

E[depth of key of rank i] = Hi + Hn−i+1 − 2 ≤ 2 ln n

Depth of Key of Rank i

Dn
(i) := depth of key of rank i; di,n := E[Dn

(i)]

=

QuickSort

QuickSort

tn := expected number of comparisons for n keys

= E[sum of depths]

Random Search Trees

S={Tom,Ben,Tim,Leo}

Tim

TomLeo

Ben

S={1,2,3,4}

3

42

1

Random Search Trees

E[depth of smallest key] = Hn -1 = ln n + O(1)

E[sum of depths] = 2(n + 1) Hn − 4n = 2n ln n + O(n)

E[max depth] ≤ 4.311.. ln n

E[depth of key of rank i] = Hi + Hn−i+1 − 2 ≤ 2 ln n

Treap

Treap = (search) tree & (min) heap

- defined for sets Q ⊆ R × R

priorities: prio(x)keys: key(x)

- search tree wrt to keys & min heap wrt to priorities

Treap

Treap

Treap = (search) tree & (min) heap

- defined for sets Q ⊆ R × R

priorities: prio(x)keys: key(x)

- search tree wrt to keys & min heap wrt to priorities

Idea: choose priorities uar from [0,1]

⇒ the constructed search tree will be a random search tree

Treap - Insert

Insert(x)

- insert x as a leaf according to rules of a search tree

- rotate x up until at correct position wrt to its priority

A B

C

x

y

A

B C

y

x

Treap: Insertions

Insert(x)

- insert x as a leaf according to rules of a search tree

- rotate x up until at correct position wrt to its priority

A B

C A

B C

Lemma: ∀ T ∀ x: expected number of rotations < 2

Spines

left (right) spine of a node x:

- sequence of nodes on the path from x to largest (smallest)

node in left (right) subtree rooted at x (excluding x)

Note: The above definition is a shortcut of the definition in the lecture notes: there we define the left

and right spine of a tree, as the path from the root to the smallest resp largest node in the tree.

Then we associate with a node the two spines mentioned in the above definition, cf. picture below.

Spines

Lemma: ∀ T ∀ x:

Each rotation of x increases

length of left spine + length of right spine

by exactly one.

Proof:

Spines

Lemma: ∀ T ∀ x:

Each rotation of x increases

length of left spine + length of right spine

by exactly one.

It suffices to show:

Lemma: ∀ n: in a random search tree for [n] we have:

∀ j:

expected length of left spine = 1 - 1 / j

expected length of right spine = 1 - 1 / (n-j+1)

Spines

Lemma: ∀ n: in a random search tree for [n] we have:

∀ j:

expected length of left spine = 1 - 1 / j

expected length of right spine = 1 - 1 / (n-j+1)

Proof:

We have:

j-1

jlength of left spine of j =

Note: largest node in left subtree is

either j-1 or left subtree is empty

Randomized Search Trees

