Algorithms, Probability,
and Computing

Angelika Steger
Institut fur Theoretische Informatik

steger@inf.ethz.ch

Random Search Trees

(A, if S =0, and

for x €Eyar. S, otherwise.

Lemma 2.1. S C R, finite. Given a tree in Bs, we let w(v), v a node,
denote the number of nodes in the subtree rooted at v.

e probability of the tree according to the above distribution 1s
where the product 1s over all nodes v of the tree.

Depth of Smallest Key

D, = depth of smallest key; d, = E[D,]

n=3:

EICAA A

o

d, =0, d,=1/2, d,= 5/6

Depth of Smallest Key

D, = depth of smallest key; d, = E[D,]

d, =0, d,=1/2, d,= 5/6

n

EID,.] = Z E[D, |rk(root) = 1] -kPr[rk[root):i,] |

-] L. -~ /! ~ _J/
o, ifi—1, and ~1/n
- 1+ E[Di_1], otherwise.

T 0, if n=1, and
] L3 T (1+diy), otherwise.

Overall Depths of Keys

X, ;= sum of depths of all keys in tree; X, = E[X/]

o, S IO g

Looo+1+2) 1.(0+1+2) 1. (0+1+1) L (0+1+2) 1. (0+1+2)

X, =0, X,=1, Xx3= 8/3

Overall Depths of Keys

X, ;= sum of depths of all keys in tree; X, = E[X/]

X; =0, X,=1, Xx3= 8/3

E(X,] E n|rk(root) = 1] Pr rk(root) = 1]

g

-
LI\’I3

e

N1+ BXe 1)t E[xn_] —1/n

1 Y EX
n +n ; Xi]

. 0, if n =0, and
" — 1423 " 'x;, otherwise.

Height

D0 :=depth of key of rank i
xn = MaX; <<y Dn(i)

n=3:

EICAA A

L2

X, =0, X,=1, Xg3= 5/3

Height

D0 :=depth of key of rank i

xn = maxléién Dn(i)

X; =0, X,=1, X3= 5/3

E[X,] = E[max,<<,D,0 = 7727

Height

D0 :=depth of key of rank i

Xn = maxléién Dn(i) ; Xn o= E[Xn]

X; =0, X,=1, X3= 5/3

EX,] < log E[2*] = log Elzmﬂ?1 Dfi”]

I

Jensen’s Inequality: If f : R — R is a convex function, then f(E[X]) < E[f(X)]

Height

D0 :=depth of key of rank i

Xn = maxléién Dn(i) ; Xn o= E[Xn]

EX,] < log E[2*] = log Elzmﬂ?1 Dfi”]

<1log E i i

Height

D0 :=depth of key of rank i

Xp = maX<i<, DO ; E[X,] = log,(E[Z,.])

n
o Z p!V o
Zn . 2 Zn - E[Zn]

1=1,11sleaf
n=

R

z,=1, z,=2, z;=4

Height

DO := depth of key of rank i

X, = maX<<, D, ; E[X,] =log,(E[Z,])
o (1)
_ Z D ._
Zn . — 2 Zn I E[Zn]

1=1,11sleaf

n

ElZ.] = Z ElZ,.|rk(root) =1 - Prrk(root) = i
= 2(E{Zi—H: EZn_il) :*]v/*n
(0, if n =0,
=14 1, if n =1, and

\ 2y ', zi4, otherwise.

Improving the Constant

D0 :=depth of key of rank i

Xn = maxléién Dn(i)

E[X,) < log E[@*] =1log E [@m% Dy }]

Repeat calculations from before:

2C—1

E[X.] < o C

Inn forn >3 and any real C > 1

Optimize C:
E[X,]= 4.311..In(n)

(constant is known to be best possible, cf Devroye’86)

Depth of Key of Rank |

D,®:= depth of key of rank i; d;,, := E[D, ©]

Al := [node j is ancestor of node i

,

1, 1if node j 1s ancestor of node 1, and
0, otherwise.
\

4)

Random Search Trees

m m m

depth of smallest key]
'sum of depths]

max depth]
depth of key of rank i]

if S =0, and

for x €4,.ar. S, otherwise.

H, -1 =Ilnn+ O(1)
2(n+1)H -4n=2nInn+ O(n)
<43M1..Inn

Depth of Key of Rank |

D,®:= depth of key of ranki; d;, := E[D, ®]

Al := [node j is ancestor of node i

1, 1if node j 1s ancestor of node 1, and
] 0, otherwise.

n n
EDY] = Y E[A] =) P[al=1]
=T =1,

Lemma 2.5. i,j € N. In a random search tree for n > max{i,j} keys

1
i—jl+1

Pr [A’- — 1] = Pr(node j 1s ancestor of node i| =

QuickSort

function quicksort(S)
if S =0 then return ();
else
X ¢uar. S;
split S into S°%, {x}, $°
return quicksort(S=%) o (x) o quicksort(S~%);

QuickSort

function quicksort (S)
if S = 0 then return ();
else

X S u.aur. S,
split S into S°%, {x}, S°%;
return quicksort(S=*) o (x) o quicksort (S~%);

t, := expected number of comparisons for n keys

t, = n_1+Z(ti—1+tn—i]E — n_1+1'_LZti_1
i=1 1=1

= E[sum of depths]

Random Search Trees

(A, if S =0, and

for x €4,.ar. S, otherwise.

S={Tom,Ben,Tim,Leo} S={1,2,3,4}

,

Random Search Trees

m m m

depth of smallest key]
'sum of depths]

max depth]
depth of key of rank i]

if S =0, and

for x €4,.ar. S, otherwise.

H, -1 =Ilnn+ O(1)
2(n+1)H -4n=2nInn+ O(n)
<43M1..Inn

Treap

Treap = (search)tree & (min) heap

- defined forsets Q € RxR
keys: key(x)/ - priorities: prio(x)

- searchtree wrt tokeys & minheap wrt to priorities

32 |

225

A

11

).13

12

13

.93

o 03

91

20

21

29

) .567

25

).61

Treap

).25

Treap

Treap = (search)tree & (min) heap

- defined forsets Q € RxR
keys: key(x)/ - priorities: prio(x)

- searchtree wrt tokeys & minheap wrt to priorities

ldea: choose priorities uar from [0,1]

= the constructed search tree will be a random search tree

Treap - Insert

Insert(x)

- insert x as a leaf according to rules of a search tree

- rotate x up until at correct position wrt to its priority

®

: N
\A @A

Treap: Insertions

Insert(x)

- insert x as a leaf according to rules of a search tree

- rotate x up until at correct position wrt to its priority

Lemma: VT VX expected number of rotations < 2

RLELP

Spines

left (right) spine of a node Xx:

- sequence of nodes on the path from x to largest (smallest)
node in left (right) subtree rooted at X (excluding x)

Note: The above definition is a shortcut of the definition in the lecture notes: there we define the left
and right spine of a tree, as the path from the root to the smallest resp largest node in the tree.
Then we associate with a node the two spines mentioned in the above definition, cf. picture below.

Spines

Lemma: VT VX
Each rotation of x increases
length of left spine + length of right spine
by exactly one.

Proof:
rotate right subtree at y e

—* (Y)
A/ A LA

Spines

Lemma: VT VX
Each rotation of x increases

length of left spine + length of right spine
by exactly one.

It suffices to show:

Lemma: Vn:
Y
expected length of left spine =
expected length of right spine =

In a random search tree for [n] we have:

1-1/]
1- 1/ (n-j+1)

Spines

Lemma: V n:. inarandom search tree for [n] we have:

! gxpected length of left spine = 1-1/]
expected length of right spine = 1- 1/(n-j+1)
Proof: Al := [node j is ancestor of node 1i]
Ct; := [node k is ancestor of nodes i and j]
We have:
length of left spine of j = L
> (A —Chay)

AWA

Note: largest node in left subtree is
either j-1 or left subtree is empty

Randomized Search Trees

Theorem 2.10. In a randomized search tree (a treap with priorities inde-
pendently and u.a.r. from [0,1)) operations find, insert, delete, split
and join can be performed in expected time O(logn), n the number of

keys currently stored. The expected number of rotations necessary for
an insertion or a deletion 1s always less than 2.

