
Algorithms, Probability, 

and Computing

Angelika Steger

Institut für Theoretische Informatik

steger@inf.ethz.ch



Random Search Trees



Depth of Smallest Key

Dn :=   depth of smallest key;        dn := E[Dn]

n=3:
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d1 = 0,   d2 = 1/2,    d3=  5/6



Depth of Smallest Key

Dn :=   depth of smallest key;        dn := E[Dn]

d1 = 0,   d2 = 1/2,    d3=  5/6



Overall Depths of Keys

Xn :=   sum of depths of all keys in tree;        xn := E[Xn]

n=3:
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x1 = 0,   x2 = 1,    x3=  8/3



Overall Depths of Keys

x1 = 0,   x2 = 1,    x3=  8/3

Xn :=   sum of depths of all keys in tree;        xn := E[Xn]



Height

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i)

n=3:
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∙ 2 ∙ 2 ∙ 1 ∙ 2 ∙ 2

x1 = 0,   x2 = 1,    x3=  5/3



Height

x1 = 0,   x2 = 1,    x3=  5/3

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i)

E[Xn]  =  E[max1≦i≦n Dn
(i)]  =  ? ? ?



Height

x1 = 0,   x2 = 1,    x3=  5/3

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i) ;        xn := E[Xn]



Height

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i) ;        xn := E[Xn]

=:  Zn



Height

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i) ;        E[Xn]  ≦ log2(E[Zn])   

Zn :=                                                        zn := E[Zn]

n=3:
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∙ 22 ∙  22 ∙ 2 ∙ 21 ∙ 22 ∙ 22

z1 = 1,   z2 = 2,    z3 =  4



Height

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i) ;        E[Xn]  ≦ log2(E[Zn]) 

Zn :=                                                        zn := E[Zn]



Improving the Constant

Dn
(i) := depth of key of rank i

Xn :=   max1≦i≦n Dn
(i)

C
C C

Repeat calculations from before:

Optimize C:

E[Xn] ≦ 4.311.. ln(n) 

(constant is known to be best possible, cf Devroye’86)



Depth of Key of Rank i

Dn
(i) :=   depth of key of rank i;        di,n := E[Dn

(i)]



Random Search Trees

E[depth of smallest key]  =  Hn -1                  = ln n + O(1)

E[sum of depths]             =  2(n + 1) Hn − 4n = 2n ln n + O(n)

E[max depth]                                                  ≤ 4.311.. ln n

E[depth of key of rank i]  = Hi + Hn−i+1 − 2      ≤ 2 ln n



Depth of Key of Rank i

Dn
(i) :=   depth of key of rank i;        di,n := E[Dn

(i)]

=



QuickSort



QuickSort

tn := expected number of comparisons for n keys

= E[sum of depths] 



Random Search Trees

S={Tom,Ben,Tim,Leo}
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Random Search Trees

E[depth of smallest key]  =  Hn -1                  = ln n + O(1)

E[sum of depths]             =  2(n + 1) Hn − 4n = 2n ln n + O(n)

E[max depth]                                                  ≤ 4.311.. ln n

E[depth of key of rank i]  = Hi + Hn−i+1 − 2      ≤ 2 ln n



Treap

Treap =    (search) tree &    (min) heap

- defined for sets Q  ⊆ R × R

priorities:   prio(x)keys:   key(x)

- search tree wrt to keys &    min heap wrt to priorities



Treap



Treap

Treap =    (search) tree &    (min) heap

- defined for sets Q  ⊆ R × R

priorities:   prio(x)keys:   key(x)

- search tree wrt to keys &    min heap wrt to priorities

Idea:   choose priorities uar from [0,1]

⇒ the constructed search tree will be a random search tree



Treap - Insert

Insert(x)

- insert x  as a leaf according to rules of a search tree

- rotate x  up until at correct position wrt to its priority
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Treap:  Insertions

Insert(x)

- insert x  as a leaf according to rules of a search tree

- rotate x  up until at correct position wrt to its priority

A B

C A

B C

Lemma:    ∀ T  ∀ x:    expected number of rotations < 2



Spines

left (right)  spine of a node x:

- sequence of nodes on the path from x to largest (smallest)

node in left (right) subtree rooted at x (excluding x) 

Note:  The above definition is a shortcut of the definition in the lecture notes: there we define the left

and right spine of a tree, as the path from the root to the smallest resp largest node in the tree. 

Then we associate with a node the two spines mentioned in the above definition, cf. picture below.        



Spines

Lemma:   ∀ T  ∀ x:    

Each rotation of x increases

length of left spine + length of right spine

by exactly one.

Proof:



Spines

Lemma:   ∀ T  ∀ x:    

Each rotation of x increases

length of left spine + length of right spine

by exactly one.

It suffices to show:

Lemma:   ∀ n:   in a random search tree for [n] we have: 

∀ j:

expected length of left spine =   1 - 1 / j

expected length of right spine =   1 - 1 / (n-j+1)          



Spines

Lemma:   ∀ n:   in a random search tree for [n] we have: 

∀ j:

expected length of left spine =   1 - 1 / j

expected length of right spine =   1 - 1 / (n-j+1)          

Proof:

We have:

j-1

jlength of left spine of j =

Note:  largest node in left subtree is

either j-1 or left subtree is empty



Randomized Search Trees


