ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science
Bernd Gartner, Mohsen Ghaffari, Rasmus Kyng, David Steurer

Algorithms, Probability, and Computing Solutions KW50 HS20

Solution 1

Let X denote the length of the longest winning streak. We first show that E[X] =
Q(logn). To that end, we partition the n trows into n/(logn/2) groups, each consisting
of logn/2 throws (For simplicity, we assume that logn/2 is an integer that divides n).
Now, let A; denote the event that all coin flips in the i-th group come up heads. As the
events Ay, Ay, ..., Ay/ogn/2) are independent, we get

PriUA] =1 PrinA] =1 [[PriAl =1~ (1 1/y/n)V/0esm2) > 1 e 0/l

As X is a non-negative random variable, we can lower bound its expectation by

1
EX] > EX|U; Al - PriuAd > =02 - (1— e @V = O(logn).

Thus, it remains to show that E[X] = O(logn). To that end, let A;,,4 denote the event
that the longest winning streak exceeds 10logn throws and Ayng; the event that the
i-th throw is the beginning of a winning streak that exceeds 10logn throws. We have
Pr{Aiongi] < (1/2)'%%e™ = 1/n'°. Moreover, as Aipng = UiAlongi, @ Union Bound over

the n events implies that Pr[A,ng] < 1/n°. Hence, we get

E[X] - E[X|Along] ' Pr[Along] + E[X|Along] ) Pr[Along] S n- ]/TL9 + 1010gn = O(lOg TL),

as desired.



Solution 2

We provide a strategy which decreases the number of remaining items in each phase until
we only have the item with the maximum value left. Let k, for t > 1 denote the number
of remaining items at the end of the t-th phase. In the first phase, we do a simple step
of comparing n/2 consecutive pairs to reduce the number of remaining items to at most
n/2; thus, k; = n/2. In the t-th phase for t > 2 we partition the remaining k; ; items
into k_;?/n many groups of size n/k,_ ;. Then, we apply the algorithm from the lecture
on each group separately. Note that we require (n/k._;)* processors for each group,
which implies that

Kk}, n?
n ok,
processors are needed. Furthermore, recall that each of these phases can be done in O(1)
time-steps. Therefore, by using only n processors in the t-th phase we drop the number

=N

2
of remaining items from k; ; to k; in O(1) time-steps. We have k; = ktT“ for t > 2,
where k; = n/2. Now, we prove that k; = 22% for t > 1 by induction. The base case

_ n

holds because k; = n/2 = n/2%. As the induction hypothesis, assume that k; =
for some t > 1. For the inductive step, we have

22’(71

k2 1 (=

_ S~ LH. 12

Kip1 = =
n

Furthermore, 22% <1 fort > loglogn+ 1. Thus, after at most loglogn + 1 phases, we
are left with only one item, namely the maximum one. Since each phase requires O(1)
time-steps, the run time of this algorithm is in O(loglogn).

Solution 3

Based on Brent’s principle, if an algorithm does x total work and has depth t (i.e.,
critical path of length t), then using p processors, this algorithm can be run in x/p +t
time. In this setting, we have x = O(n) and t = O(logn). Thus, to get an algorithm
which runs in O(logn), we need QQ(n/logn) processors.

In the Parallel Prefix Problem, as the input we are given an array A of length n and we
want to compute an array B of length n that contains all the prefix sums, i.e., B[j] =

L_yA[i'] for all j € {1,--- ,n}. We provide an algorithm which solves this problem
with n/logn processors and runs in O(logn) time-steps. Assume that we have n/logn
Processors pi,--- ,Pn/logn- We divide the array into n/logn sub-arrays Ai,- -, An/iogn
of log n consecutive elements in the array. The processor p; is supposed to be responsible
for the sub-array A;. First, each of the processors will compute the prefix sum for

the last element in its sub-array (with respect to the sub-array) which is doable in

O(logn) time-steps; that is, at the end of this phase Blilogn] = Y /8", . A[i'] for
ie{l,---,n/logn}. Now, we consider only values of B[j] which correspond to the last

element of the sub-arrays, i.e., Blilogn]. This reduces the size of the problem to n/logn.



We know how to solve the problem on these n/logn elements by applying the method
from the lecture, in O(logn) time-steps. Note that this is doable since the number
of processors and elements are equal. After this phase, Blilogn] for i € {1,---, =

) logn
has our desired prefix sum, meaning Blilogn] = Y ™ A[i]. Now, each processor
computes its related values in O(logn). More precisely, processor p; for i > 1, set
Bl(i — 1)logn +j'] = B[(i — Nlogn] + Y i_([ %1 | Al] for j' € {1,---,logn — 1},
where we assume B[0] = 0. Note this can be done in O(logn) time-steps. Thus, we have
an algorithm which needs n/logn processors and solves the Parallel Prefix Problem in
O(logn) time-steps.

Solution 4

As our input we have a graph on the node set {1,--- ,n} whose edge set is given in the
form of an n x n binary adjacency matrix, where the entry at location (i,j) is 1 if the
i-th and j-th nodes are adjacent, and 0 otherwise. We want to devise a parallel algorithm
with O(logn) depth and ©O(n?) work that transforms this adjacency matrix to linked
lists. In the linked lists, for each node v € V, the nodes adjacent to v are given in a
linked list L[v] =< ug,uz,- -+, uqn)—1 >, where d(v) is the degree of the node v.

Since we can handle each row independently, it suffices to show that for a row we can
construct the adjacency list for the corresponding node in O(logn) depth and O(n) work.
If we have two linked lists [ and L’ and their starting and ending, we can concatenate
L and L' in ¢ time-steps for some constant ¢ > 0. Simply, set the successor of the last
element of L to be the first element of ['. Now, we have a linked list [”, where the
starting is the same as the starting of L and the ending is identical to the ending of L'
To each entry ay in row a; for 1 <j < mn, we initially assign a linked list of one element
which has the value j if a;; = 1 and an empty linked list if a;; = 0. Now, we divide these
linked lists into n/2 consecutive disjoint pairs and concatenate each pair. In the next
round, we divide the n/2 newly created linked lists into n/4 consecutive disjoint pairs
and concatenate each pair. After logn steps we will be left with a linked list L[i] which
includes all nodes adjacent to node i. Thus, the depth is O(logn). In the t-th time-step,
the work done is c - 5; since we have to concatenate n/2" pairs and for each we need c
time-steps. Therefore, the overall work for a row is

logn

n
tZ] CE = O(T\-).

Solution 5

Consider a Depth First Search traversal of the nodes (according to the adjacency lists,
which is the same as how the Eulerian path is defined in the lecture notes). Our objective
is to compute a post-oder numbering post : V. — {0,...,n — 1} of the nodes. That is,
in this numbering, for each node v, first a post-order numbering of the subtree rooted



in the first child of v appears, then a post-order numbering of the subtree rooted the
second child of v, an so on, and finally v appears.

Using the Eulerian tour technique, we can solve the problem, as follows: After hav-
ing identified the parents, we now define a new weight for the arcs. We set w(<
parent(v),v >) = 0 and w(< v,parent(v) >) = 1. Notice that the former are for-
ward arcs in the DFS and the latter are backward arcs. Then, we compute all the prefix
sums of these weights, on the linked list provided by our Eulerian path (i.e., maintained
by the successor pointers). Hence, each arc knows the number of backward arcs before
it (and including itself), in the Eulerian path. Set post(r) =n — 1 for the root node r.
For each node v # 1, set post(v) to be the prefix sum on the arc < v, parent(v) > minus
one, which is equivalent to the total number of backward arcs before this arc. This gives
exactly our desired post-order numbering because each backward edge corresponds to a
node which appears before node v in the post-order numbering.

Based on the lecture notes (similar to the computation of pre-order numbering), the
aforementioned algorithm has O(logn) depth and O(n) work. The only difference is
that at the end we subtract the prefix sum on the arc < v, parent(v) > by one for each
node v in parallel to obtain post(v), which is doable in O(1) depth and O(n) work.

Solution 6

We want the number of descendants des(v) for each node v, which is the total number
of nodes in the subtree rooted at node v.

We use the Eulerian tour technique again. After having identified the parents, we now de-
fine the weights for the arcs similar to pre-order numbering. We set w(< parent(v),v >
) =1 and w(< v,parent(v) >) = 0. In other words, we set the weight of all forward arcs
in the DF'S to 1 and the weight of all backward edges to 0. Then, we compute all the pre-
fix sums of these weights, on the linked list provided by our Eulerian path. Hence, each
arc knows the number of forward arcs before it (and including itself), in the Eulerian
path. Set des(r) = n for the root node r. For each node v # 1, set des(v) to be the prefix
sum on the arc < v,parent(v) > minus the prefix sum on the arc < parent(v),v >,
plus one. The prefix sum on an arc is equivalent to the total number of forward arcs
before this arc (including itself). Furthermore, each forward arc corresponds to visiting
an unvisited node in the DFS. Therefore, the prefix sum on the arc < v,parent(v) >
minus the prefix sum on the arc < parent(v),v > is equal to the total number of forward
arcs in the subtree rooted at v. We add one to this value since it does not include the
forward arc corresponding to node v itself.

The depth and the work required by this algorithm is similar to the one for computing
the pre-order numbering, except at the end we compute des(v) for each node v in parallel,
which can be done in depth O(1) and work O(n). Therefore, this algorithm performs in
depth O(logn) and work O(n).



