
Institute of Theoretical Computer Science

Bernd Gärtner, Mohsen Ghaffari, Rasmus Kyng, David Steurer

Algorithms, Probability, and Computing Solutions for SPA 1 HS20

Solution 1

(a) We �rst describe the algorithm, which consists of four steps.

(1) We invoke Asample with input G and sample probability p = 1/
p
n, thus obtaining a

graph G 0 that contains each edge of G independently with probability p.

(2) Next, we compute a Minimum Spanning Forest T 0 of G 0 by invoking AMSF.

(3) We invokeAT−heavy to remove all T 0-heavy edges from G. We call the resulting graph G 00.

(4) We invoke AMSF with input G 00 to obtain the Minimum Spanning Forest T of G 00 and
the algorithm outputs T .

We invoke each of the subroutines at most a constant number of times. Hence, it remains to
argue that the algorithm indeed outputs the Minimum Spanning Tree of G with probability
1 − O(1/n). To that end, it su�ces to show that both the graph G 0 and the graph G 00 have
O(n3/2) edges with probability 1−O(1/n). The reason for that is the following. In the �nal
step, we output the Minimum Spanning Forest of G 00. We obtained G 00 by removing all the
T 0-heavy edges of G, but those edges are not contained in the Minimum Spanning Tree of G,
as argued in the lecture. Hence, all the edges contained in the Minimum Spanning Tree of G
are also edges in the graph G 00. Therefore, our output T is indeed the Minimum Spanning Tree
of G. We �rst use a Cherno� Bound to argue that G 0 contains O(n3/2) edges with probability
1 − O(1/n). To that end, let E denote the set of edges of G. For each e 2 E, let Xe denote
the indicator variable for the event that e is contained in G 0 and let X :=

∑
e2E Xe. We have

E[X] = p � |E| � (1/
p
n) � �n

2

� � n3/2. Note that if |E| � n3/2, then we trivially sample at most

O(n3/2) edges, and |E| > n3/2 implies E[X] � n. In that case, a Cherno� Bound implies

Pr[X � 2n3/2] � Pr[X � (1+ 1)E[X]] � e− 13E[X] � e−Θ(n) = O(1/n).

Thus, at most 2n3/2 = O(n3/2) edges are sampled with probability 1 − O(1/n). Next, we
argue that G 00 contains O(n3/2) edges with probability 1−O(1/n). To analyze how many not
T 0-heavy edges remain, consider the following procedure.

1

(1) Let E 0 = T 0 = F = ;.
(2) for i = 1, . . . ,m do:
(3) if ei connects two components of T 0 then
(4) Flip a biased coin that comes up heads with probability p = 1/

p
n to decide

whether ei belongs to G
0.

If so, let E 0 := E 0 + ei and T
0 := T 0 + ei, otherwise let F := F+ ei.

(5) else
(6) Flip a biased coin that comes up heads with probability p = 1/

p
n.

If so, add ei to E
0.

(Observe that ei is T
0-heavy and thus cannot belong to F.)

Note that this is the same procedure as in the script, except that this time we always throw a
biased coin instead of a fair coin. The reason is that we don't sample each edge with probability
1/2, but instead with probability p = 1/

p
n. As argued in the script, each edge in E \ T 0 that

is not T 0-heavy is contained in F. Thus, we only need to show that F contains at most O(n3/2)
edges with probability 1 − O(1/n). Note that during the run of the algorithm, we can only
add edges to F as long as the biased coin that we throw in line (4) came up heads strictly less
than n − 1 times, as each time the coin comes up heads, we add one more edge to the forest
T 0. Hence, the probability that F contains more than 2n3/2 edges is upper bounded by the
probability that out of 2n3/2 independent biased coin throws, the coin comes up heads less
than n times. One can use a Cherno� bound to argue that this is indeed the case.

Solution 2

(a) For the sake of simplicity, we assume that the input hypergraph G = (V, E) only consists
of those edges that either join 2 or 3 vertices, and does not contain any singleton-edges.
Our algorithm repeatedly contracts a hyperedge chosen uniformly at random until the graph
contains at most 3 vertices. Afterwards, the algorithm chooses a vertex among the at most
three remaining vertices uniformly at random. Note that each vertex in the contracted graph
naturally corresponds to a set of vertices in the original graph. Let S denote the set of vertices
that the randomly chosen node corresponds to. Our algorithm outputs the cut corresponding to
the non-trivial partition (S, V \S). Let us �rst analyze the running time of the algorithm. The
algorithm performs O(n) contractions, taking O(n) � O(n2) = O(n3) time in total. Besides
that, our algorithm needs to keep track for each vertex in one of the contracted graphs to
which set of vertices in the original graph it corresponds to. This can be done in O(n) time
by computing the corresponding sets in a recursive manner as follows. At the beginning,
each vertex in the original graph trivially corresponds to the singleton set only containing
itself. Now, assume that during the process we contract some hyperedge e. For each vertex
not contained in e, the set of vertices in the original graph it corresponds to does not change.
Moreover, all vertices contained in e will form a new node in the contracted graph and this node
corresponds to the set of vertices [v2eSv, where Sv is the set of vertices that v corresponds to
in the original graph. Hence, we can obtain in O(n3) time the set S. Afterwards, it remains to
iterate through the O(n3) edges, checking for each edge whether it crosses the cut. Hence, the
total runtime is O(n3), as desired. Now, for a given multihypergraph G and a given minimum
cut C of G, let pG,C denote the probability that our algorithm indeed outputs C on the input
graph G and for every n � 2, let

pn := inf
G is an n-node multihypergraph,C is a minimum cut of G

pG,C.

2

Note that we have p2 = 1 and p3 � 1/3. Now, consider an arbitrary n-node hypergraph G
with n � 4 and let C denote an arbitrary minimum cut. Let us focus on the �rst contraction
and let k denote the minimum cut size of G. The probability that no edge in C gets contracted
can be lower bounded by

1−
|C|

|E|
� 1− k

nk/3
= 1−

3

n
.

Note that |E| � nk
3
, as the degree of each vertex is at least k and each edge joins at most 3

vertices. Now, after the �rst contraction, we end up with a graph ~G, which has either n − 1
or n − 2 vertices. Moreover, given that the contracted edge is not in C, there exists a cut
~C in the new graph that corresponds to C, i.e., there is a natural one to one correspondence
between edges of C and ~C. As a contraction can only increase the size of the minimum cut, ~C
is a minimum cut in the contracted graph. Hence, we can deduce that

pG,C �
�
1−

3

n

�
p ~G, ~C �

�
1−

3

n

�
min(pn−1, pn−2)

and therefore also

pn �
�
1−

3

n

�
min(pn−1, pn−2).

Now, by a simple induction, one can show that for n � 4, it holds that

pn � n− 3

n

n− 4

n− 1
� . . . � � � 1

4
� 1
3
= Ω(1/n3),

as desired.

(b) Let C denote the set containing all the minimum cuts. For each minimum cut C 2 C, let EC
denote the event that the algorithm from a) outputs C. Note that we have Pr[EC] = Ω(1/n3).
Moreover, Pr[EC \ EC 0] = 0 for C 6= C 0, i.e., the events are pairwise disjoint. Hence, we have

1 � Pr[[C2CEC] =
∑
C2C

Pr[EC] � |C| �Ω(1/n3).

Hence, we can deduce that |C| = O(n3), as desired.
(c) Let c be a �xed constant such that the algorithm from a) outputs each minimum cut with

probability at least c/n3. Our algorithm performs dn3/ce independent runs of the algorithm
from a), outputting the size of the smallest encountered cut. The runtime of the algorithm is
clearly O(n6). Moreover, the success probability of the algorithm is at least

1− (1− c/n3)dn
3/ce � 1− e−(c/n3)dn3/ce � 1− e−1 � 1/2,

where we used that 1+ x � ex for every x 2 R.

3

(d) As in the previous exercise, let c be a �xed constant such that the algorithm from a) outputs
each minimum cut with probability at least c/n3. Our algorithm performsN = d4 logn(n3/c)e
independent runs of the algorithm from a). This way, it obtains a collection of N cuts. The
algorithm outputs each cut that is contained in that collection and whose size is not strictly
greater than the size of a di�erent cut in the collection. The runtime of the algorithm is clearly
O(n6 logn). This runtime bound can even be achieved if one removes all duplicates by using
hashing. We don't go into detail here. Now, let C denote the set containing all the minimum
cuts and for each C 2 C, let AC denote the event that the algorithm outputs C. We have

Pr[AC] � 1− (1− c/n3)N � 1− e−(c/n3)N � 1− e−4 logn = 1− n−4.

Hence, by a Union Bound we can lower bound the success probability of the algorithm by

1− Pr[[C2CAC] � 1−
∑
C2C

Pr[AC] � 1− |C| � n−4 = 1−O(1/n) � 1/2,

where in the last step we assumed that n is reasonably large.

(e) Our new algorithm is parameterized by two parameters N and t, which we only �x later. The
algorithm repeats the following procedure N times and returns the minimum of all the N
runs. In a single run, the algorithm repeatedly contracts an edge chosen uniformly at random,
as long as the contracted graph has at least t vertices. Once the contracted graph has less
than t vertices, we invoke the randomized algorithm and output the result of the randomized
algorithm. By basically the same argument as in a), the probability that the correct minimum
cut size is computed in a single run is lower bounded by

n− 3

n
� n− 4

n− 1
� . . . � t− 3

t
� 0.5 = Ω(t3/n3),

and generally the output is always at least as large as the minimum cut size. Hence, running
N independent runs of the procedure and outputting the minimum results in the correct
minimum cut size with probability at least

1− (1−Ω(t3/n3))N � 1− e−Ω(t3/n3)�N.

Thus, there exists an N = Θ(n3/t3) such that our new algorithm succeeds with probability at
least 1/2. Hence, the overall runtime of the procedure is

N �O(n3 + tα) = O(n6/t3 + n3tα−3).

Now, we can choose t such that we minimize the runtime. We can do that by solving n6/t3 =
n3tα−3 for t, which leads to t = n3/α. Note that here it is important that α > 3, as if α < 3,
then t would be greater than n, which does not make any sense. The resulting runtime we

obtain in this case is O(n3 � nα−3
α) = O(n3+

3(α−3)
α), as desired.

(f) We �rst prove by induction that ai � 3 for all i 2 N0. We trivially have a0 � 3 and moreover,
given that ai � 3, we also have

ai+1 = 3+
3(ai − 3)

ai
� 3+ 0 = 3.

4

From ai � 3 for all i 2 N0, we can also directly deduce that the sequence (ai)i�0 is decreasing
monotonically, as

ai+1 = 3+
3(ai − 3)

ai
� 3+ 3(ai − 3)

3
= ai.

As the sequence is bounded from below and monotonically decreasing, a look into the analysis
script tells us that the sequence indeed converges and the limit is equal to the in�mum of the
sequence, denoted by a. For the sake of contradiction, assume that a = 3+ ε for some ε > 0.
Then, we obtain

ai+1 − ai = 3+
3(ai − 3)

ai
− ai =

6ai − 9− a
2
i

ai
=

−(ai − 3)
2

ai
� −

ε2

6
.

This would imply that |ai+1 − ai| � ε2

6
for all i 2 N, a contradiction. Hence, we can conclude

that a = 3 is the limit.

(g) Exercise c) together with a simple induction implies that there exists a randomized algorithm
with a running time of O(nai) for every i 2 N. As the limit of the sequence (ai)i�0 is 3, for
every ε > 0, there exists an iε 2 N with aiε � 3 + ε. Hence, for every ε > 0, there exists a
randomized algorithm with a running time of O(n3+ε). However, as ai 6= 3 for every i 2 N,
we cannot infer that there exists a randomized algorithm with a running time of O(n3).

Solution 3

(a) In each recursion level, at most n− 1 comparisons are performed and hence the total number
of comparisons during an execution with maximum recursion depth O(logn) is bounded by
O(n logn).

(b) First, assume that X � log3/2(n). This implies that either x participates in at most 100 log3/2(n) =
O(logn) recursive calls, or among the �rst 100 log3/2(n) recursive calls, there are log3/2(n)
distinct recursion levels that reduce the problem size of the subproblem that contains x by
at least a (2/3)-factor. This implies that after 100 log3/2(n) recursion levels, the subproblem
that contains x contains at most

n � (2/3)log3/2(n) = 1

elements. Hence, it only consists of x. Therefore, also in this case x participates in at most
O(logn) recursion levels. Now, it remains to argue that Pr[X < log3/2(n)] = O(1/n

2). We do
this by using the Cherno� bound variant stated at the top of the special assignment (Theorem
2). Let i 2 [n] be arbitrary and x0, x1, . . . , xi−1 2 {0, 1} be arbitrary. We have

E[Xi|X0 = x0, X1 = x1, . . . , Xi−1 = xi−1] � 1/3.

To see why, assume that we not only condition on the event X0 = x0, X1 = x1, . . . , Xi−1 = xi−1,
but we additionally condition on all the randomness, i.e. the concrete pivot choices, for the
recursion levels 0 up to i − 1. Fixing the pivot choices for those recursion levels, we either
deterministically obtain the guarantee that x participates in at most i− 1 recursion levels, or
the size of the subproblem that x is part of in the i-th recursion level is k, for some �xed value

5

k 2 [n]. Now, with probability at least 1/3, among the k elements, we choose a pivot p in the
"middle third", i.e. such that at least dk/3 − 1e elements are strictly smaller than p and at
least dk/3− 1e elements are strictly larger than p. If we indeed choose such a pivot, then the
problem size of the problem that contains x drops indeed by at least a (2/3)-factor, as desired.
Now, let δ = 1/2. We get

Pr[X � log3/2(n)] � Pr[X � (1−δ)100 log3/2(n)(1/3)] � e−(1/2)2�100 log3/2(n)�(1/3) = O(1/n2),

as desired.

(c) This follows from exercise b) together with a Union Bound. More precisely, for each element
x, let Bx denote the event that x participates in ω(logn) recursive calls. Exercise b) implies
that Pr[Bx] = O(1/n

2). Hence, we obtain

Pr["Recursion depth is bounded by O(logn)"] = 1−Pr

"[
x

Bx

#
� 1−

∑
x

Pr[Bx] = 1−O(1/n).

(d) According to exercise c), the maximum recursion depth isO(logn) with probability 1−O(1/n).
In that case, exercise a) implies that quicksort performs O(n logn) comparisons.

Solution 4

Let ` denote the non-vertical query line. We start by computing the two tangents of C parallel to ` in
O(logn) time, as seen in class. Let `upper be the upper tangent and `lower be the lower tangent. If `
lies above `upper, then our algorithm can simply return the precomputed area of the whole polygon.
If ` lies below `lower, then the algorithm simply returns zero. Hence, it remains to consider the
case where ` lies strictly between `lower and `upper. Let ilower 2 {0, 1, . . . , n − 1} such that the
vertex pilower intersects the lower tangent and iupper 2 {0, 1, . . . , n−1} such that the vertex piupper
intersects the upper tangent. Now, imagine you start from pilower and you go in ccw-direction along
the edges of the polygon until you reach piupper . As pilower lies below ` and piupper lies above `, one
encounters two consecutive vertices pk and p(k+1) mod n for some k 2 {0, 1, . . . , n− 1} such that pk
lies below ` and p(k+1) mod n lies above `. Given that we stored the points in ccw-order in an arrary,
we can actually �nd pk and p(k+1) mod n in O(logn) time with a binary search. The rough idea is
the following. In the beginning, pk could be any vertex between pilower and piupper (considering
the ccw-direction). Now, let q denote the vertex directly in-between pilower and piupper . Then,
depending on whether q lies above or below the query line `, we can either rule out the upper or the
lower half of the vertices and therefore recurse on the remaining vertices. As the number of potential
values for k roughly decreases by a factor of 1/2, we can �nd pk in O(logn) time. Now, similarly,
starting from piupper and going in ccw-direction along the edges until one arrives at pilower , one
encounters two consecutive vetices pt and p(t+1) mod n for some t 2 {0, 1, . . . , n − 1} such that pt
is above ` and p(t+1) mod n is below `. Similarly as before, we can do a binary search to �nd pt
in O(logn) time. Let q denote the point on the line segment between pk and p(k+1) mod n that
intersects ` and r denote the point on the line segment between pt and that intersects `. The area
below the query line ` can now be computed as the sum of two terms. The �rst term is the area
of the convex polygon with vertices q, r, p(t+1) mod n and pk. The second term is the area of the
convex polygon C[(t + 1) mod n, k], where for every i, j 2 {0, 1, . . . , n − 1}, we de�ne C[i, j] as the
convex polygon with vertices pi, p(i+1) mod n, p(i+2) mod n, . . . , pj. Note that the area of the �rst

6

polygon can be computed in O(1) time, as it only consists of four vertices. Furthermore, we can
precompute the area of C[i, j] for every i, j 2 {0, 1, . . . , n − 1} and hence we can look-up the area of
C[(t+ 1) mod n, k] in O(1) time.

Figure 1: The �gure illustrates the case where the query line lies between the two tangent lines.

7

