ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Institute of Theoretical Computer Science
Bernd Gartner, Mohsen Ghaffari, Rasmus Kyng, David Steurer

Algorithms, Probability, and Computing Solutions for SPA 2 HS20

Solution 1

(i) = (iii) Let Ax < b denote the subsystem of all y-tight constraints, where we mean by a y-
tight constraint a constraint that y fulfills with equality. Now, we define ¢ := AT1, where 1 denotes
the all-ones vector in k dimensions, with k being the number of y-tight constraints. We have

c'y=1"Ay =1"b.

Now, let z € P\ {y} be arbitrary. Asy is a basic feasible solution, it satisfies n linearly independent
constraints with equality and hence the rank of A is n. In particular, this implies that z cannot
satisfy all of the y-tight constraints with equality. Hence, we get

c'z=1TAz<1"b

and therefore

cly>clz,

as desired.

(iii) = (ii) Let ¢ € R™ such that for every z € P\ {y}, c'y > c"z. Now, for the sake of
‘contr.adiction, assume that there exist two distinct points y;,y, € P with y = %(y1 +yz). This
implies

1 1 1
T 1! _ T T (T T\ _ T
c'y=c <Z(y1+y2))_2(cy1+cy2><2<cy+cy)—cy.

This is a contradiction and therefore there do not exist two distinct points y;,y, € P with y =
3 (U1 +y2).

(i) = (1)

We show the contrapositive. Assume that y is not a basic feasible solution. Let Ax_g b denote the
subsystem of all y-tight constraints. Asy is not a basic feasible solution, the rank of A is strictly less
than n and hence there exists a non-zero vector v € R™ with Av = 0, where 0 denotes the all-zero
vector. For ¢ > 0, by defining y, :==y+evandy_. :=y—ev, weget y. #y_. andy = % (Ye +Y—e)-
Thus, it remains to show that for small enough ¢, both Yy, and y_. are contained in P. Note that
for the y-tight constraints, we have

Ay, =Ay+eAv=b+0=b

and similar for y_,. Moreover, by choosing ¢ small enough, we can also ensure that y. and y_.
satisfy all the non y-tight constraints. Hence, we have shown the contrapositive.

Solution 2

(a)

Consider the following Integer Linear Program

minimize 2 vevYv
subject to yy,+yv>1 V{uvietE (1)
Yv € {O)]} Vv € V.

Let y € {0,1}V denote an arbitrary feasible solution to the ILP. Now, let Vioyer = {v €
V:y, = 1}. To prove that V.gyer is a valid vertex cover, consider an arbitrary edge {u,v} € E.
Asy, +y, > 1, we either have y, = 1, which implies that v € V.oyer, or ify, =0, theny,, =1
and therefore w € V over. In both cases at least one of the endpoints of the edge {u,Vv} is in
Veover and therefore V.gyer is a valid vertex cover. Moreover, we have Zvevgv = |Veoverl-
Now, let V.over denote an arbitrary vertex cover. Let y € {0, 1YV with Yy = 1if v € Vigyer and
yy = 0 otherwise. For every edge {u,v} € E at least one of the endpoints is contained in Vcoyer
and therefore y,, +y, > 1. Hence, y is a feasible solution to the ILP with ZVEV Yy = [Veoverl-

We relax the ILP as follows

minimize 2 vevYv
subject to yy,+y,>1 V{uyviekt (2)
0<y, <1 VveV.

Let y € RY denote an arbitrary feasible solution to the LP. We now consider a procedure that
runs in polynomial time with the following property: If y is not an integral solution, then it
finds a feasible solution §j € RY with 2 vevv < 2 ,evYv. Moreover, the number of non-
integral entries of {j is strictly smaller than the number of non-integral entries of y. Hence, by
repeatedly applying this procedure for at most n times, we arrive at a feasible integral solution
Yint € RY with 2 vev¥int)y < 2 evYv. As Yine is a feasible solution to the ILP, we can
convert it to a feasible vertex cover Veover With [Veover| < 3 ey (Yint)y < 2\ cv Yv-

The basic idea of the procedure is to increase the value of all fractional entries by ¢ on one
side of the bipartition and to decrease the value of all fractional entries by ¢ on the other side
of the bipartition. Let V = U LU W be an arbitrary bipartition of the vertices and let y denote
a fractional solution. Now, we define

ufrac = {'LL e u: Yu € (O)”}

and

Wfrac = {W e w: Yw € (O)])}

We assume without loss of generality that |Usrqcl > [Weracl- Let ey := minyey,,., Yu ,
€w = minyew,,,. 1 —Yw and ¢ := min(ey, eyw). We now consider §j € RV with

Yu Yyv €{0,1}
gv =qYy—¢€ VE Usrac
yv + £ A% E Wfrac~

First, we verify that {j is a feasible solution. From the definition of ¢ and a simple case
distinction, it follows that {j,, € [0,1] for every v € V. Now, consider some arbitrary edge
{fuuw} € Ewithu e Uand we W. If y, =1, then §,, = 1 and y,, = 0 implies y,, = 1
and therefore {j,, = 1. In both cases {Jj,, + Jw > 1. Thus, it remains to consider the case that
Yy € (0,1). As y, +Yyw > 1, this implies y,, > 0. If y,, = 1, we again have {J,, +§,, > 1 and
if yw < 1, then

Jut+dw=Yu—€e+Yyn+e=yYu+yn > 1.

Hence, {j is indeed a feasible solution. Moreover, we have

Z gv = Z Yv + 5(|Wf'rac‘ - |ufrac‘) < Z Yv,

vev vev vev

where the last inequality follows from our assumption |Ug¢rqc|l > [Weracl. Thus, it remains
to verify that the number of non-integral entries in {j is strictly smaller than the number of
non-integral entries in y. Note that each integral entry in y is also integral in {j. Hence, it
suffices to show that there exists at least one non-integral entry of y that is integral in {j. From
the definition of ¢, there either exists a u € Uy qc with € = y,,, in which case {j,, = 0, or
otherwise there exists a w € Wyq with € = 1 —y,,, in which case {J,, = 1. This finishes the
proof and the overall procedure clearly runs in polynomial time.

(c) As the encoding size of the relaxed LP is polynomial in the encoding size of the input, we
can use the Ellipsoid Method to find an optimal solution to the relaxed LP in polynomial
(such an optimal solution clearly exists). We then use the polynomial time algorithm of
the previous exercise to find a vertex cover whose size is at most the optimal value of the
relaxed LP and hence a minimum vertex cover. The overall runtime is polynomial in the input
size. It remains to verify that the procedure runs in polynomial time. Note that we haven't
specified the underlying computational model. In case the algorithm is allowed to perform
basic operations on real numbers, then our algorithm clearly runs in time polynomial in n.
In case we are interested in the bit complexity, i.e., we would like to run the algorithm on a
Turing Machine, then it is easy to verify that the algorithm runs in polynomial time in the
input size.

Solution 3

(a) First, consider the case that T; and T, are isomorphic and let f be a function from the vertices
of T; to the vertices of T, such that for each vertex v of Ty with children vq,v,,..., vk the
children of f(v) in T, are exactly f(v1),f(v2),...,f(vk). We prove the statement by induction
on the height of the subtree rooted at v that P, = Py(,) for each vertex v of T. The base
case is that v is a leaf. This implies that f(v) is also a leaf. Furthermore, one can also easily
establish by induction that the height of v in Ty is equal to the height of f(v) in T, and therefore

P, = P¢(v). Now, consider some arbitrary non-leaf vertex v with children vi,v,,...,vx. By
the induction hypothesis, we have P,, = P¢(y,) for every i € [k] and therefore

Py = (xh =Py,) (xn—=Py,) oo (xn =Py,) = (xn=Pv;)) - (Xn=Ps(v,)) oo - (Xn—=Ps(v)) = Ps(v),

where the last equality follows as f(v1),f(v2),..., f(vi) are all of the children of f(v) and v and
f(v) have the same height, thus finishing the induction proof.

Next, consider the case that T; and T, are not isomorphic. We prove by induction on the
height of the subtree rooted at v that for every vertex v of T; and every vertex u of T, with
both u and v having the same height in the tree, the subtree rooted at v not being isomorphic
to the subtree rooted at u implies that P, # P,,. First, consider the case that v is a leaf. If u
is also a leaf, then v and u are isomorphic, hence it suffices to consider the case that u is not
a leaf. Let uy,uy,...,ux denote the children of u. Let h denote the height of v in Ty and of
win T,. Then, P, :=xp and Py := (xh — Py,) (Xh — P,) -+ (xh — Puy). Note that it more
or less directly follows from the definition that the polynomial associated with each vertex is
not the zero polynomial (This is not so clear over a finite field, though). Hence, we can set
the variables Xn41,Xn+2,... In such a way that the polynomial P,,, evaluates to something
non-zero. If we now set xn = Py, (Xn+1,Xh+2,...), then P, evaluates to something non-zero,
while P,, evaluates to zero, hence finishing the base case. Next, consider the case that v is not
a leaf and has children vi,va2,...,vk. Now, let u be some node in T, having the same height as
v. If u is a leaf, then we can use the same argument as before, with the roles of u and v being
reversed, to argue that P, # P,,. Hence, we can assume that u is not a leaf and has children
Uy, U2,...,U,. Now, for each 1 € [k], let

Ni 1 = [{j € [k]: The subtree rooted at v; is isomorphic to the subtree rooted at v;}|

and

Ni2 := [{j € [r]: The subtree rooted at v; is isomorphic to the subtree rooted at u;}.

If the subtree rooted at v is not isomorphic to the subtree rooted at u, then there exists an
i € [k] with Ny 1 # Ny . To simplify the exposition, we assume that N;; > N; . Now, we
choose x; for i > h + 1 independently and uniformly at random from the set {1,2,...,10n?2}.
By Schwartz-Zippel, the induction hypothesis and the fact that all polynomials under consid-
eration have a degree of at most n, it follows that P, (X1 41,Xnh+2y...) = Pu; (Xht1,Xn42y..4)
with probability at most 57> = ﬁ for every j € [r] such that the subtree rooted at v; is
not isomorphic to the subtree rooted at u;. By a Union Bound, it follows that with strictly
positive probability Py, (Xny1,Xny2y-..) # Pu; (Xni1,Xn42,...) for every j € [r] such that the
subtree rooted at v; is not isomorphic to the subtree rooted at u;. In that case, let Qv (xn) and
Qu(xn) denote the univariate polynomials obtained from P, and P,,, respectively, by fixing
the variables X1, Xn42,.... Note that the previous discussion implies that there exists a real
number z such that the multiplicity of the root z in Q. (xp) is strictly larger than the multi-
plicity of the root z in Qy(xn). This implies that Q(xn) # Qu(xn). To see why, note that
Q.. tends faster to zero than Q, for values close to z. Hence, P, is not equal to P,,, finishing
the induction step and completing the proof.

(b)

By strong induction on the size of the subtree of v one can show that for each node v, the
degree of P, is at most equal to the number of nodes in the subtree rooted at v. Hence, the
degree of both P,, and P, is at most n. As P,, and P,, are not the same polynomial, P,., —P;,
is not the zero-polynomial and has degree at most n. Hence, the number of (h + 1)-tuples
in S"*! that are zeros of P., — P,, is at most n - |S|" and therefore the probability that we
chose such a tuple from S is at most n/|S| = O(1/n). Hence, if P;, and P, are not the same
polynomial, then P, (x) # Py, (x) with probability 1 — O(1/n).

Let 1, denote the number of nodes in the subtree rooted at v. We show by strong induction on
the size of the subtree that [P, (x)| < n*"v~2. First, consider the case that v is a leaf. In that
case, |Py(x)] < n? = n*™v~=2. Now, assume that v has children vi,v,...,vk. The induction
hypothesis implies that

[Pul =1(xh — Pyy) - (xn = Py,) s (X — Py)l
< |(max(2,xp) - max(2, [Py, |)) - (max(2,xy) - max(2,|Py,])) - ... (max(2,xp) - max(2, [Py, |))|
< max(2,xn)* - max(2, [Py,1) - ... -max(2,[Py,|)
<2k oA =20 pAn -2
= n“ZL vy
<nim

and thus we have finished the induction. In particular, we have shown that [P, (x) — Py, (x)| <
2n*™. Note that P, (x) mod p = P,,(x) mod p if and only if p divides P;, (x) — Py, (x).
There are at most O(log(2n*™)) = O(nlogn) distinct primes that divide P,, (x)—P, (x) and as
h(k) = Q(k/log(k)), we choose a given prime with probability at most O(log(n3)/n3). Hence,
a Union Bound implies that P, (x) mod p = P,,(x) mod p with probability O(nlog(n) -
log®(n)/n3) = O(1/n), as desired.

Our algorithm first chooses x € S"*! uniformly at random and then independently a prime p
uniformly at random from the set of all primes in the range from 1 to n3. If P, (x) mod p =
P, (x) mod p, then our algorithm outputs "Yes” and otherwise our algorithm outputs "No”.
If Ty and T, are isomorphic, then a) implies that our algorithm always outputs ”Yes”. If Ty
and T, are not isomorphic, then a), b) and c) together with a simple Union Bound over two
events implies that our algorithm outputs ”Yes” with probability O(1/n). Hence, it remains
to analyze the runtime. First, we discuss how to choose a prime p uniformly at random from
the set of all primes in the range from 1 to n3. To that end, we repeatedly choose a number
uniformly at random from 1 to n3 and check in O(log1 99(n)) time whether the number is prime.
If so, set p to this number. If not, then we repeat the procedure (with fresh randomness).
If we haven’t found a prime after O(log®n) repetitions, then our algorithm simply outputs
"Yes”. Note that if we indeed output a prime, then every prime between 1 and n3 has the
same probability to be chosen. As in each iteration we have a probability of Q(1/log(n)) to
find a prime, a Chernoff Bound implies that we find a prime with probability 1 — e~ Qllog” 1)
Hence, our algorithm still succeeds with probability T — O(1/n). Thus, it remains to discuss
how we can efficiently evaluate P,, (x) mod p and P,,(x) mod p. Let v be a non-leaf vertex
with children vi,va,...,vx. As we have

Py(x) mod p = ((xn — Py, (X)) - (xp = Py (x)) ..o v (xn — Py, (x))) mod p

= ((xn = (Py,(x) mod p)) - (xn — (Pv,(x) mod p))-... (xp— (Py,(x) mod p)))

mod p,

given P,,(x) mod p, P,,(x) mod p,...,P,, (x) mod p, we can compute P,(x) mod p in
O(k) time. Hence, there exists a constant ¢ > 10 such that given P,,(x) mod p, P, (x)
mod p,...,Py, (x) mod p, we can compute P,(x) mod p in c -k time. We now prove by
strong induction on the size of the subtree of v that we can evaluate P, (x) in ¢ - (2n, — 1)
time. If v is a leaf, we have c - (2n, — 1) > 10, so it clearly holds. Now, let v be a vertex with
children vy,vy,...,vk. By the induction hypothesis, we can evaluate P, (x) mod p in time

k
c-k—i—Zc-(ZnVi—]) <c(2n, —1),

i=1

hence finishing the induction. In particular, we can evaluate both P,, (x) mod p and P, (x)
mod p in O(n) time, thus proving that our algorithm runs in time O(n).

