
Institute of Theoretical Computer Science

Bernd Gärtner, Mohsen Ghaffari, Rasmus Kyng, David Steurer

Algorithms, Probability, and Computing Solutions for SPA 2 HS20

Solution 1

(i) =⇒ (iii) Let �Ax � �b denote the subsystem of all y-tight constraints, where we mean by a y-
tight constraint a constraint that y ful�lls with equality. Now, we de�ne c := �AT1, where 1 denotes
the all-ones vector in k dimensions, with k being the number of y-tight constraints. We have

cTy = 1T �Ay = 1T �b.

Now, let z 2 P \ {y} be arbitrary. As y is a basic feasible solution, it satis�es n linearly independent
constraints with equality and hence the rank of �A is n. In particular, this implies that z cannot
satisfy all of the y-tight constraints with equality. Hence, we get

cTz = 1T �Az < 1T �b

and therefore

cTy > cTz,

as desired.

(iii) =⇒ (ii) Let c 2 Rn such that for every z 2 P \ {y}, cTy > cTz. Now, for the sake of
contradiction, assume that there exist two distinct points y1, y2 2 P with y = 1

2
(y1 + y2). This

implies

cTy = cT
�
1

2
(y1 + y2)

�
=
1

2

�
cTy1 + c

Ty2

�
<
1

2

�
cTy+ cTy

�
= cTy.

This is a contradiction and therefore there do not exist two distinct points y1, y2 2 P with y =
1
2
(y1 + y2).

(ii) =⇒ (i)

We show the contrapositive. Assume that y is not a basic feasible solution. Let �Ax � �b denote the
subsystem of all y-tight constraints. As y is not a basic feasible solution, the rank of �A is strictly less
than n and hence there exists a non-zero vector v 2 Rn with �Av = 0, where 0 denotes the all-zero
vector. For ε > 0, by de�ning yε := y+εv and y−ε := y−εv, we get yε 6= y−ε and y = 1

2
(yε + y−ε).

Thus, it remains to show that for small enough ε, both yε and y−ε are contained in P. Note that
for the y-tight constraints, we have

1

�Ayε = �Ay+ ε�Av = �b+ 0 = �b

and similar for y−ε. Moreover, by choosing ε small enough, we can also ensure that yε and y−ε
satisfy all the non y-tight constraints. Hence, we have shown the contrapositive.

Solution 2

(a) Consider the following Integer Linear Program

minimize
∑
v2V yv

subject to yu + yv � 1 8 {u, v} 2 E
yv 2 {0, 1} 8 v 2 V.

(1)

Let y 2 {0, 1}V denote an arbitrary feasible solution to the ILP. Now, let Vcover := {v 2

V : yv = 1}. To prove that Vcover is a valid vertex cover, consider an arbitrary edge {u, v} 2 E.
As yu+yv � 1, we either have yv = 1, which implies that v 2 Vcover, or if yv = 0, then yu = 1
and therefore u 2 Vcover. In both cases at least one of the endpoints of the edge {u, v} is in
Vcover and therefore Vcover is a valid vertex cover. Moreover, we have

∑
v2V yv = |Vcover|.

Now, let Vcover denote an arbitrary vertex cover. Let y 2 {0, 1}V with yv = 1 if v 2 Vcover and
yv = 0 otherwise. For every edge {u, v} 2 E at least one of the endpoints is contained in Vcover
and therefore yu+yv � 1. Hence, y is a feasible solution to the ILP with

∑
v2V yv = |Vcover|.

(b) We relax the ILP as follows

minimize
∑
v2V yv

subject to yu + yv � 1 8 {u, v} 2 E
0 � yv � 1 8 v 2 V.

(2)

Let y 2 RV denote an arbitrary feasible solution to the LP. We now consider a procedure that
runs in polynomial time with the following property: If y is not an integral solution, then it
�nds a feasible solution ~y 2 RV with

∑
v2V ~yv �

∑
v2V yv. Moreover, the number of non-

integral entries of ~y is strictly smaller than the number of non-integral entries of y. Hence, by
repeatedly applying this procedure for at most n times, we arrive at a feasible integral solution
yint 2 RV with

∑
v2V(yint)v �

∑
v2V yv. As yint is a feasible solution to the ILP, we can

convert it to a feasible vertex cover Vcover with |Vcover| �
∑
v2V(yint)v �

∑
v2V yv.

The basic idea of the procedure is to increase the value of all fractional entries by ε on one
side of the bipartition and to decrease the value of all fractional entries by ε on the other side
of the bipartition. Let V = U tW be an arbitrary bipartition of the vertices and let y denote
a fractional solution. Now, we de�ne

Ufrac := {u 2 U : yu 2 (0, 1)}

and

Wfrac := {w 2W : yw 2 (0, 1)}.

2

We assume without loss of generality that |Ufrac| � |Wfrac|. Let εU := minu2Ufrac
yu ,

εW := minw2Wfrac
1− yw and ε := min(εU, εW). We now consider ~y 2 RV with

~yv =


yv yv 2 {0, 1}

yv − ε v 2 Ufrac

yv + ε v 2Wfrac.

First, we verify that ~y is a feasible solution. From the de�nition of ε and a simple case
distinction, it follows that ~yv 2 [0, 1] for every v 2 V. Now, consider some arbitrary edge
{u,w} 2 E with u 2 U and w 2 W. If yu = 1, then ~yu = 1 and yu = 0 implies yw = 1
and therefore ~yw = 1. In both cases ~yu + ~yw � 1. Thus, it remains to consider the case that
yu 2 (0, 1). As yu + yw � 1, this implies yw > 0. If yw = 1, we again have ~yu + ~yw � 1 and
if yw < 1, then

~yu + ~yw = yu − ε+ yw + ε = yu + yw � 1.

Hence, ~y is indeed a feasible solution. Moreover, we have

∑
v2V

~yv =
∑
v2V

yv + ε(|Wfrac|− |Ufrac|) �
∑
v2V

yv,

where the last inequality follows from our assumption |Ufrac| � |Wfrac|. Thus, it remains
to verify that the number of non-integral entries in ~y is strictly smaller than the number of
non-integral entries in y. Note that each integral entry in y is also integral in ~y. Hence, it
su�ces to show that there exists at least one non-integral entry of y that is integral in ~y. From
the de�nition of ε, there either exists a u 2 Ufrac with ε = yu, in which case ~yu = 0, or
otherwise there exists a w 2Wfrac with ε = 1 − yw, in which case ~yw = 1. This �nishes the
proof and the overall procedure clearly runs in polynomial time.

(c) As the encoding size of the relaxed LP is polynomial in the encoding size of the input, we
can use the Ellipsoid Method to �nd an optimal solution to the relaxed LP in polynomial
(such an optimal solution clearly exists). We then use the polynomial time algorithm of
the previous exercise to �nd a vertex cover whose size is at most the optimal value of the
relaxed LP and hence a minimum vertex cover. The overall runtime is polynomial in the input
size. It remains to verify that the procedure runs in polynomial time. Note that we haven't
speci�ed the underlying computational model. In case the algorithm is allowed to perform
basic operations on real numbers, then our algorithm clearly runs in time polynomial in n.
In case we are interested in the bit complexity, i.e., we would like to run the algorithm on a
Turing Machine, then it is easy to verify that the algorithm runs in polynomial time in the
input size.

Solution 3

(a) First, consider the case that T1 and T2 are isomorphic and let f be a function from the vertices
of T1 to the vertices of T2 such that for each vertex v of T1 with children v1, v2, . . . , vk the
children of f(v) in T2 are exactly f(v1), f(v2), . . . , f(vk). We prove the statement by induction
on the height of the subtree rooted at v that Pv = Pf(v) for each vertex v of T . The base
case is that v is a leaf. This implies that f(v) is also a leaf. Furthermore, one can also easily
establish by induction that the height of v in T1 is equal to the height of f(v) in T2 and therefore

3

Pv = Pf(v). Now, consider some arbitrary non-leaf vertex v with children v1, v2, . . . , vk. By
the induction hypothesis, we have Pvi = Pf(vi) for every i 2 [k] and therefore

Pv = (xh−Pv1)�(xh−Pv2)�. . .�(xh−Pvk) = (xh−Pf(v1))�(xh−Pf(v2))�. . .�(xh−Pf(vk)) = Pf(v),

where the last equality follows as f(v1), f(v2), . . . , f(vk) are all of the children of f(v) and v and
f(v) have the same height, thus �nishing the induction proof.

Next, consider the case that T1 and T2 are not isomorphic. We prove by induction on the
height of the subtree rooted at v that for every vertex v of T1 and every vertex u of T2, with
both u and v having the same height in the tree, the subtree rooted at v not being isomorphic
to the subtree rooted at u implies that Pv 6= Pu. First, consider the case that v is a leaf. If u
is also a leaf, then v and u are isomorphic, hence it su�ces to consider the case that u is not
a leaf. Let u1, u2, . . . , uk denote the children of u. Let h denote the height of v in T1 and of
u in T2. Then, Pv := xh and Pu := (xh − Pu1

) � (xh − Pu2
) � . . . � (xh − Puk

). Note that it more
or less directly follows from the de�nition that the polynomial associated with each vertex is
not the zero polynomial (This is not so clear over a �nite �eld, though). Hence, we can set
the variables xh+1, xh+2, . . . in such a way that the polynomial Pu1

evaluates to something
non-zero. If we now set xh = Pu1

(xh+1, xh+2, . . .), then Pv evaluates to something non-zero,
while Pu evaluates to zero, hence �nishing the base case. Next, consider the case that v is not
a leaf and has children v1, v2, . . . , vk. Now, let u be some node in T2 having the same height as
v. If u is a leaf, then we can use the same argument as before, with the roles of u and v being
reversed, to argue that Pv 6= Pu. Hence, we can assume that u is not a leaf and has children
u1, u2, . . . , ur. Now, for each i 2 [k], let

Ni,1 := |{j 2 [k] : The subtree rooted at vi is isomorphic to the subtree rooted at vj}|

and

Ni,2 := |{j 2 [r] : The subtree rooted at vi is isomorphic to the subtree rooted at uj}|.

If the subtree rooted at v is not isomorphic to the subtree rooted at u, then there exists an
i 2 [k] with Ni,1 6= Ni,2. To simplify the exposition, we assume that Ni,1 > Ni,2. Now, we
choose xi for i � h + 1 independently and uniformly at random from the set {1, 2, . . . , 10n2}.
By Schwartz-Zippel, the induction hypothesis and the fact that all polynomials under consid-
eration have a degree of at most n, it follows that Pvi(xh+1, xh+2, . . .) = Puj

(xh+1, xh+2, . . .)

with probability at most n
10n2 = 1

10n
for every j 2 [r] such that the subtree rooted at vi is

not isomorphic to the subtree rooted at uj. By a Union Bound, it follows that with strictly
positive probability Pvi(xh+1, xh+2, . . .) 6= Puj

(xh+1, xh+2, . . .) for every j 2 [r] such that the
subtree rooted at vi is not isomorphic to the subtree rooted at uj. In that case, let Qv(xh) and
Qu(xh) denote the univariate polynomials obtained from Pv and Pu, respectively, by �xing
the variables xh+1, xh+2, Note that the previous discussion implies that there exists a real
number z such that the multiplicity of the root z in Qv(xh) is strictly larger than the multi-
plicity of the root z in Qu(xh). This implies that Qv(xh) 6= Qu(xh). To see why, note that
Qu tends faster to zero than Qv for values close to z. Hence, Pv is not equal to Pu, �nishing
the induction step and completing the proof.

4

(b) By strong induction on the size of the subtree of v one can show that for each node v, the
degree of Pv is at most equal to the number of nodes in the subtree rooted at v. Hence, the
degree of both Pr1 and Pr2 is at most n. As Pr1 and Pr2 are not the same polynomial, Pr1−Pr2
is not the zero-polynomial and has degree at most n. Hence, the number of (h + 1)-tuples
in Sh+1 that are zeros of Pr1 − Pr2 is at most n � |S|h and therefore the probability that we
chose such a tuple from S is at most n/|S| = O(1/n). Hence, if Pr1 and Pr2 are not the same
polynomial, then Pr1(x) 6= Pr2(x) with probability 1−O(1/n).

(c) Let nv denote the number of nodes in the subtree rooted at v. We show by strong induction on
the size of the subtree that |Pv(x)| � n

4nv−2. First, consider the case that v is a leaf. In that
case, |Pv(x)| � n2 = n4nv−2. Now, assume that v has children v1, v2, . . . , vk. The induction
hypothesis implies that

|Pv| = |(xh − Pv1) � (xh − Pv2) � . . . � (xh − Pvk)|

� |(max(2, xh) �max(2, |Pv1 |)) � (max(2, xh) �max(2, |Pv2 |)) � . . . � (max(2, xh) �max(2, |Pvk |))|

� max(2, xh)
k �max(2, |Pv1 |) � . . . �max(2, |Pvk |)

� n2k � n4nv1
−2 � . . . � n4nvk

−2

= n4
∑k

i=1 nvi

� n4nv−2,

and thus we have �nished the induction. In particular, we have shown that |Pr1(x)−Pr2(x)| �
2n4n. Note that Pr1(x) mod p = Pr2(x) mod p if and only if p divides Pr1(x) − Pr2(x).
There are at most O(log(2n4n)) = O(n logn) distinct primes that divide Pr1(x)−Pr2(x) and as
h(k) = Ω(k/ log(k)), we choose a given prime with probability at most O(log(n3)/n3). Hence,
a Union Bound implies that Pr1(x) mod p = Pr2(x) mod p with probability O(n log(n) �
log3(n)/n3) = O(1/n), as desired.

(d) Our algorithm �rst chooses x 2 Sh+1 uniformly at random and then independently a prime p
uniformly at random from the set of all primes in the range from 1 to n3. If Pr1(x) mod p =
Pr2(x) mod p, then our algorithm outputs "Yes" and otherwise our algorithm outputs "No".
If T1 and T2 are isomorphic, then a) implies that our algorithm always outputs "Yes". If T1
and T2 are not isomorphic, then a), b) and c) together with a simple Union Bound over two
events implies that our algorithm outputs "Yes" with probability O(1/n). Hence, it remains
to analyze the runtime. First, we discuss how to choose a prime p uniformly at random from
the set of all primes in the range from 1 to n3. To that end, we repeatedly choose a number
uniformly at random from 1 to n3 and check inO(log100(n)) time whether the number is prime.
If so, set p to this number. If not, then we repeat the procedure (with fresh randomness).
If we haven't found a prime after O(log3 n) repetitions, then our algorithm simply outputs
"Yes". Note that if we indeed output a prime, then every prime between 1 and n3 has the
same probability to be chosen. As in each iteration we have a probability of Ω(1/ log(n)) to

�nd a prime, a Cherno� Bound implies that we �nd a prime with probability 1− e−Ω(log2 n).
Hence, our algorithm still succeeds with probability 1 −O(1/n). Thus, it remains to discuss
how we can e�ciently evaluate Pr1(x) mod p and Pr2(x) mod p. Let v be a non-leaf vertex
with children v1, v2, . . . , vk. As we have

Pv(x) mod p =
�
(xh − Pv1(x)) � (xh − Pv2(x)) � . . . � (xh − Pvk(x))

�
mod p

=
�
(xh − (Pv1(x) mod p)) � (xh − (Pv2(x) mod p)) � . . . � (xh − (Pvk(x) mod p))

�
mod p,

5

given Pv1(x) mod p, Pv2(x) mod p, . . . , Pvk(x) mod p, we can compute Pv(x) mod p in
O(k) time. Hence, there exists a constant c � 10 such that given Pv1(x) mod p, Pv2(x)
mod p, . . . , Pvk(x) mod p, we can compute Pv(x) mod p in c � k time. We now prove by
strong induction on the size of the subtree of v that we can evaluate Pv(x) in c � (2nv − 1)
time. If v is a leaf, we have c � (2nv − 1) � 10, so it clearly holds. Now, let v be a vertex with
children v1, v2, . . . , vk. By the induction hypothesis, we can evaluate Pv(x) mod p in time

c � k+

k∑
i=1

c � (2nvi − 1) � c(2nv − 1),

hence �nishing the induction. In particular, we can evaluate both Pr1(x) mod p and Pr2(x)
mod p in O(n) time, thus proving that our algorithm runs in time O(n).

6

