Szemerédi’s Regularity Lemma

One of the most important tools in “dense” combinatorics.

Message: every graph G is the approximate union of constantly many random-like bipartite graph. The number of parts depends only on the error of the approximation constant but not the size of G!

For disjoint subsets $X, Y \subseteq V$,

$$d(X, Y) := \frac{|E(X, Y)|}{|X| \cdot |Y|}$$

is the density of the pair (X, Y).

A pair (A, B) of disjoint subsets $A, B \subseteq V$ is called ε-regular pair for some $\varepsilon > 0$ if all $X \subseteq A$, and $Y \subseteq B$ with $|X| \geq \varepsilon |A|$ and $|Y| \geq \varepsilon |B|$ satisfy

$$|d(X, Y) - d(A, B)| \leq \varepsilon.$$

Remark Just like in a random bipartite graph...
Szemerédi’s Regularity Lemma

A partition \(\{V_0, V_1, \ldots, V_k\} \) of \(V \) is called an \(\varepsilon \)-regular partition if

\[(i) \ |V_0| \leq \varepsilon|V| \]
\[(ii) \ |V_1| = \cdots = |V_k| \]
\[(iii) \text{all but at most } \varepsilon\binom{k}{2} \text{ of the pairs } (V_i, V_j), \text{ with } 1 \leq i < j \leq k^2, \text{ are } \varepsilon \text{-regular} \]

\(V_0 \) is the exceptional set

Regularity Lemma (Szemerédi) \(\forall \varepsilon > 0 \) and \(\forall \) integer \(m \geq 1 \) \(\exists \) integer \(M = M(\varepsilon, m) \) such that every graph of order at least \(m \) admits an \(\varepsilon \)-regular partition \(\{V_0, V_1, \ldots, V_k\} \) with \(m \leq k \leq M \).

Was devised to prove that “dense sets of integers contain an arithmetic progression of arbitrary length”.
History of Szemerédi’s Theorem

Szemerédi’s Theorem (1975) For any integer $k \geq 1$ and $\delta > 0$ there is an integer $N = N(k, \delta)$ such that any subset $S \subseteq \{1, \ldots, N\}$ with $|S| \geq \delta N$ contains an arithmetic progression of length k.

Was conjectured by Erdős and Turán (1936). Featured problem in mathematics, inspired lots of great new ideas and research in various fields;

- Case of $k = 3$: analytic number theory (Roth, 1953; Fields medal)
- First proof for arbitrary k: combinatorial (Szemerédi, 1975)
- Second proof: ergodic theory (Furstenberg, 1977)
- Third proof: analytic number theory (Gowers, 2001; Fields medal)
- Fourth proof: fully combinatorial (Rödl-Schacht, Gowers, 2007)
- Fifth proof: measure theory (Elek-Szegedy, 2007+)

One of the ingredients in the proof of Green and Tao: “primes contain arbitrary long arithmetic progression”
Proof of the Erdős-Stone Thm

Erdős-Stone Theorem. (Reformulation) For any $\gamma > 0$ and integers $r \geq 2$, $t \geq 1$ there exists an integer $N = N(r, t, \gamma)$, such that any graph G on $n \geq N$ vertices with more than \(\left(1 - \frac{1}{r-1} + \gamma\right) \binom{n}{2} \) edges contains $T_{rt,r}$.

Proof strategy:

- Based on an ε-regular partition, build a "regularity graph" R of G. (Regularity Lemma)
- Show that R contains a K_r (Turán’s Theorem)
- Show that $K_r \subseteq R \Rightarrow T_{rt,r} \subseteq G$
Regularity graph

Given \(\varepsilon \)-regular partition \(\mathcal{P} = \{V_0, V_1, \ldots, V_k\} \) of \(G \),
\(m \leq k \leq M(\varepsilon, m) \),
define the regularity graph \(R = R(\mathcal{P}, d) \)

\[V(R) = \{V_1, \ldots, V_k\} \]

\(V_iV_j \in E(R) \) if \((V_i, V_j)\) is \(\varepsilon \)-regular pair with density \(d(V_i, V_j) \geq d \)

Goal Choose \(\varepsilon, m, d \) such that "most" edges of \(G \) go between the sets \(V_i \) and \(V_j \) with \(V_iV_j \in E(R) \)

How many edges are not at the "right place"?

\# of edges inside \(V_i \): at most \(k \left(\frac{n}{k} \right) < \frac{n^2}{k} < \frac{n^2}{m} \)

\# of edges incident to \(V_0 \): at most \(\varepsilon n \cdot n = \varepsilon n^2 \)

\# of edges between non-regular pairs:

at most \(\varepsilon \left(\frac{k}{2} \right) \left(\frac{n}{k} \right)^2 < \varepsilon n^2 \)

\# of edges between pairs of density < \(d \):

at most \(\left(\frac{k}{2} \right) d \left(\frac{n}{k} \right)^2 \leq dn^2 \)
Regularity graph contains an r-clique

Conclusion: If $\varepsilon, m,$ and d is chosen such that

$$d + 2\varepsilon + \frac{1}{m} < \frac{\gamma}{2}$$

then "most“ edges of G go between sets V_i and V_j with $V_iV_j \in E(R)$.

"most“ means at least $\left(1 - \frac{1}{r-1}\right) \binom{n}{2} + \frac{\gamma}{2} n^2$

On the other hand: # of edges of G going between sets V_i and V_j with $V_iV_j \in E(R)$:

at most $|E(R)| \cdot \left(\frac{n}{k}\right)^2$

Hence

$$\left(1 - \frac{1}{r-1}\right) \binom{n}{2} + \frac{\gamma}{2} n^2 \leq |E(R)| \cdot \left(\frac{n}{k}\right)^2$$

$$\left(1 - \frac{1}{r-1}\right) \binom{k}{2} + \frac{\gamma}{2} k^2 \leq |E(R)|$$

Choose $m = m(\gamma)$ such that

$ex(m, K_r) \leq \left(1 - \frac{1}{r-1}\right) \binom{m}{2} + \frac{\gamma}{2} m^2$

Then Turán’s Theorem \Rightarrow R contains a K_r
Finding $T_{rt,r}$

There are r classes V_{i_1}, \ldots, V_{i_r} such that (V_{i_j}, V_{i_ℓ}) is an ε-regular pair of density at least d, for every $1 \leq j < \ell \leq r$

We find a $T_{rt,r}$ in $G[V_{i_1} \cup \cdots \cup V_{i_r}]$.

Lemma

Let (A, B) be an ε-regular pair with $d(A, B) \geq d$

Let $Y \subseteq B$ be a subset with $|Y| \geq \varepsilon|B|$.

Then

$$|\{v \in A : d_Y(v) < (d - \varepsilon)|Y|\}| < \varepsilon|A|.$$

Proof. Otherwise the subsets $Y \subseteq B$ and $\{v \in A : d_Y(v) < (d - \varepsilon)|Y|\} \subseteq A$ would contradict the ε-regularity of (A, B).

\square
Finding T_{rt}

$$(d - \varepsilon)^{t-1}n \geq \varepsilon n$$
$$(r - 1)\varepsilon n \leq n - t$$

\downarrow

$\exists S_1 \subseteq V_1, |S_1| = t$
$|N_{V_i}(S_1)| \geq (d - \varepsilon)^t n$ for $i = 2, 3, \ldots, r$

$$(d - \varepsilon)^{2t-1}n \geq \varepsilon n$$
$$(r - 2)\varepsilon n \leq (d - \varepsilon)^{t}n - t$$

\downarrow

$\exists S_2 \subseteq V_2, |S_2| = t$
$|N_{V_i}(S_1 \cup S_2)| \geq (d - \varepsilon)^{2t} n$ for $i = 3, \ldots, r$

\ldots

\ldots

$$(d - \varepsilon)^{(r-1)t-1}n \geq \varepsilon n$$
$\varepsilon n \leq (d - \varepsilon)^{(r-2)t}n - t$$

\downarrow

$\exists S_{r-1} \subseteq V_{r-1}, |S_{r-1}| = t$
$|N_{V_i}(\bigcup_{i=1}^{r-1} S_i)| \geq (d - \varepsilon)^{(r-1)t} n$
Finding $T_{rt,r}$

$\exists S_r \subseteq N_{V_r}(\bigcup_{i=1}^{r-1} S_i), \quad |S_r| = t$

and thus $G[S_1 \cup \cdots \cup S_r]$ contains a $T_{rt,r}$ provided

$$(d - \varepsilon)^{(r-1)t} n \geq t$$

Strongest of the blue conditions:

$$(d - \varepsilon)^{(r-1)t-1} \geq \varepsilon$$

Let's not forget:

$$d + 2\varepsilon + \frac{1}{m} < \frac{\gamma}{2}$$

Choose for example: $m \geq \frac{6}{\gamma}$ \text{*}

$$d = \frac{\gamma}{6}$$

$$\varepsilon = \left(\frac{d}{2}\right)^{t(r-1)-1}$$

Green conditions are satisfied by choosing a large enough threshold vertex number $N = N(r, t, \gamma)$.

$$r, t, \gamma \leadsto m, d, \varepsilon \leadsto N$$

*We also needed large m earlier for using Turán's Theorem.
Applications of the Regularity Lemma

Counting Lemma For \(\forall \gamma > 0 \ \exists \delta = \delta(\gamma) \) such that the following holds. Let \(G \) be an \(n \)-vertex graph such that at least \(\gamma \binom{n}{2} \) edges has to be deleted from \(G \) to make it triangle-free. Then \(G \) has at least \(\delta \binom{n}{3} \) triangles.

Proof. Apply Regularity Lemma (Homework).

Roth’s Theorem For \(\forall \epsilon > 0 \ \exists N = N(\epsilon) \) such that for any \(n \geq N \) and \(S \subseteq [n] \), \(|S| \geq \epsilon n \), there is a three-element arithmetic progression in \(S \).

Proof. Create a tri-partite graph \(H = H(S) \) from \(S \).

\[
V(H) = \{(i, 1) : i \in [n]\} \cup \{(j, 2) : j \in [2n]\} \\
\cup \{(k, 3) : k \in [3n]\}
\]

\((i, 1)\) and \((j, 2)\) are adjacent if \(j - i \in S \)
\((j, 2)\) and \((k, 3)\) are adjacent if \(k - j \in S \)
\((i, 1)\) and \((k, 3)\) are adjacent if \(k - i \in 2S \)
Roth’s Theorem — Proof cont’d

\((i, 1), (i + x, 2), (i + 2x, 3)\) form a triangle for every \(i \in [n], x \in S\). These \(|S|n\) triangles are pairwise edge-disjoint.

\[\Downarrow\]

At least \(\varepsilon n^2 \geq \frac{\varepsilon}{18} \left(\frac{|V(H)|}{2} \right)\) edges must be removed from \(H\) to make it triangle-free.

Let \(\delta = \delta \left(\frac{\varepsilon}{18} \right)\) provided by the Counting Lemma. There are at least \(\delta \left(\frac{|V(H)|}{3} \right)\) triangles in \(H\).

\(S\) has no three term arithmetic progression

\[\Downarrow\]

\(\{(i, 1), (j, 2), (k, 3)\}\) is a triangle \(\text{iff } j - i = k - j \in S\). Hence the number of triangles in \(H\) is equal to \(n|S| \leq n^2 < \delta \left(\frac{6n}{3} \right)\), provided \(n > N(\varepsilon) := \left\lfloor \frac{1}{\delta} \right\rfloor\). \(\Box\)
Applications — Property testing

Input is extremely large: even a linear time algorithm could take too long.

Have: random access to every entry of the input. One read from the input is called a query.

Want: some information in constant time.

An input, given as function \(f : D \rightarrow F \), is \(\varepsilon \)-close to satisfying property \(P \) if there exists a function \(f' : D \rightarrow F \) that

- satisfies \(P \) and
- differs from \(f \) at no more than \(\varepsilon |D| \) places.

An input that is not \(\varepsilon \)-close to satisfying \(P \) is called \(\varepsilon \)-far from satisfying \(P \).

Let \(P \) be a property and \(n \) be the input size. An \(\varepsilon \)-test for \(P \) with \(q = q(\varepsilon, n) \) queries is a randomized algorithm that reads the input up to \(q \) places and with probability at least \(\frac{2}{3} \) distinguishes between the case that the input satisfies \(P \) and the case that the input is \(\varepsilon \)-far from satisfying \(P \).
Testing linearity

Property P is called testable if it is ε-testable with $q = q(\varepsilon)$ queries for any $\varepsilon > 0$.

Let \mathbb{F} be an arbitrary finite field.

Proposition Linearity of a function is testable.
It is possible to test with $q = O(\varepsilon^{-1})$ queries whether a function $\mathbb{F} \rightarrow \mathbb{F}$ is linear.

Proposition It is possible to test with $q = O(k + \varepsilon^{-1})$ queries whether a function $\mathbb{F} \rightarrow \mathbb{F}$ is a polynomial of degree at most k.

Homework.
Triangle-freeness is testable

Let ε be given.
Let $\delta = \delta(\varepsilon)$ be from the Counting Lemma.

Let $G = (V, E)$ be an input graph.
Choose uniformly and independently $\ell = \lceil \frac{2}{\delta} \rceil$ vertex triplets $T_1, \ldots, T_\ell \subseteq V$, $|T_i| = 3$.
If a triangle is found reject G, otherwise accept it.

What is the probability that we reject a triangle-free input G? 0

What is the probability that we accept an input G which is ε-far from being triangle-free? at most $\frac{1}{3}$

By Counting Lemma

$$
Pr[T_i \text{ forms a triangle in } G] \geq \delta
$$

$$
Pr[\text{none of } T_1, \ldots, T_\ell \text{ is a triangle}] \leq (1 - \delta)^\ell \leq e^{-\delta \ell} \\
\leq e^{-2} < \frac{1}{3}
$$