Jordan Curves

A curve is a subset of \mathbb{R}^2 of the form
$$\alpha = \{ \gamma(x) : x \in [0, 1] \},$$
where $\gamma : [0, 1] \to \mathbb{R}^2$ is a continuous mapping from
the closed interval $[0, 1]$ to the plane. $\gamma(0)$ and $\gamma(1)$
are called the endpoints of curve α.

A curve is closed if its first and last points are the
same. A curve is simple if it has no repeated points except possibly first = last. A closed simple curve is
called a Jordan-curve.

Examples: Line segments between $p, q \in \mathbb{R}^2$
$$x \mapsto xp + (1 - x)q,$$
circular arcs, Bezier-curves without self-intersection, etc...

Drawing of graphs

A drawing of a multigraph G is a function f defined on
$V(G) \cup E(G)$ that assigns
- a point $f(v) \in \mathbb{R}^2$ to each vertex v and
- an $f(u), f(v)$-curve to each edge uv,
such that the images of vertices are distinct. A point
in $f(e) \cap f(e')$ that is not a common endpoint is a
crossing.

A multigraph is planar if it has a drawing without cros-
sings. Such a drawing is a planar embedding of G. A planar (multi)graph together with a particular planar
embedding is called a plane (multi)graph.

Are there non-planar graphs?

Proposition. K_5 and $K_{3,3}$ cannot be drawn without
crossing.

Proof. Define the conflict graph of edges.

The unconscious ingredient.

Jordan Curve Theorem. A simple closed curve C
partitions the plane into exactly two faces, each having C as boundary.

Regions and faces

An open set in the plane is a set $U \subseteq \mathbb{R}^2$ such that
for every $p \in U$, all points within some small distance
belong to U. A region is an open set U that contains
a u, v-curve for every pair $u, v \in U$. The faces of a
plane multigraph are the maximal regions of the plane
that contain no points used in the embedding.

A finite plane multigraph G has one unbounded face
(also called outer face).
Dual graph

Denote the set of faces of a plane multigraph G by $F(G)$ and let $E(G) = \{e_1, \ldots, e_m\}$. Define the dual multigraph G^* of G by

- $V(G^*) := F(G)$
- $E(G^*) := \{e_1^*, \ldots, e_m^*\}$, where the endpoints of e_i^* are the two (not necessarily distinct) faces $f^i, f^{i'} \in F(G)$ on the two sides of e_i.

Remarks. Multiple edges and/or loops could appear in the dual of simple graphs

Different planar embeddings of the same planar graph could produce different duals.

Proposition. Let $l(F_i)$ denote the length of face F_i in a plane multigraph G. Then

$$2e(G) = \sum l(F_i).$$

Proposition. $e_1, \ldots, e_r \in E(G)$ forms a cycle in G iff $e_1^*, \ldots, e_r^* \in E(G^*)$ forms a minimal nonempty edge-cut in G^*.

Application – Platonic solids

- Each face is congruent to the same regular convex r-gon, $r \geq 3$
- The same number d of faces meet at each vertex, $d \geq 3$

Examples: Cube, Tetrahedron

$$fr = 2e \quad vd = 2e$$

Substitute into Euler’s Formula

$$\frac{2e}{d} - e + \frac{2e}{r} = 2$$

$$\frac{1}{d} + \frac{1}{r} = \frac{1}{2} + \frac{1}{e}$$

Crucial observation: either d or r is 3.

Possibilities: $r \quad d \quad e \quad f \quad v$

Euler’s Formula

Theorem. (Euler, 1758) If a plane multigraph G with k components has n vertices, e edges, and f faces, then

$$n - e + f = 1 + k.$$

Proof. Induction on e.

Base Case. If $e = 0$, then $n = k$ and $f = 1$.

Suppose now $e > 0$.

Case 1. G has a cycle.

Delete one edge from a cycle. In the new graph:

$e' = e - 1$, $n' = n$, $f' = f - 1$ (Jordan!), and $k' = k$.

Case 2. G is a forest.

Delete a pendant edge. In the new graph:

$e' = e - 1$, $n' = n$, $f' = f$, and $k' = k + 1$.

Remark. The dual may depend on the embedding of the graph, but the number of faces does not.

Applications of Euler’s Formula

For a convex polytope,

$$\text{#Vertices} - \text{#Edges} + \text{#Faces} = 2$$

<table>
<thead>
<tr>
<th>Convex Polytope</th>
<th>#Vertices</th>
<th>#Edges</th>
<th>#Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Cube</td>
<td>8</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Octahedron</td>
<td>6</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td>20</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Icosahedron</td>
<td>12</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

The platonic solids
Number of edges in a planar graphs

Theorem. If \(G \) is a simple, planar graph with \(n(G) \geq 3 \), then \(e(G) \leq 3n(G) - 6 \). If also \(G \) is triangle-free, then \(e(G) \leq 2n(G) - 4 \).

Proof. Apply Euler's Formula.

Corollary \(K_5 \) and \(K_{3,3} \) are non-planar.

A **maximal planar graph** is a simple planar graph that is not a spanning subgraph of another planar graph. A **triangulation** is a simple plane graph where every face is a triangle.

Proposition. For a simple \(n \)-vertex plane graph \(G \), the following are equivalent.

A) \(G \) has \(3n - 6 \) edges

B) \(G \) is a triangulation.

C) \(G \) is a maximal planar graph.

Coloring maps with 5 colors

Five Color Theorem. (Heawood, 1890) If \(G \) is planar, then \(\chi(G) \leq 5 \).

Proof. Take a minimal counterexample.

(i) There is a vertex \(v \) of degree at most 5.

(ii) Modify a proper 5-coloring of \(G - v \) to obtain a proper 5-coloring of \(G \). A contradiction.

Idea of modification: Kempe chains.

Coloring maps with 4 colors

Four Color Theorem. (Appel-Haken, 1976) For any planar graph \(G \), \(\chi(G) \leq 4 \).

Idea of the proof.

W.l.o.g. we can assume \(G \) is a planar triangulation. A **configuration** in a planar triangulation is a separating cycle \(C \) (the ring) together with the portion of the graph inside \(C \).

For the Four Color Problem, a set of configurations is an **unavoidable set** if a minimum counterexample must contain a member of it.

A configuration is **reducible** if a planar graph containing it cannot be a minimal counterexample.

The usual proof attempts to

(i) find a set \(C \) of unavoidable configurations, and

(ii) show that each configuration in \(C \) is reducible.
Proof attempts of the Four Color Theorem

Kempe’s original proof tried to show that the unavoidable set

is reducible.

Appel and Haken found an unavoidable set of 1936 of configurations, (all with ring size at most 14) and proved each of them is reducible. (1000 hours of computer time)

Robertson, Sanders, Seymour and Thomas (1996) used an unavoidable set of 633 configuration. They used 32 rules to prove that each of them is reducible. (3 hours computer time)

Kuratowski’s Theorem

Theorem. (Kuratowski, 1930) A graph G is planar if and only if G does not contain a subdivision of K_5 or $K_{3,3}$.

Outline of a proof.

A Kuratowski subgraph of G is a subgraph of G that is a subdivision of K_5 or $K_{3,3}$. A minimal nonplanar graph is a nonplanar graph such that every proper subgraph is planar.

Kuratowski’s Theorem follows from the following Lemma and Theorem.

Lemma If G is a graph with fewest edges among counterexamples, then G is 3-connected.

Lemma. Every minimal nonplanar graph is 2-connected.

Lemma. Let $S = \{ x, y \}$ be a separating set of G. If G is a nonplanar graph, then adding the edge xy to some S-lobe of G yields a nonplanar graph.

The Graph Minor Theorem

Theorem. (Robertson and Seymour, 1985-200?) In any infinite list of graphs, some graph is a minor of another.

Proof: more than 500 pages in 20 papers.

Corollary For any graph property that is closed under taking minors, there exists finitely many minimal forbidden minors.

Homework. Wagner’s Theorem. Every nonplanar graph contains either a K_5 or $K_{3,3}$-minor.

For embeddability on the projective plane, it is known that there are 35 minimal forbidden minors. For embeddability on the torus, we don’t know the exact number of minimal forbidden minors; there are more than 800 known. (The generalization of Kuratowski’s subdivision characterization yields an infinite list.)