
Chapter 8

Voronoi Diagrams

8.1 Post Office Problem

Suppose there are n post offices p1, . . . pn in a city. Someone who is located at a position
q within the city would like to know which post office is closest to him.1 Modeling the
city as a planar region, we think of p1, . . . pn and q as points in the plane. Denote the
set of post offices by P = {p1, . . . pn}.

Figure 8.1: Closest post offices for various query points.

While the locations of post offices are known and do not change so frequently, we do
not know in advance for which—possibly many—query locations the closest post office
is to be found. Therefore, our long term goal is to come up with a data structure on top
of P that allows to answer any possible query efficiently. The basic idea is to apply a
so-called locus approach : we partition the query space into regions on which the answer
is the same. In our case, this amounts to partition the plane into regions such that for
all points within a region the same point from P is closest (among all points from P).

1Another—possibly historically more accurate—way to think of the problem: You want to send a letter
to a person living at q. For this you need to know the corresponding zip code, which is the code of the
post office closest to q.

115

Chapter 8. Voronoi Diagrams Geometry: C&A 2020

As a warmup, consider the problem for two post offices pi, pj ∈ P. For which query
locations is the answer pi rather than pj? This region is bounded by the bisector of pi
and pj, that is, the set of points which have the same distance to both points.

Proposition 8.1. For any two distinct points in Rd the bisector is a hyperplane, that
is, in R2 it is a line.

Proof. Let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two points in Rd. The bisector of
p and q consists of those points x = (x1, . . . , xd) for which

||p− x|| = ||q− x|| ⇐⇒ ||p− x||2 = ||q− x||2

⇐⇒
d∑

i=1

(pi − xi)
2 =

d∑
i=1

(qi − xi)
2

⇐⇒
d∑

i=1

pi
2 − 2

d∑
i=1

pixi +

d∑
i=1

xi
2 =

d∑
i=1

qi
2 − 2

d∑
i=1

qixi +

d∑
i=1

xi
2

⇐⇒
d∑

i=1

pi
2 −

d∑
i=1

qi
2 = 2

d∑
i=1

(pi − qi)xi

⇐⇒ ||p||
2 − ||q||

2 = 2(p− q)>x .

As p and q are distinct, this is the equation of a hyperplane.

pi

pj

H(pi, pj)

Figure 8.2: The bisector of two points.

Denote by H(pi, pj) the closed halfspace bounded by the bisector of pi and pj that
contains pi. In R2, the region H(pi, pj) is a halfplane; see Figure 8.2.

Exercise 8.2.

a) What is the bisector of a line ` and a point p ∈ R2 \ `, that is, the set of all
points x ∈ R2 with ||x− p|| = ||x− `|| = minq∈` ||x− q||?

b) For two points p 6= q ∈ R2, what is the region that contains all points whose
distance to p is exactly twice their distance to q?

116

Geometry: C&A 2020 8.2. Voronoi Diagram

8.2 Voronoi Diagram

As it turns out, understanding the situation for two points essentially tells us everything
we need to know for the general case. The structure obtained by applying the locus
approach to the nearest neighbor problem is called Voronoi diagram. In fact, this
approach works for a variety of distance functions and spaces [2, 7]. So, Voronoi diagram
should be considered a family of structures rather than a single specific one. Without
further qualification, the underlying distance function is the Euclidean metric. In the
following we define and study the Voronoi diagram for a given set P = {p1, . . . , pn} of
points in R2.

Definition 8.3. For pi ∈ P denote the Voronoi cell VP(i) of pi by

VP(i) :=
{
q ∈ R2 : ||q− pi|| 6 ||q− p|| for all p ∈ P

}
.

Proposition 8.4.

VP(i) =
⋂
j6=i

H(pi, pj) .

Proof. For j 6= i we have ||q− pi|| 6 ||q− pj|| ⇐⇒ q ∈ H(pi, pj).

Corollary 8.5. VP(i) is non-empty and convex.

Proof. According to Proposition 8.4, the region VP(i) is the intersection of a finite
number of halfplanes and hence convex. As pi ∈ VP(i), we have VP(i) 6= ∅.

Observe that every point of the plane lies in some Voronoi cell but no point lies in
the interior of two Voronoi cells. Therefore these cells form a subdivision of the plane
(a partition2 into interior-disjoint simple polygons). See Figure 8.3 for an example.

Figure 8.3: Example: The Voronoi diagram of a point set.

2Strictly speaking, to obtain a partition, we treat the shared boundaries of the polygons as separate
entities.

117

Chapter 8. Voronoi Diagrams Geometry: C&A 2020

Definition 8.6. The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn} of points in R2

is the subdivision of the plane induced by the Voronoi cells VP(i), for i = 1, . . . , n.
Denote by VV(P) the set of vertices, by VE(P) the set of edges, and by VR(P) the
set of regions (faces) of VD(P).

Lemma 8.7. For every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of at least three edges from VE(P);

b) v is incident to at least three regions from VR(P);

c) v is the center of a circle C(v) through at least three points from P such that

d) D(v)◦ ∩ P = ∅, where D(v) denotes the disk bounded by C(v).

Proof. Consider a vertex v ∈ VV(P). As all Voronoi cells are convex, k > 3 of them
must be incident to v. This proves Part a) and b).

Without loss of generality let these cells be VP(i), for 1 6 i 6 k; see Figure 8.4.
Denote by ei, 1 6 i 6 k, the edge incident to v that bounds VP(i) and VP((imodk)+1).

For any i = 1, . . . , k we have v ∈ ei ⇒ ||v − pi|| = ||v − p(imodk)+1||. In other words,
p1, p2, . . . , pk are cocircular, which proves Part c).

Part d): Suppose there exists a point p` ∈ D(v)◦. Then the vertex v is closer to p`
than it is to any of p1, . . . , pk, in contradiction to the fact that v is contained in all of
VP(1), . . . ,VP(k).

v

e2

ek−1

eke1

VP(k)

VP(1)

VP(2)

. . .

Figure 8.4: Voronoi regions around v.

Corollary 8.8. If P is in general position (no four points from P are cocircular), then
for every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of exactly three edges from VE(P);

b) v is incident to exactly three regions from VR(P);

c) v is the center of a circle C(v) through exactly three points from P such that

118

Geometry: C&A 2020 8.2. Voronoi Diagram

d) D(v)◦ ∩ P = ∅, where D(v) denotes the disk bounded by C(v).

Lemma 8.9. There is an unbounded Voronoi edge bounding VP(i) and VP(j) ⇐⇒
pipj ∩P = {pi, pj} and pipj ⊆ ∂conv(P), where the latter denotes the boundary of the
convex hull of P.

Proof. Denote by bi,j the bisector of pi and pj, and let D denote the family of disks
centered at some point on bi,j and passing through pi (and pj). There is an unbounded
Voronoi edge bounding VP(i) and VP(j) ⇐⇒ there is a ray ρ ⊂ bi,j such that ||r−pk|| >
||r−pi|| (= ||r−pj||), for every r ∈ ρ and every pk ∈ P with k /∈ {i, j}. Equivalently, there
is a ray ρ ⊂ bi,j such that for every point r ∈ ρ the disk C ∈ D centered at r does not
contain any point from P in its interior (Figure 8.5).

The latter statement implies that the open halfplane H, whose bounding line passes
through pi and pj and such that H contains the infinite part of ρ, contains no point
from P in its interior. Therefore, pipj appears on ∂conv(P) and pipj does not contain
any pk ∈ P, for k 6= i, j.

pi pj

ρ

H

r0

r

bi,j

C

D

Figure 8.5: The correspondence between pipj appearing on ∂conv(P) and a family D

of empty disks centered at the bisector of pi and pj.

Conversely, suppose that pipj appears on ∂conv(P) and pipj ∩ P = {pi, pj}. Then
some halfplane H whose bounding line passes through pi and pj contains no point from
P in its interior. In particular, the existence of H together with pipj∩P = {pi, pj} implies
that there is some disk C ∈ D such that C ∩ P = {pi, pj}. Denote by r0 the center of C
and let ρ denote the ray starting from r0 along bi,j such that the infinite part of ρ is
contained in H. Consider any disk D ∈ D centered at a point r ∈ ρ and observe that
D \H ⊆ C \H. As neither H nor C contain any point from P in their respective interior,
neither does D. This holds for every D, and we have seen above that this statement is
equivalent to the existence of an unbounded Voronoi edge bounding VP(i) and VP(j).

119

Chapter 8. Voronoi Diagrams Geometry: C&A 2020

8.3 Duality

A straight-line dual of a plane graph G is a graph G ′ defined as follows: Choose a point
for each face of G and connect any two such points by a straight edge, if the corresponding
faces share an edge of G. Observe that this notion depends on the embedding; that
is why the straight-line dual is defined for a plane graph rather than for an abstract
graph. In general, G ′ may have edge crossings, which may also depend on the choice
of representative points within the faces. However, for Voronoi diagrams there is a
particularly natural choice of representative points such that G ′ is plane: the points
from P.

Theorem 8.10 (Delaunay [3]). The straight-line dual of VD(P) for a set P ⊂ R2 of n > 3
points in general position (no three points from P are collinear and no four points
from P are cocircular) is a triangulation: the unique Delaunay triangulation of P.

Proof. By Lemma 8.9, the convex hull edges appear in the straight-line dual T of VD(P)
and they correspond exactly to the unbounded edges of VD(P). All remaining edges
of VD(P) are bounded, that is, both endpoints are Voronoi vertices. Consider some
v ∈ VV(P). According to Corollary 8.8(b), v is incident to exactly three Voronoi regions,
which, therefore, form a triangle4(v) in T . By Corollary 8.8(d), the circumcircle of4(v)
does not contain any point from P in its interior. Hence 4(v) appears in the (unique by
Corollary 6.19) Delaunay triangulation of P.

Conversely, for any triangle pipjpk in the Delaunay triangulation of P, by the empty
circle property the circumcenter c of pipjpk has pi, pj, and pk as its closest points from
P. Therefore, c ∈ VV(P) and—as above—the triangle pipjpk appears in T .

Figure 8.6: The Voronoi diagram of a point set and its dual Delaunay triangulation.

It is not hard to generalize Theorem 8.10 to general point sets. In this case, a
Voronoi vertex of degree k is mapped to a convex polygon with k cocircular vertices.
Any triangulation of such a polygon yields a Delaunay triangulation of the point set.

120

Geometry: C&A 2020 8.4. Lifting Map

Corollary 8.11. |VE(P)| 6 3n− 6 and |VV(P)| 6 2n− 5.

Proof. Every edge in VE(P) corresponds to an edge in the dual Delaunay triangulation.
The latter is a plane graph on n vertices, which by Corollary 2.5 has at most 3n−6 edges
and at most 2n− 4 faces. Only the bounded faces correspond to a vertex in VD(P).

Corollary 8.12. For a set P ⊂ R2 of n points, the Voronoi diagram of P can be con-
structed in expected O(n logn) time and O(n) space.

Proof. We have seen that a Delaunay triangulation T for P can be obtained using ran-
domized incremental construction in the given time and space bounds. As T is a plane
graph, its number of vertices, edges, and faces all are linear in n. Therefore, the straight-
line dual of T—which by Theorem 8.10 is the desired Voronoi diagram—can be computed
in O(n) additional time and space.

Exercise 8.13. Consider the Delaunay triangulation T for a set P ⊂ R2 of n > 3 points
in general position. Prove or disprove:

a) Every edge of T intersects its dual Voronoi edge.

b) Every vertex of VD(P) is contained in its dual Delaunay triangle.

Exercise 8.14. Given a plane graph that forms the Voronoi diagram a some unknown
point set P. Can you compute P along with the Delaunay triangulation of P in
linear time?

8.4 Lifting Map

Recall the lifting map that we used in Section 6.3 to prove that the Lawson Flip Algorithm
terminates. Denote by U : z = x2 + y2 the unit paraboloid in R3. The lifting map
` : R2 → U with ` : p = (px, py) 7→ (px, py, px

2 + py
2) is the projection of the x/y-plane

onto U in direction of the z-axis.
For p ∈ R2 let Hp denote the plane of tangency to U in `(p). Denote by hp : R

2 → Hp

the projection of the x/y-plane onto Hp in direction of the z-axis (see Figure 8.7).

Lemma 8.15. ||`(q) − hp(q)|| = ||p− q||2, for any points p, q ∈ R2.

Exercise 8.16. Prove Lemma 8.15. Hint: First determine the equation of the tangent
plane Hp to U in `(p).

Theorem 8.17. For p = (px, py) ∈ R2 denote by Hp the plane of tangency to the
unit paraboloid U = {(x, y, z) : z = x2 + y2} ⊂ R3 in `(p) = (px, py, px

2 + py
2).

Let H(P) :=
⋂

p∈P H
+
p denote the intersection of all halfspaces above the planes Hp,

for p ∈ P. Then the vertical projection of ∂H(P) onto the x/y-plane forms the
Voronoi Diagram of P (the faces of ∂H(P) correspond to Voronoi regions, the edges
to Voronoi edges, and the vertices to Voronoi vertices).

Proof. For any point q ∈ R2, the vertical line through q intersects every plane Hp,
p ∈ P. By Lemma 8.15 the topmost plane intersected belongs to the point from P that
is closest to q.

121

Chapter 8. Voronoi Diagrams Geometry: C&A 2020

p

U

`(p)

q

`(q)

hp(q)

Hp

Figure 8.7: Lifting map interpretation of the Voronoi diagram in a two-dimensional
projection.

8.5 Planar Point Location

One last bit is still missing in order to solve the post office problem optimally.

Theorem 8.18. Given a triangulation T for a set P ⊂ R2 of n points, one can build in
O(n) time an O(n) size data structure that allows for any query point q ∈ conv(P)
to find in O(logn) time a triangle from T containing q.

The data structure we will employ is known as Kirkpatrick’s hierarchy. But before
discussing it in detail, let us put things together in terms of the post office problem.

Corollary 8.19 (Nearest Neighbor Search). Given a set P ⊂ R2 of n points, one can
build in expected O(n logn) time an O(n) size data structure that allows for any
query point q ∈ conv(P) to find in O(logn) time a nearest neighbor of q among the
points from P.

Proof. First construct the Voronoi Diagram V of P in expected O(n logn) time. It has
exactly n convex faces. Every unbounded face can be cut by the convex hull boundary
into a bounded and an unbounded part. As we are concerned with query points within
conv(P) only, we can restrict our attention to the bounded parts.3 Any convex polygon
can easily be triangulated in time linear in its number of edges (= number of vertices).
As V has at most 3n − 6 edges and every edge appears in exactly two faces, V can
be triangulated in O(n) time overall. Label each of the resulting triangles with the
point from p, whose Voronoi region contains it, and apply the data structure from
Theorem 8.18.

3We even know how to decide in O(logn) time whether or not a given point lies within conv(P), see
Exercise 5.26.

122

Geometry: C&A 2020 8.6. Kirkpatrick’s Hierarchy

8.6 Kirkpatrick’s Hierarchy

We will now develop a data structure for point location in a triangulation, as described
in Theorem 8.18. For simplicity we assume that the triangulation T we work with is
a maximal planar graph, that is, the outer face is a triangle as well. This can easily
be achieved by an initial normalization step that puts a huge triangle Th around T and
triangulates the region in between Th and T (in linear time—how?).

The main idea for the data structure is to construct a hierarchy T0,. . . ,Th of triangu-
lations, such that

� T0 = T ,

� the vertices of Ti are a subset of the vertices of Ti−1, for i = 1, . . . , h, and

� Th is a single triangle only.

Search. For a query point x we can find a triangle from T that contains x as follows.

Search(x ∈ R2)

1. For i = h, h− 1, . . . , 0: Find a triangle ti from Ti that contains x.

2. return t0.

This search is efficient under the following conditions.

(C1) Every triangle from Ti intersects only few (6 c) triangles from Ti−1. (These will
then be connected via the data structure.)

(C2) h is small (6 d logn).

Proposition 8.20. The search procedure described above needs 6 3cd logn = O(logn)
orientation tests.

Proof. For every Ti, 0 6 i < h, at most c triangles are tested as to whether or not they
contain x. Using three orientation tests one can determine whether or not a triangle
contains a given point.

Thinning. Removing a vertex v and all its incident edges from a triangulation creates a
non-triangulated hole that forms a star-shaped polygon since all points are visible from
v (the star-point). Here we remove vertices of constant degree only and therefore these
polygons are of constant size. But even if they were not, it is not hard to triangulate a
star-shaped polygon in linear time.

Lemma 8.21. A star-shaped polygon, given as a sequence of n > 3 vertices and a
star-point, can be triangulated in O(n) time.

123

Chapter 8. Voronoi Diagrams Geometry: C&A 2020

Exercise 8.22. Prove Lemma 8.21.

As a side remark, the kernel of a simple polygon, that is, the (possibly empty) set
of all star-points, can be constructed in linear time as well [8]. A point in the kernel can
also be found using linear programming.

Our working plan is to obtain Ti from Ti−1 by removing several independent (pairwise
non-adjacent) vertices and re-triangulating. These vertices should

a) have small degree (otherwise the degree within the hierarchy gets too large, that
is, we need to test too many triangles on the next level) and

b) be many (otherwise the height h of the hierarchy gets too large).

The following lemma asserts the existence of a sufficiently large set of independent
small-degree vertices in every triangulation.

Lemma 8.23. In every triangulation of n points in R2 there exists an independent set
of at least dn/18e vertices of maximum degree 8. Moreover, such a set can be found
in O(n) time.

Proof. Let T = (V, E) denote the graph of the triangulation, which we consider as an
abstract graph in the following. We may suppose that T is maximal planar, that is, the
outer face is a triangle. (Otherwise use Theorem 2.30 to combinatorially triangulate T
arbitrarily. An independent set in the resulting graph T ′ is also independent in T and the
degree of a vertex in T ′ is at least as large as its degree in T .) For n = 3 the statement
is true. Let n > 4.

By the Euler formula we have |E| = 3n− 6, that is,∑
v∈V

degT (v) = 2|E| = 6n− 12 < 6n.

Let W ⊆ V denote the set of vertices of degree at most 8. Claim: |W| > n/2. Suppose
|W| 6 n/2. By Theorem 2.31 we know that T is 3-connected and so every vertex has
degree at least three. Therefore∑

v∈V

degT (v) =
∑
v∈W

degT (v) +
∑

v∈V\W

degT (v) > 3|W|+ 9|V \W|

= 3|W|+ 9(n− |W|) = 9n− 6|W| > 9n− 3n = 6n,

in contradiction to the above.
Construct an independent set U in T as follows (greedily): As long as W 6= ∅, add an

arbitrary vertex v ∈W to U and remove v and all its neighbors from W. Assuming that
T is represented so that we can obtain the neighborhood of a vertex v in degT (v) time
(for instance, using adjacency lists), both W and U can be computed in O(n) time.

Obviously U is independent and all vertices in U have degree at most 8. At each
selection step at most 9 vertices are removed from W. Therefore |U| > d(n/2)/9e =
dn/18e.

124

Geometry: C&A 2020 8.6. Kirkpatrick’s Hierarchy

Proof. (of Theorem 8.18)
Construct the hierarchy T0, . . . Th with T0 = T as follows. Obtain Ti from Ti−1 by re-
moving an independent set U as in Lemma 8.23 and re-triangulating the resulting holes.
By Lemma 8.21 and Lemma 8.23 every step is linear in the number |Ti| of vertices in Ti.
The total cost for building the data structure is thus

h∑
i=0

α|Ti| 6
h∑

i=0

αn

(
1−

1

18

)i

6
h∑

i=0

αn(17/18)i < αn

∞∑
i=0

(17/18)i = 18αn ∈ O(n),

for some constant α. Similarly the space consumption is linear.
The number of levels amounts to h = log18/17 n < 12.2 logn. Thus by Proposi-

tion 8.20 the search needs at most 3 · 8 · log18/17 n < 292 logn orientation tests.

Improvements. As the name suggests, the hierarchical approach discussed above is due
to David Kirkpatrick [6]. The constant 292 that appears in the search time is somewhat
large. There has been a whole line of research trying to improve it using different
techniques.

� Sarnak and Tarjan [9]: 4 logn.

� Edelsbrunner, Guibas, and Stolfi [4]: 3 logn.

� Goodrich, Orletsky, and Ramaiyer [5]: 2 logn.

� Adamy and Seidel [1]: 1 logn+ 2
√
logn+O(4

√
logn).

Exercise 8.24. Let {p1, p2, . . . , pn} be a set of points in the plane, which we call obsta-
cles. Imagine there is a disk of radius r centered at the origin which can be moved
around the obstacles but is not allowed to intersect them (touching the boundary is
ok). Is it possible to move the disk out of these obstacles? See the example depicted
in Figure 8.8 below.

More formally, the question is whether there is a (continuous) path γ : [0, 1] −→
R2 with γ(0) = (0, 0) and ‖γ(1)‖ > max{‖p1‖, . . . , ‖pn‖}, such that at any time
t ∈ [0, 1] and ‖γ(t) − pi‖ > r, for any 1 6 i 6 n. Describe an algorithm to decide
this question and to construct such a path—if one exists—given arbitrary points
{p1, p2, . . . , pn} and a radius r > 0. Argue why your algorithm is correct and analyze
its running time.

Exercise 8.25. This exercise is about an application from Computational Biology:
You are given a set of disks P = {a1, .., an} in R2, all with the same radius ra > 0.
Each of these disks represents an atom of a protein. A water molecule is represented
by a disc with radius rw > ra. A water molecule cannot intersect the interior of
any protein atom, but it can be tangent to one. We say that an atom ai ∈ P is
accessible if there exists a placement of a water molecule such that it is tangent to
ai and does not intersect the interior of any other atom in P. Given P, find an
O(n logn) time algorithm which determines all atoms of P that are inaccessible.

125

Chapter 8. Voronoi Diagrams Geometry: C&A 2020

r

(0, 0)

pi

Figure 8.8: Motion planning: Illustration for Exercise 8.24.

Exercise 8.26. Let P ⊂ R2 be a set of n points. Describe a data structure to find in
O(logn) time a point in P that is furthest from a given query point q among all
points in P.

Exercise 8.27. Show that the bounds given in Theorem 8.18 are optimal in the alge-
braic computation tree model.

Questions

34. What is the Voronoi diagram of a set of points in R2? Give a precise definition
and explain/prove the basic properties: convexity of cells, why is it a subdivision
of the plane?, Lemma 8.7, Lemma 8.9.

35. What is the correspondence between the Voronoi diagram and the Delaunay
triangulation for a set of points in R2? Prove duality (Theorem 8.10) and
explain where general position is needed.

36. How to construct the Voronoi diagram of a set of points in R2? Describe an
O(n logn) time algorithm, for instance, via Delaunay triangulation.

37. What is the Post-Office Problem and how can it be solved optimally? De-
scribe the problem and a solution using linear space, O(n logn) preprocessing, and
O(logn) query time.

38. How does Kirkpatrick’s hierarchical data structure for planar point location
work exactly? Describe how to build it and how the search works, and prove the
runtime bounds. In particular, you should be able to state and prove Lemma 8.23
and Theorem 8.18.

126

Geometry: C&A 2020 8.6. Kirkpatrick’s Hierarchy

39. (This topic was not covered in this year’s course in HS20 and therefore the following question
will not be asked in the exam.) How can the Voronoi diagram be interpreted in
context of the lifting map? Describe the transformation and prove its properties
to obtain a formulation of the Voronoi diagram as an intersection of halfspaces one
dimension higher.

References

[1] Udo Adamy and Raimund Seidel, On the exaxt worst case query complexity of planar
point location. J. Algorithms, 37, (2000), 189–217.

[2] Franz Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv., 23/3, (1991), 345–405.

[3] Boris Delaunay, Sur la sphère vide. A la memoire de Georges Voronoi. Izv. Akad.
Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 6, (1934), 793–800.

[4] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi, Optimal point location
in a monotone subdivision. SIAM J. Comput., 15/2, (1986), 317–340.

[5] Michael T. Goodrich, Mark W. Orletsky, and Kumar Ramaiyer, Methods for achiev-
ing fast query times in point location data structures. In Proc. 8th ACM-SIAM
Sympos. Discrete Algorithms, pp. 757–766, 1997.

[6] David G. Kirkpatrick, Optimal search in planar subdivisions. SIAM J. Comput.,
12/1, (1983), 28–35.

[7] Rolf Klein, Concrete and abstract Voronoi diagrams , vol. 400 of Lecture Notes
Comput. Sci., Springer, 1989.

[8] Der-Tsai Lee and Franco P. Preparata, An optimal algorithm for finding the kernel
of a polygon. J. ACM, 26/3, (1979), 415–421.

[9] Neil Sarnak and Robert E. Tarjan, Planar point location using persistent search trees.
Commun. ACM, 29/7, (1986), 669–679.

127

https://doi.org/10.1006/jagm.2000.1101
https://doi.org/10.1006/jagm.2000.1101
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
http://mi.mathnet.ru/eng/izv4937
https://doi.org/10.1137/0215023
https://doi.org/10.1137/0215023
http://doi.acm.org/10.1145/314161.314438
http://doi.acm.org/10.1145/314161.314438
https://doi.org/10.1137/0212002
https://doi.org/10.1007/3-540-52055-4
https://doi.org/10.1145/322139.322142
https://doi.org/10.1145/322139.322142
https://doi.org/10.1145/6138.6151

	Fundamentals
	Models of Computation
	Basic Geometric Objects
	Graphs

	Plane Embeddings
	Drawings, Embeddings and Planarity
	Graph Representations
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Combinatorial Embeddings

	Unique Embeddings
	Triangulating a Plane Graph
	Compact Straight-Line Drawings
	Canonical Orderings
	The Shift-Algorithm
	Remarks and Open Problems

	Crossings
	Crossing Numbers
	The Crossing Lemma
	Applications of the Crossing Lemma

	Polygons
	Classes of Polygons
	Polygon Triangulation
	The Art Gallery Problem
	Optimal Guarding

	Convexity and Convex Hulls
	Convexity
	Classic Theorems for Convex Sets
	Planar Convex Hull
	Trivial algorithms
	Jarvis' Wrap
	Graham Scan (Successive Local Repair)
	Lower Bound
	Chan's Algorithm

	Delaunay Triangulations
	The Empty Circle Property
	The Lawson Flip algorithm
	Termination of the Lawson Flip Algorithm: The Lifting Map
	Correctness of the Lawson Flip Algorithm
	The Delaunay Graph
	Every Delaunay Triangulation Maximizes the Smallest Angle
	Constrained Triangulations

	Delaunay Triangulation: Incremental Construction
	Incremental construction
	The History Graph
	Analysis of the algorithm

	Voronoi Diagrams
	Post Office Problem
	Voronoi Diagram
	Duality
	Lifting Map
	Planar Point Location
	Kirkpatrick's Hierarchy

	Convex Polytopes
	Faces of Polytopes
	Faces and vertex sets

	Polyhedra and the Main Theorem
	Examples
	Hypercubes
	Simplices

	Polytope Structure
	The face lattice
	Polarity

	Simplicial and Simple Polytopes
	Higher-dimensional (Delaunay) triangulations
	Complexity of 4-polytopes
	Higher-dimensional Voronoi diagrams

	Line Arrangements
	Arrangements
	Construction
	Zone Theorem
	The Power of Duality
	Rotation Systems—Sorting all Angular Sequences
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing lower envelopes
	Complexity of a single face

	Counting
	Introduction
	Embracing k-Sets in the Plane
	Adding a Dimension
	The Upper Bound

	Embracing k-Sets in d-Space
	Embracing Sets vs. Faces of Polytopes
	Warm-up
	Orthogonal dual (Gale Duality)

	Faster Counting in the Plane – Another Vector
	Characterizing All Possibilities
	Some Add-Ons

	Line Sweep
	Interval Intersections
	Segment Intersections
	Improvements
	Algebraic degree of geometric primitives
	Red-Blue Intersections

	The Configuration Space Framework
	The Delaunay triangulation — an abstract view
	Configuration Spaces
	Expected structural change
	Bounding location costs by conflict counting
	Expected number of conflicts

	Trapezoidal Maps
	The Trapezoidal Map
	Applications of trapezoidal maps
	Incremental Construction of the Trapezoidal Map
	Using trapezoidal maps for point location
	Analysis of the incremental construction
	Defining The Right Configurations
	Update Cost
	The History Graph
	Cost of the Find step
	Applying the General Bounds

	Analysis of the point location
	The trapezoidal map of a simple polygon

	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face

	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

	Smallest Enclosing Balls
	The trivial algorithm
	Welzl's Algorithm
	The Swiss Algorithm
	The Forever Swiss Algorithm
	Smallest Enclosing Balls in the Manhattan Distance

	Epsilon Nets
	Motivation
	Range spaces and -nets.
	Either almost all is needed or a constant suffices.
	What makes the difference: VC-dimension
	VC-dimension of Geometric Range Spaces
	Small -Nets, an Easy Warm-up Version
	Even Smaller -Nets

