Topological Methods in Combinatorics and Geometry FS 08

Problem Set 11

Course webpage: http://www.ti.inf.ethz.ch/ew/courses/Top08/

Due date: May 29, 2008

Exercise 1. Find a simplicial complex K such that $||K^2\Delta||$ is homeomorphic to $S^1 \times [0, 1]$.

Exercise 2 (n-dimensional space that does not embed into \mathbb{R}^{2n}). Let A be a three point discrete space and B be a singleton space. The 3-star is the space $Y = A * B$ drawn in the picture (we consider A and B as subspaces of Y).

Next, we define the space:

$$N = \{(y_1, y_2, \ldots, y_{n+1}) \in Y^{n+1} \mid y_i \in A \text{ for at least one } i \in [n+1]\}.$$

The topology on N is the inherited topology of N as a subspace of the Cartesian product Y^{n+1}.

(a) Find a map $f: B^2 \rightarrow Y$ such that $f(x) \neq f(-x)$ for every $x \in S^1 = \partial B^2$.

(b) Prove that Y^{n+1} does not embed into \mathbb{R}^{2n+1}.

(c) Prove that if N embeds into \mathbb{R}^k then Y embeds into \mathbb{R}^{k+1}, and thus conclude that N does not embed into \mathbb{R}^{2n}.

Exercise 3. Let $V_{n,2} = \{(v_1, v_2) \in (S^{n-1})^2 \mid \langle v_1, v_2 \rangle\} \subset \mathbb{R}^{2n}$ be the Stiefel manifold of pairs of unit orthogonal vectors, $n \geq 1$. Let ν be the \mathbb{Z}_2-action given by $(v_1, v_2) \mapsto (-v_1, -v_2)$.

(a) Show that $\text{ind}_{\mathbb{Z}_2}(V_{2,n}) \leq n - 1$.

(b) Let n be even. Exhibit a \mathbb{Z}_2-map $S^{n-1} \rightarrow V_{n,2}$, thereby proving that $\text{ind}_{\mathbb{Z}_2}(V_{n,2}) = n - 1$.

1The space N can be seen as a geometric realization of some n-dimensional simplicial complex, but you are not supposed to prove it.

2If we consider Y as subspace of \mathbb{R}^2, then we can see Y^{n+1} as a subspace of $\mathbb{R}^{2(n+1)}$.