The Hales-Jewett Theorem

A.W. HALES & R.I. JEWETT

1963

"Regularity and positional games"
Trans. Amer. Math. Soc. 106, 222-229

Importance of HJT

• The Hales-Jewett theorem is presently one of the most useful techniques in *Ramsey theory*

Importance of HJT

- The Hales-Jewett theorem is presently one of the most useful techniques in *Ramsey theory*
- Without this result, Ramsey theory would more properly be called Ramseyan theorems

Outline for the lecture

- 1. The theorem and its consequences
 - 1.1 Van der Waerden's Theorem
 - 1.2 Gallai-Witt's Theorem

Outline for the lecture

- 1. The theorem and its consequences
 - 1.1 Van der Waerden's Theorem
 - 1.2 Gallai-Witt's Theorem
- 2. Historical Comments

Outline for the lecture

- 1. The theorem and its consequences
 - 1.1 Van der Waerden's Theorem
 - 1.2 Gallai-Witt's Theorem
- 2. Historical Comments
- 3. Proof of HJT

Basic definitions

• Let A be an alphabet of t symbols, usually

$$A = \{0, 1, \dots, t - 1\}$$

• Let $* \not\in A$ be a new symbol

Basic definitions

• Let A be an alphabet of t symbols, usually

$$A = \{0, 1, \dots, t - 1\}$$

- Let $* \not\in A$ be a new symbol
- Words are strings over A without *
- Strings containing at least one * are called roots

Basic definitions

• Let A be an alphabet of t symbols, usually

$$A = \{0, 1, \dots, t - 1\}$$

- Let $* \not\in A$ be a new symbol
- Words are strings over A without *
- Strings containing at least one * are called roots
- For a root $\tau \in (A \cup \{*\})^n$ and a symbol $a \in A$, we write

$$\tau(a) \in A^n$$

for the word obtained from τ by replacing each * by a

• Let $A = \{0, 1, 2\}$ be an alphabet of 3 symbols.

- Let $A = \{0, 1, 2\}$ be an alphabet of 3 symbols.
- Some roots:

$$\tau_1 = 01*2$$
 $\tau_2 = *1$ $\tau_3 = 01*2*1$ $\tau_i \in (A \cup \{*\})^{n_i}, \quad n_1 = 4, n_2 = 2, n_3 = 6$

- Let $A = \{0, 1, 2\}$ be an alphabet of 3 symbols.
- Some roots:

$$\tau_1 = 01*2$$
 $\tau_2 = *1$ $\tau_3 = 01*2*1$ $\tau_i \in (A \cup \{*\})^{n_i}, \quad n_1 = 4, n_2 = 2, n_3 = 6$

• Some words obtained from these roots:

$$\tau_1(0) =$$

- Let $A = \{0, 1, 2\}$ be an alphabet of 3 symbols.
- Some roots:

$$\tau_1 = 01*2$$
 $\tau_2 = *1$ $\tau_3 = 01*2*1$ $\tau_i \in (A \cup \{*\})^{n_i}, \quad n_1 = 4, n_2 = 2, n_3 = 6$

• Some words obtained from these roots:

$$\tau_1(0) = 0102 \quad \tau_1(1) =$$

- Let $A = \{0, 1, 2\}$ be an alphabet of 3 symbols.
- Some roots:

$$\tau_1 = 01*2$$
 $\tau_2 = *1$ $\tau_3 = 01*2*1$ $\tau_i \in (A \cup \{*\})^{n_i}, \quad n_1 = 4, n_2 = 2, n_3 = 6$

Some words obtained from these roots:

$$\tau_1(0) = 0102$$
 $\tau_1(1) = 0112$ $\tau_2(1) =$

- Let $A = \{0, 1, 2\}$ be an alphabet of 3 symbols.
- Some roots:

$$\tau_1 = 01*2$$
 $\tau_2 = *1$ $\tau_3 = 01*2*1$ $\tau_i \in (A \cup \{*\})^{n_i}, \quad n_1 = 4, n_2 = 2, n_3 = 6$

Some words obtained from these roots:

$$\tau_1(0) = 0102$$
 $\tau_1(1) = 0112$ $\tau_2(1) = 11$ or $\tau_3(2) =$

- Let $\overline{A} = \{0, 1, 2\}$ be an alphabet of 3 symbols.
- Some roots:

$$\tau_1 = 01*2$$
 $\tau_2 = *1$ $\tau_3 = 01*2*1$ $\tau_i \in (A \cup \{*\})^{n_i}, \quad n_1 = 4, n_2 = 2, n_3 = 6$

Some words obtained from these roots:

$$\tau_1(0) = 0102$$
 $\tau_1(1) = 0112$ $\tau_2(1) = 11$ or $\tau_3(2) = 012221$.

Further definition

Let τ be a root. A *combinatorial line* rooted in τ is the set of t words

$$L_{\tau} = \{\tau(0), \tau(1), \dots, \tau(t-1)\}.$$

Further definition

Let τ be a root. A *combinatorial line* rooted in τ is the set of t words

$$L_{\tau} = \{\tau(0), \tau(1), \dots, \tau(t-1)\}.$$

Example: Let $\tau = 01*2*1$ be a root in $A = \{0, 1, 2, 3, 4\}$. Then

Further definition

Let τ be a root. A *combinatorial line* rooted in τ is the set of t words

$$L_{\tau} = \{\tau(0), \tau(1), \dots, \tau(t-1)\}.$$

Example: Let $\tau = 01*2*1$ be a root in $A = \{0, 1, 2, 3, 4\}$. Then

$$(|A|+1)^n - |A|^n$$

$$(|A|+1)^n-|A|^n$$

Proof:

 $\#\{\text{comb. lines in } A^n\} = \#\{\text{roots in } (A \cup \{*\})^n\}$

$$(|A|+1)^n - |A|^n$$

$$\#\{\text{comb. lines in } A^n\} = \#\{\text{roots in } (A \cup \{*\})^n\}$$

= $\#\{\text{strings with at least one } * \text{ in } (A \cup \{*\})^n\}$

$$(|A|+1)^n - |A|^n$$

```
#{comb. lines in A^n} = #{roots in (A \cup \{*\})^n}
= #{strings with at least one * in (A \cup \{*\})^n}
= #{all strings in (A \cup \{*\})^n}
- #{strings without *}
```

$$(|A|+1)^n - |A|^n$$

```
#{comb. lines in A^n} = #{roots in (A \cup \{*\})^n}

= #{strings with at least one * in (A \cup \{*\})^n}

= #{all strings in (A \cup \{*\})^n}

- #{strings without *}

= (|A| + 1)^n - |A|^n
```

Why combinatorial line?

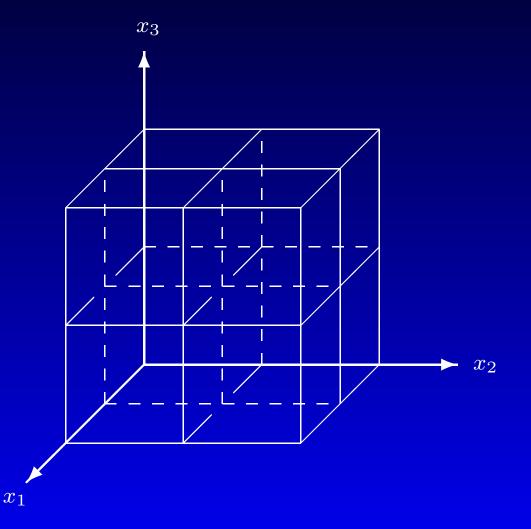
Let $A := \{0, 1, 2\}$, n=3 and $\tau = (*, 2, *)$. Then

$$L_{ au} = \left\{ egin{array}{ccc} 0 & 2 & 0 \ 1 & 2 & 1 \ 2 & 2 & 2 \end{array}
ight\}$$

Why combinatorial line?

Let $A := \{0, 1, 2\}$, n=3 and $\tau = (*, 2, *)$. Then

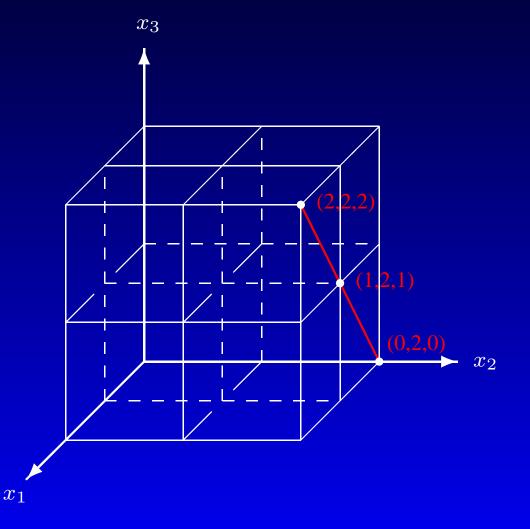
$$L_{ au} = \left\{ egin{array}{ccc} 0 & 2 & 0 \ 1 & 2 & 1 \ 2 & 2 & 2 \end{array}
ight\}$$



Why combinatorial line?

Let $A := \{0, 1, 2\}$, n=3 and $\tau = (*, 2, *)$. Then

$$L_{\tau} = \left\{ \begin{array}{ccc} 0 & 2 & 0 \\ 1 & 2 & 1 \\ 2 & 2 & 2 \end{array} \right\}$$



Theorem (HJT, 1963)

Given r > 0 distinct colors and a finite alphabet A of t = |A| symbols.

There is a dimension $n = HJ(r,t) \in \mathbb{N}$ such that for every r-coloring of the cube A^n there exists a monochromatic combinatorial line.

• Take $r = \#\{\text{colors}\} = 1$. Then for any alphabet A with t symbols

$$HJ(1,t) =$$

• Take $r = \#\{\text{colors}\} = 1$. Then for any alphabet A with t symbols

$$HJ(1,t) = 1$$

• Take $r = \#\{\text{colors}\} = 1$. Then for any alphabet A with t symbols

$$HJ(1,t) = 1$$

• Let $A = \{0, 1\}$ (A^n then corresponds to Q^n).

$$r=2$$
: $\Rightarrow HJ(2,2)=$

• Take $r = \#\{\text{colors}\} = 1$. Then for any alphabet A with t symbols

$$HJ(1,t) = 1$$

• Let $A = \{0, 1\}$ (A^n then corresponds to Q^n).

$$r = 2$$
: $\Rightarrow HJ(2,2) = 2$

$$r = 3: \implies HJ(3,2) =$$

• Take $r = \#\{\text{colors}\} = 1$. Then for any alphabet A with t symbols

$$HJ(1,t) = 1$$

• Let $A = \{0, 1\}$ (A^n then corresponds to Q^n).

$$r = 2$$
: $\Rightarrow HJ(2,2) = 2$

$$r = 3$$
: $\Rightarrow HJ(3,2) = 3$

Van der Waerden (1927)

Theorem: Given r > 0 distinct colors and $t \in \mathbb{N}$.

There is a $N = W(r, t) \in \mathbb{N}$ such that for every r-coloring of the set $\{1, \ldots, N\}$ there exists at least one monochromatic arithmetic progression of t terms:

$$\{1, \ldots, a, \ldots, a+d, \ldots, a+2d, \ldots, a+(t-1)d, \ldots, N\}$$

Proof (using HJT)

Let N := n(t-1) + 1 where n = HJ(r, t) from HJT.

Proof (using HJT)

Let N := n(t-1) + 1 where n = HJ(r, t) from HJT.

Set
$$A := \{0, 1, \dots, t - 1\}$$
 and define for $x = (x_1, \dots, x_n) \in A^n$ the mapping

$$f: A^n \to \{1, 2, \dots, N\}$$
$$x \mapsto x_1 + x_2 + \dots + x_n + 1.$$

Let N := n(t-1) + 1 where n = HJ(r, t) from HJT.

Set $A := \{0, 1, \dots, t-1\}$ and define for $x = (x_1, \dots, x_n) \in A^n$ the mapping

$$f: A^n \to \{1, 2, \dots, N\}$$

 $x \mapsto x_1 + x_2 + \dots + x_n + 1.$

Thus, f induces a coloring of A^n

color of $x \in A^n := \text{color of number } f(x)$.

Every combinatorial line

$$L_{\tau} = \{ \tau(0), \tau(1), \dots, \tau(t-1) \}$$

is mapped to an arithmetic progression of length t.

Every combinatorial line

$$L_{\tau} = \{ \tau(0), \tau(1), \dots, \tau(t-1) \}$$

is mapped to an arithmetic progression of length t.

$$a := f(\tau(0)) + 1$$

$$d := \#\{*'s \text{ in } \tau\}$$

Every combinatorial line

$$L_{\tau} = \{ \tau(0), \tau(1), \dots, \tau(t-1) \}$$

is mapped to an arithmetic progression of length t.

$$a := f(\tau(0)) + 1$$

 $d := \#\{*'s \text{ in } \tau\}$

By HJT there is a monochromatic line in A^n , which corresponds to a monochromatic arithmetic progression of length t.

Gallai-Witt (1943,1951)

A set of vectors $U \subseteq \mathbb{Z}^m$ is a homothetic copy of $V \subseteq \mathbb{Z}^m$ if there is a vector $u \in \mathbb{Z}^m$ and a constant $\lambda \in \mathbb{N}$, such that

$$U = u + \lambda V := \{ u + \lambda v | v \in V \}$$

Gallai-Witt (1943,1951)

A set of vectors $U \subseteq \mathbb{Z}^m$ is a homothetic copy of $V \subseteq \mathbb{Z}^m$ if there is a vector $u \in \mathbb{Z}^m$ and a constant $\lambda \in \mathbb{N}$, such that

$$U = u + \lambda V := \{ u + \lambda v | v \in V \}$$

Theorem: Given r > 0 distinct colors and let the vectors of \mathbb{Z}^m be r-colored.

Then every finite subset $V \subset \mathbb{Z}^m$ has a homothetic copy which is monochromatic.

Let $r := \#\{\text{colors}\}$ and $V := \{v_0, \dots, v_{t-1}\} = A$. Set n = HJ(r, t) and consider

$$A^n \ni x = (x_1, \dots, x_n)$$
 $x_i \in \{v_0, \dots, v_{t-1}\}.$

Let $r := \#\{\text{colors}\}$ and $V := \{v_0, \dots, v_{t-1}\} = A$. Set n = HJ(r, t) and consider

$$A^n \ni x = (x_1, \dots, x_n)$$
 $x_i \in \{v_0, \dots, v_{t-1}\}.$

Define $f: A^n \to \mathbb{Z}^m$ by $f(x) = x_1 + \cdots + x_n$. This induces a r-coloring of A^n .

Let $r := \#\{\text{colors}\}$ and $V := \{v_0, \dots, v_{t-1}\} = A$. Set n = HJ(r, t) and consider

$$A^n \ni x = (x_1, \dots, x_n)$$
 $x_i \in \{v_0, \dots, v_{t-1}\}.$

Define $f: A^n \to \mathbb{Z}^m$ by $f(x) = x_1 + \cdots + x_n$. This induces a r-coloring of A^n .

By HJT there is a monochromatic combinatorial line

$$L_{\tau} = \{\tau(v_0), \dots, \tau(v_{t-1})\} \subseteq A^n.$$

Let
$$I=\{i|\tau_i\neq *\},$$
 and
$$\lambda:=\#\{*\text{'s in }\tau\}=n-|I|>0.$$

Let
$$I = \{i | \tau_i \neq *\}$$
, and

$$\lambda := \#\{*'s \text{ in } \tau\} = n - |I| > 0.$$

Then

$$f(L_{\tau}) = \left\{ u + \lambda v_j \mid u = \sum_{i \in I} v_i \; ; \; j = 0, \dots, t - 1 \right\}$$

Let $I = \{i | \tau_i \neq *\}$, and

$$\lambda := \#\{*'s \text{ in } \tau\} = n - |I| > 0.$$

Then

$$f(L_{\tau}) = \left\{ u + \lambda v_j \mid u = \sum_{i \in I} v_i \; ; \; j = 0, \dots, t - 1 \right\}$$

This is a homothetic copy of $V = \{v_0, \dots, v_{t-1}\}$.

• Van der Waerden's Theorem was originally conjectured by Baudet. The theorem is a corollary of Szemerédi's theorem.

- Van der Waerden's Theorem was originally conjectured by Baudet. The theorem is a corollary of Szemerédi's theorem.
- Szemerédi's theorem was conjectured in 1936 by Erdos and Turán. Roth (1953) proved the case t=3 (mentioned in his Fields Medal citation). Szemerédi proved the case t=4 (1969), and the general theorem in 1975.

- Van der Waerden's Theorem was originally conjectured by Baudet. The theorem is a corollary of Szemerédi's theorem.
- Szemerédi's theorem was conjectured in 1936 by Erdos and Turán. Roth (1953) proved the case t=3 (mentioned in his Fields Medal citation). Szemerédi proved the case t=4 (1969), and the general theorem in 1975.
- Fürstenberg and Katznelson proved Szemerédi's theorem using ergodic theory in 1979.

- Van der Waerden's Theorem was originally conjectured by Baudet. The theorem is a corollary of Szemerédi's theorem.
- Szemerédi's theorem was conjectured in 1936 by Erdos and Turán. Roth (1953) proved the case t=3 (mentioned in his Fields Medal citation). Szemerédi proved the case t=4 (1969), and the general theorem in 1975.
- Fürstenberg and Katznelson proved Szemerédi's theorem using ergodic theory in 1979.
- Gowers gave a new proof (1998), with a better bound on W(r,t), for the case t=4 (mentioned in his Fields Medal citation).

Known W(r,t)

• The following table shows all exactly known van der Waerden numbers (the nontrivials marked red)

r/t	t = 1	t = 2	t = 3	t = 4	t = 5
r=1	1	2	3	4	5
r = 2	1	3	9	35	178
r = 3	1	4	27		
r = 4	1	5	76		

Eric W. Weisstein et al. "van der Waerden Number." From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/vanderWaerdenNumber.html

Some bounds

It is known that

$$W(r,3) \le e^{r^{c_1}}$$

and

$$W(r,4) \le e^{e^{e^{r^{c_2}}}}$$

for some constants c_1, c_2 .

Eric W. Weisstein et al. "van der Waerden Number." From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/vanderWaerdenNumber.html

History of HJT

Various proofs of the Hales-Jewett theorem are known.

• The original proof of Hales and Jewett is quite short but provides an extremely fast growing upper bound for HJ(r,t).

History of HJT

recursive.

Various proofs of the Hales-Jewett theorem are known.

- The original proof of Hales and Jewett is quite short but provides an extremely fast growing upper bound for HJ(r,t).
- Shelah (1988) found a completely new proof which yields a much smaller (a primitive recursive) bound.
 A function that can be implemented using only for-loops (which have a fixed iteration limit) is called primitive

History of HJT

Various proofs of the Hales-Jewett theorem are known.

- The original proof of Hales and Jewett is quite short but provides an extremely fast growing upper bound for HJ(r,t).
- Shelah (1988) found a completely new proof which yields a much smaller (a primitive recursive) bound. A function that can be implemented using only for-loops (which have a fixed iteration limit) is called primitive recursive.
- We will follow the compact version of Shelah's proof from A. Nilli (1990) (c/o Noga Alon). Hales-Jewett Theorem, SS04 – p.20/33

By induction on t = |A|. Let $r := \#\{\text{colors}\}$.

By induction on t = |A|. Let $r := \#\{\text{colors}\}$.

- t = 1: trivial, HJ(r, 1) = 1
- $t-1 \rightarrow t$: Assume HJT holds for t-1 (and r).

By induction on t = |A|. Let $r := \#\{\text{colors}\}$.

- t = 1: trivial, HJ(r, 1) = 1
- $t-1 \rightarrow t$: Assume HJT holds for t-1 (and r).

Set n := HJ(r, t-1) and define a sequence $N_1 < \ldots < N_n$

$$N_1 := r^{t^n}$$
 $N_i := r^{t^n + \sum_{j=1}^{i-1} N_j}$ $i > 2$

By induction on t = |A|. Let $r := \#\{\text{colors}\}$.

- t = 1: trivial, HJ(r, 1) = 1
- $t-1 \rightarrow t$: Assume HJT holds for t-1 (and r).

Set n := HJ(r, t-1) and define a sequence $N_1 < \ldots < N_n$

$$N_1 := r^{t^n}$$
 $N_i := r^{t^n + \sum_{j=1}^{i-1} N_j}$ $i \ge 2$

Define as a new Dimension

$$N:=N_1+\cdots+N_n.$$

$$\chi:A^N\to\{1,\ldots,r\}$$

there is at least one monochromatic combinatorial line, that is, $HJ(r,t) \leq N$.

$$\chi:A^N\to\{1,\ldots,r\}$$

there is at least one monochromatic combinatorial line, that is, $HJ(r,t) \leq N$.

How large is this N?

$$\chi:A^N\to\{1,\ldots,r\}$$

there is at least one monochromatic combinatorial line, that is, $HJ(r,t) \leq N$.

How large is this N?

We have n = HJ(r, t - 1). Estimate N

$$N > N_n > \underbrace{r^{r \cdot \cdot r}}_{n \text{ times}}^{t^n}$$

$$\chi:A^N\to\{1,\ldots,r\}$$

there is at least one monochromatic combinatorial line, that is, $HJ(r,t) \leq N$.

How large is this N?

We have n = HJ(r, t - 1). Estimate N

$$N > N_n > \underbrace{r^{r}}_{n \text{ times}}^{t^n}$$

Example: Take r=2 and t=3. n=HJ(2,2)=2. Then

$$N > 2^{2^{3^2}} = 2^{512}$$

Definition: Neighbors

 $a, b \in A^n$ are *neighbors* if they differ in exactly one coordinate.

Definition: Neighbors

 $a, b \in A^n$ are *neighbors* if they differ in exactly one coordinate.

Example: $a, b \in A^n$ differ in the *i*-th coordinate

$$a = a_1 \dots a_{i-1} \cap a_{i+1} \dots a_n$$

$$b = a_1 \dots a_{i-1} \ 1 \ a_{i+1} \dots a_n$$

Definition: Neighbors

 $a, b \in A^n$ are *neighbors* if they differ in exactly one coordinate.

Example: $a, b \in A^n$ differ in the *i*-th coordinate

$$a = a_1 \dots a_{i-1} \ 0 \ a_{i+1} \dots a_n$$

 $b = a_1 \dots a_{i-1} \ 1 \ a_{i+1} \dots a_n$

For $a = a_1 \dots a_n \in A^n$ and a concatenation of n roots

$$\tau = \tau_1 \dots \tau_n$$
 $|\tau_i| = N_i \quad \forall i = 1, \dots, n$

denote

$$\tau(a) = \tau_1(a_1) \dots \tau_n(a_n) \qquad |\tau(a)| = N.$$

Claim

Claim: There are n roots τ_1, \ldots, τ_n of length $|\tau_i| = N_i$ such that for their concatenation τ

$$\chi(\tau(a)) = \chi(\tau(b))$$

for any two neighbors $a, b \in A^n$.

Claim

Claim: There are n roots τ_1, \ldots, τ_n of length $|\tau_i| = N_i$ such that for their concatenation τ

$$\chi(\tau(a)) = \chi(\tau(b))$$

for any two neighbors $a, b \in A^n$.

How does this imply the theorem?

Claim

Claim: There are n roots τ_1, \ldots, τ_n of length $|\tau_i| = N_i$ such that for their concatenation τ

$$\chi(\tau(a)) = \chi(\tau(b))$$

for any two neighbors $a, b \in A^n$.

How does this imply the theorem?

Take such a τ from the claim and define a new coloring χ' for the n-cube $(A-\{0\})^n$

$$\chi'(a) := \chi(\tau(a)) \qquad \chi : A^N \to \{1, \dots, r\}.$$

Since $|A - \{0\}| = t - 1$ and n = HJ(r, t - 1) by induction assumption there is a root

$$\nu = \nu_1 \dots \nu_n \in ((A - \{0\}) \cup \{*\})^n$$

such that the combinatorial line

$$L_{\nu} = \{\nu(1), \nu(2), \dots, \nu(t-1)\}$$

is monochromatic with respect to χ' .

Since $|A - \{0\}| = t - 1$ and n = HJ(r, t - 1) by induction assumption there is a root

$$\nu = \nu_1 \dots \nu_n \in ((A - \{0\}) \cup \{*\})^n$$

such that the combinatorial line

$$L_{\nu} = \{\nu(1), \nu(2), \dots, \nu(t-1)\}$$

is monochromatic with respect to χ' .

Consider the root

$$\tau(\nu) = \tau_1(\nu_1) \dots \tau_n(\nu_n) \qquad |\tau(\nu)| = N.$$

Since $|A - \{0\}| = t - 1$ and n = HJ(r, t - 1) by induction assumption there is a root

$$\nu = \nu_1 \dots \nu_n \in ((A - \{0\}) \cup \{*\})^n$$

such that the combinatorial line

$$L_{\nu} = \{\nu(1), \nu(2), \dots, \nu(t-1)\}$$

is monochromatic with respect to χ' .

Consider the root

$$\tau(\nu) = \tau_1(\nu_1) \dots \tau_n(\nu_n) \qquad |\tau(\nu)| = N.$$

We will show that the line

$$L_{\tau(\nu)} = \{ \tau(\nu(0)), \tau(\nu(1)), \dots, \tau(\nu(t-1)) \}$$

is monochromatic with respect to χ .

Since L_{ν} is monochromatic w.r.t. χ'

$$\chi'(\nu(1)) = \dots = \chi'(\nu(t-1)).$$

Since L_{ν} is monochromatic w.r.t. χ'

$$\chi'(\nu(1)) = \ldots = \chi'(\nu(t-1)).$$

By definition of χ'

$$\chi(\tau(\nu(1))) = \ldots = \chi(\tau(\nu(t-1))).$$

What about $\chi(\tau(\nu(0))) = ?$

Since L_{ν} is monochromatic w.r.t. χ'

$$\chi'(\nu(1)) = \ldots = \chi'(\nu(t-1)).$$

By definition of χ'

$$\chi(\tau(\nu(1))) = \ldots = \chi(\tau(\nu(t-1))).$$

What about $\chi(\tau(\nu(0))) = ?$

If $\#\{*'s \text{ in } \nu\} = 1$, then $\tau(\nu(0))$ is neighbor of $\tau(\nu(1))$. By the claim

$$\chi(\tau(\nu(0))) = \chi(\tau(\nu(1))).$$

If $\#\{*'s \text{ in } \nu\} > 1$, then we still can reach $\tau(\nu(0))$ from $\tau(\nu(1))$ by passing through a sequence of neighbors

If $\#\{*'s \text{ in } \nu\} > 1$, then we still can reach $\tau(\nu(0))$ from $\tau(\nu(1))$ by passing through a sequence of neighbors

If $\#\{*'s \text{ in } \nu\} > 1$, then we still can reach $\tau(\nu(0))$ from $\tau(\nu(1))$ by passing through a sequence of neighbors

Again by the claim above

$$\chi(\tau(\nu(0))) = \chi(\tau(\nu(1))).$$

Thus, $L_{\tau(\nu)}$ is monochromatic.

Proof (of claim)

We prove the existence of roots τ_i by backward induction on i.

Suppose we already have defined $\tau_{i+1}, \ldots, \tau_n$.

Proof (of claim)

We prove the existence of roots τ_i by backward induction on i.

Suppose we already have defined $\tau_{i+1}, \ldots, \tau_n$.

Recall that we want $|\tau_i| = N_i$. Let $M_{i-1} := \sum_{j=1}^{i-1} N_j$.

For $k = 0, ..., N_i$ let W_k be the word

$$W_k := \underbrace{0 \dots 0}_{k} \underbrace{1 \dots 1}_{N_i - k}$$

Proof (of claim)

We prove the existence of roots τ_i by backward induction on i.

Suppose we already have defined $\tau_{i+1}, \ldots, \tau_n$.

Recall that we want $|\tau_i| = N_i$. Let $M_{i-1} := \sum_{j=1}^{i-1} N_j$.

For $k = 0, ..., N_i$ let W_k be the word

$$W_k := \underbrace{0 \dots 0}_{k} \underbrace{1 \dots 1}_{N_i - k}$$

For each k define the r-coloring χ_k of all words in $A^{M_{i-1}+n-i}$ as

$$\chi_k(x_1 \dots x_{M_{i-1}} y_{i+1} \dots y_n) := := \chi(x_1 \dots x_{M_{i-1}} W_k \tau_{i+1}(y_{i+1}) \dots \tau_n(y_n)).$$

We have $N_i + 1$ colorings $\chi_0, \dots, \chi_{N_i}$. The total number of such r-colorings is

$$r^{\#\{\text{of words}\}} = r^{t^{M_{i-1}+n-i}} \le r^{t^{M_{i-1}+n}} = N_i.$$

We have $N_i + 1$ colorings $\chi_0, \ldots, \chi_{N_i}$.

The total number of such r-colorings is

$$r^{\#\{\text{of words}\}} = r^{t^{M_{i-1}+n-i}} \le r^{t^{M_{i-1}+n}} = N_i.$$

By the pigeonhole principle there is $\chi_s = \chi_k$ for some s < k. Let

$$\tau_i := \underbrace{0 \dots 0}_{s} \underbrace{* \dots *}_{k-s} \underbrace{1 \dots 1}_{N_i - k}$$

We have $N_i + 1$ colorings $\chi_0, \ldots, \chi_{N_i}$.

The total number of such r-colorings is

$$r^{\#\{\text{of words}\}} = r^{t^{M_{i-1}+n-i}} \le r^{t^{M_{i-1}+n}} = N_i.$$

By the pigeonhole principle there is $\chi_s = \chi_k$ for some s < k. Let

$$\tau_i := \underbrace{0 \dots 0}_{s} \underbrace{* \dots *}_{k-s} \underbrace{1 \dots 1}_{N_i - k}$$

We have to check that $\tau = \tau_1 \dots \tau_n$ satisfies the assertion of the claim.

Observe that

$$\tau_i(0) = W_k$$
 and $\tau_i(1) = W_s$.

Observe that

$$\tau_i(0) = W_k$$
 and $\tau_i(1) = W_s$.

Take $a, b \in A^n$ neighbors differing in the *i*-th coordinate

$$a = a_1 \dots a_{i-1} \ 0 \ a_{i+1} \dots a_n$$

$$b = a_1 \dots a_{i-1} \ 1 \ a_{i+1} \dots a_n$$

Observe that

$$\tau_i(0) = W_k$$
 and $\tau_i(1) = W_s$.

Take $a, b \in A^n$ neighbors differing in the *i*-th coordinate

$$a = a_1 \dots a_{i-1} \ 0 \ a_{i+1} \dots a_n$$

 $b = a_1 \dots a_{i-1} \ 1 \ a_{i+1} \dots a_n$

then

$$\tau(a) = \tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(\mathbf{0}) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n)$$

$$\tau(b) = \tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(\mathbf{1}) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n)$$

Observe that

$$\tau_i(0) = W_k$$
 and $\tau_i(1) = W_s$.

Take $a, b \in A^n$ neighbors differing in the *i*-th coordinate

$$a = a_1 \dots a_{i-1} \ 0 \ a_{i+1} \dots a_n$$

 $b = a_1 \dots a_{i-1} \ 1 \ a_{i+1} \dots a_n$

then

$$\tau(a) = \tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \ \tau_i(\mathbf{0}) \ \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n)$$

$$\tau(b) = \tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \ \tau_i(\mathbf{1}) \ \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n)$$

and since $\chi_s = \chi_k$

$$\chi(\tau(a)) = \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(0) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$\chi(\tau(a)) = \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(0) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$
$$= \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) W_k \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$\chi(\tau(a)) = \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(0) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$= \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) W_k \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$= \chi_k(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_n)$$

$$\chi(\tau(a)) = \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(0) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$= \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) W_k \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$= \chi_k(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_n)$$

$$= \chi_s(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_n)$$

$$\chi(\tau(a)) = \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) \tau_i(0) \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))
= \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) W_k \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))
= \chi_k(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_n)
= \chi_s(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_n)
= \chi(\tau_1(a_1) \dots \tau_{i-1}(a_{i-1}) W_s \tau_{i+1}(a_{i+1}) \dots \tau_n(a_n))$$

$$\chi(\tau(a)) = \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) \tau_{i}(0) \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))$$

$$= \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) W_{k} \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))$$

$$= \chi_{k}(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_{n})$$

$$= \chi_{s}(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_{n})$$

$$= \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) W_{s} \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))$$

$$= \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) \tau_{i}(1) \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))$$

$$\chi(\tau(a)) = \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) \tau_{i}(0) \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))
= \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) W_{k} \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))
= \chi_{k}(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_{n})
= \chi_{s}(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) a_{i+1} \dots a_{n})
= \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) W_{s} \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))
= \chi(\tau_{1}(a_{1}) \dots \tau_{i-1}(a_{i-1}) \tau_{i}(1) \tau_{i+1}(a_{i+1}) \dots \tau_{n}(a_{n}))
= \chi(\tau(b))$$

This completes the proof of the claim.

Combinatorial m-space

Let τ be a root in $(A \cup \{*_1, \dots, *_m\})^n$, where $*_1, \dots, *_m \notin A$ are distinct symbols. We require that each of these appears at least once in τ . Thus, we have m mutually disjoint sets of moving coordinates.

Combinatorial m-space

Let τ be a root in $(A \cup \{*_1, \dots, *_m\})^n$, where $*_1, \dots, *_m \notin A$ are distinct symbols. We require that each of these appears at least once in τ . Thus, we have m mutually disjoint sets of moving coordinates.

The combinatorial m-space S_{τ} is the set of all t^m words in A^n obtained by replacing each $*_i$ with a symbol from A.

Combinatorial m-space

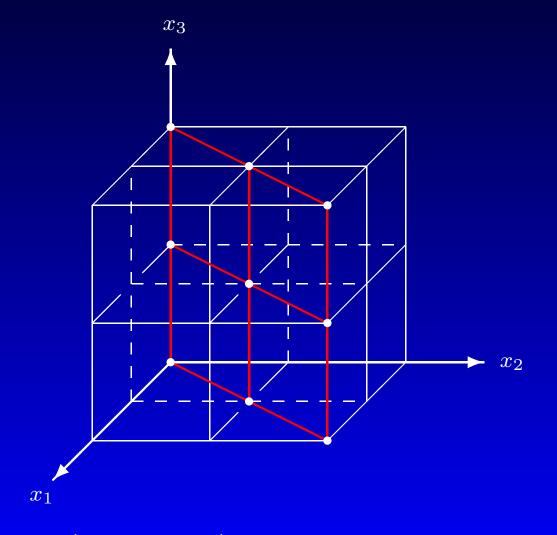
Let τ be a root in $(A \cup \{*_1, \dots, *_m\})^n$, where $*_1, \dots, *_m \notin A$ are distinct symbols. We require that each of these appears at least once in τ . Thus, we have m mutually disjoint sets of moving coordinates.

The combinatorial m-space S_{τ} is the set of all t^m words in A^n obtained by replacing each $*_i$ with a symbol from A.

Remark: A combinatorial line is a combinatorial 1-space.

Example

A combinatorial 2-space in $A^3 = \{0, 1, 2\}^3$.



Here
$$\tau = (*_1, *_1, *_2)$$
.

Theorem (generalized)

Given r > 0 distinct colors, a dimension $m \in \mathbb{N}$ and a finite alphabet A of t = |A| symbols.

There is a dimension $n = HJ(m, r, t) \in \mathbb{N}$ such that for every r-coloring of the cube A^n there exists a monochromatic combinatorial m-space.

End