Solution of in-class exercise 1: Bounding a sequence

Using the usual approach of subtracting the recurrence for $n - 1$, we obtain that for $n \geq 3$,

$$x_n - x_{n-1} = \sqrt{n} - \sqrt{n-1} + 2x_{n-1}$$

holds and therefore

$$x_n = (\sqrt{n} - \sqrt{n-1}) + 3x_{n-1}.$$

Now since $x_1 > 0$ we deduce that $x_n > 0$ for all n, and then in particular

$$x_n > 3^{n-1}x_1 \notin O(2^n).$$

So the claim is FALSE.

Solution of in-class exercise 2: Random permutations

We prove the lemma by induction on the size n of the insertion permutation (or equivalently, the resulting tree).

Induction base case. If $n = 0$ or $n = 1$, the lemma trivially holds.

Induction step. Let $n \geq 2$ and suppose that the lemma holds for all insertion permutations of size strictly less than n. Let $\pi = (\pi(1), \ldots, \pi(n))$ be a permutation drawn uniformly at random from S_n. The first element $\pi(1)$ will become the root of the tree T_π. Since the distribution of $\pi(1)$ is u.a.r. from $[n]$, the root of the tree is chosen uniformly at random, as required by the construction of $\hat{B}_{[n]}$.

Now let us tackle the two subtrees of the root: Let $k \in [n]$. We want to show that, conditioned on $\pi(1) = k$, the distribution of the left subtree of the root is the same as $\hat{B}_{[1, \ldots, k-1]}$, and the distribution of the right subtree of the root is the same as $\hat{B}_{[k+1, \ldots, n]}$. To this end, let π^- be the sequence of elements in π smaller than k, and let π^+ be the sequence of elements in π larger than k. Note that the insertion sequence will send the keys in $\pi^-(\pi^+)$ in exactly this order to the left (right) subtree of the root. Since π^- and π^+ are uniformly random permutations of their respective element sets $\{1, \ldots, k-1\}$ and $\{k+1, \ldots, n\}$, we can apply the induction hypothesis to obtain that the left and right subtrees of the root are distributed just as we stated.

We conclude that this process produces a tree T_π that is distributed like $\hat{B}_{[n]}$.

Solution 1: A Random Tree? How Random?

According to Lemma 1.1 in the script, the probability of the tree is

\[\frac{1}{2 \cdot 1 \cdot 7 \cdot 1 \cdot 3 \cdot 1 \cdot 4} = \frac{1}{168} . \]

What do the extremal examples for the probability of a tree look like? In the case of 7 nodes, we consider the trees of height 7 − 1 = 6 (which yields the smallest probability \(\frac{1}{7!} = \frac{1}{5040} \)) and the perfectly balanced tree of height 2 (which yields the largest probability \(\frac{1}{3^2 \cdot 1^7} = \frac{1}{63} \)).

Since the problem on 7 nodes is finite, we could list all cases as a proof. However, there are 429 search trees on 7 nodes which would make the proof lengthy.

Alternatively, for the case of smallest probability, we can argue using Exercise 1.5 from the script (which is the same as in-class exercise 2):

Lemma 1. If keys are inserted in a uniformly random order, the resulting search tree is distributed like \(B_s \).

It follows from the lemma that every random search tree is generated by at least one permutation on \(n \) elements (the probability of a random search tree is actually the number of permutations generating it divided by \(n! \)). Thus, the probability of a random search tree is at least \(1/n! \) and since the extremal example of height \(n − 1 \) achieves exactly this probability, it has smallest probability. This holds for all \(n \).

For the case of largest probability, let \(p_n \) denote the maximum probability for a random search tree with \(n \) vertices. Then we get the following recursion beginning with, by convention, \(p_0 = 1 \) (where \(k \) denotes the rank of the root).

\[p_n = \frac{1}{n} \cdot \max_{1 \leq k \leq n} (p_{k-1}p_{n-k}) . \]

The first few values for this maximum probability can easily be computed, namely \(p_1 = 1, p_2 = \frac{1}{2}, p_3 = \frac{1}{3}, p_4 = \frac{1}{4}, p_5 = \frac{1}{5}, p_6 = \frac{1}{6}, p_7 = \frac{1}{7}, p_8 = \frac{1}{8} \). This already proves that the perfectly balanced tree on 7 nodes has indeed largest probability. To generalize this case to larger \(n \), one would need to work somewhat harder.

Solution 2: Very Deep Nodes

Let \(N_{\text{deep}} \) denote the number of nodes of depth \(n − 1 \). We observe that a binary search tree \(B \) for \(n \) vertices has one node of depth \(n − 1 \) if and only if it is a path of length \(n − 1 \). Let \(p_n \) denote the probability that there is a node of depth \(n − 1 \). We have

\[E[N_{\text{deep}}] = p_n \cdot 1 + (1 − p_n) \cdot 0 = p_n . \]
So it remains to compute \(p_n \). Clearly, \(p_1 = 1 \). For \(n \geq 2 \) we apply induction. Note that if a tree \(T \) is a path then its root is either the smallest or the largest key. Hence

\[
\begin{align*}
p_n &= \Pr[\text{rk(root) = 1}] \cdot \Pr[\text{one node has depth } n - 1|\text{rk(root) = 1}] + \\
&\quad \Pr[\text{rk(root) = n}] \cdot \Pr[\text{one node has depth } n - 1|\text{rk(root) = n}] \\
&= \frac{1}{n} p_{n-1} + \frac{1}{n} p_{n-1} \\
&= \frac{2}{n} \cdot p_{n-1}
\end{align*}
\]

Induction yields that \(p_n = \frac{2^{n-1}}{n!} \cdot p_1 = \frac{2^{n-1}}{n!} \) and so we are done.

Remark. Note that this also provides us with the number of trees on \(n \) nodes that have height \(n - 1 \): since each such tree is a path of length \(n - 1 \), for each such tree there is exactly one ordering of \(n \) keys which produces this search tree (since a parent must always be inserted before its child). So each tree of height \(n - 1 \) separately has a probability of \(1/n! \). Since in total \(p_n = 2^{n-1}/n! \), we conclude that there must be exactly \(2^{n-1} \) trees of this type.

Of course, we could have found this number more easily: the number of trees on \(n \) nodes that are a single path is \(2^{n-1} \) simply because for each edge (of which there are \(n - 1 \) many) we can decide whether it should point to the left or to the right.

Solution 3: High Trees

By an \((n, d)\)-tree we denote a tree on \(n \) vertices of height \(d \). Let \(M_n \) denote the number of \((n, n - 2)\)-trees and let \(M'_n \) denote the number of \((n, n - 1)\)-trees. Our goal is to compute \(M_n \). Clearly, \(M_1 = 0 \), \(M_2 = 0 \) and \(M_3 = 1 \). Now for \(n \geq 4 \), let us consider two ways to proceed.

Variant 1: by induction. Note that if a tree \(T \) in \(B_{1...n} \) has height \(n - 2 \) then

- *either* the root of \(T \) is in \(\{1, n\} \) and the subtree of the root is an \((n - 1, n - 3)\)-tree
- *or* the root of \(T \) is in \(\{2, n - 1\} \) and one of the subtrees of the root is an \((n - 2, n - 3)\)-tree.

As \(n \geq 4 \), the numbers \(1, 2, n - 1, n \) are distinct. So for \(n \geq 4 \),

\[
M_n = 2 \cdot M_{n-1} + 2 \cdot M'_{n-2}, \quad (1)
\]

As a direct consequence of Exercise 3 [Remark] we have \(M'_n = 2^{n-1} \).

Equation (1) then yields that for \(n \geq 4 \),

\[
M_n = 2 \cdot M_{n-1} + 2 \cdot 2^{n-3} = 2 \cdot M_{n-1} + 2^{n-2}.
\]

By induction we obtain that \(M_n = 2^i \cdot M_{n-i} + i \cdot 2^{n-2} \) for \(i \leq n - 3 \). Hence for \(n \geq 4 \),

\[
M_n = 2^{n-3} \cdot M_3 + (n - 3) \cdot 2^{n-2} = 2^{n-3} + (n - 3) \cdot 2^{n-2} = (2n - 5) \cdot 2^{n-3}.
\]
Variant 2: direct counting. We can count the number of trees on \(n \) vertices of height \(n - 2 \) directly for \(n \geq 3 \): if a tree \(T \) in \(B_1,\ldots,n) \) has height \(n - 2 \) then it consists of a path of height \(n - 2 \) plus a leaf that can be attached at any of the first \(n - 2 \) (out of the \(n - 1 \)) vertices of that path.

From Exercise 2 (1.9), we know that the number of paths on \(n - 1 \) vertices is \(2^{n-2} \) for \(n \geq 1 \). Multiplying by the number of possibilities for attaching the additional leaf, we obtain \((n - 2)2^{n-2} \).

![Figure 1: Trees that are counted twice.](image)

This number, however, counts a certain kind of trees twice: All trees that have two leaves of depth \(n - 2 \) (cf. Figure 1). How many such trees are there? Such a tree consists of a path on \(n - 2 \) vertices plus two leaves attached to its end, so there are equally many of them as there are paths on \(n - 2 \) vertices. Again using Exercise 2 (1.9), we obtain \(2^{n-3} \) for this number. So in total, we obtain \((n - 2)2^{n-2} - 2^{n-3} \) for \(n \geq 3 \) (which is the same as we obtained in Variant 1).

Solution 4: Solving Recurrences

1. First we compute that \(a_1 = 1 \) and \(a_2 = \frac{3}{2} \). Now for \(n \geq 3 \), we multiply the recurrence relation by \(n \) and write it once for \(n \) and once for \(n - 1 \). This yields

\[na_n = n + \sum_{i=1}^{n-1} a_i \] \hspace{1cm} (2)

and

\[(n - 1)a_{n-1} = (n - 1) + \sum_{i=1}^{n-2} a_i \] \hspace{1cm} (3)

Now subtracting (3) from (2), we obtain

\[na_n - (n - 1)a_{n-1} = 1 + a_{n-1} \]
and thus
\[a_n = \frac{1}{n} + a_{n-1}. \]

This recursion can easily be telescoped from which we obtain
\[a_n = \frac{1}{n} + \frac{1}{n-1} + \ldots + \frac{1}{3} + \sum_{i=1/2+1} a_2 = H_n. \]

Therefore, \(a_n = H_n \) for all \(n \in \mathbb{N} \).

(2) We first compute that \(b_1 = 1 \) and \(b_2 = 3 \). Now for \(n \geq 3 \)
\[
b_n = 2 + \sum_{i=1}^{n-1} b_i \tag{4}
\]
and
\[
b_{n-1} = 2 + \sum_{i=1}^{n-2} b_i \tag{5}
\]
Now subtracting (5) from (4), we obtain
\[b_n - b_{n-1} = b_{n-1}, \]
therefore
\[b_n = 2b_{n-1} \]
and thus
\[b_n = 2^{n-2}b_2 = 3 \cdot 2^{n-2}. \]
Therefore, \(b_1 = 1 \) and \(b_n = 3 \cdot 2^{n-2} \) for all \(n \geq 2 \).

(3) We first compute that \(c_0 = 0 \) and \(c_1 = 0 \). Then for \(n \geq 2 \), we first note that
\[
\sum_{i=1}^{n} \frac{c_{i-1} + c_{n-i}}{2} = \sum_{i=1}^{n} c_{i-1}
\]
which then allows us to write the simpler recurrences for \(c_n \) and \(c_{n-1} \)
\[
c_n = n - 1 + \sum_{i=1}^{n} c_{i-1} \tag{6}
\]
and
\[
c_{n-1} = n - 2 + \sum_{i=1}^{n-1} c_{i-1} \tag{7}
\]
If we now subtract (7) from (6), then
\[c_n - c_{n-1} = 1 + c_{n-1} \]
and thus
\[c_n = 1 + 2c_{n-1}. \]
For telescoping, it turns out to be convenient to divide the recurrence by 2^n, then we have

$$\frac{c_n}{2^n} = \frac{1}{2^n} + \frac{c_{n-1}}{2^{n-1}}$$

and we can telescope for $c_n/2^n$, yielding

$$\frac{c_n}{2^n} = \frac{1}{2^n} + \frac{1}{2^{n-1}} + \cdots + \frac{1}{2^2} + \frac{c_1}{2^1} = \frac{1}{2} - \frac{1}{2^n}.$$

Therefore, $c_0 = 0$ and $c_n = 2^{n-1} - 1$ for $n \in \mathbb{N}$.

(4) We compute that $d_0 = 0$ and $d_1 = 1$. Then for $n \geq 2$, we may instantiate

$$d_n = 1 + 2 \sum_{i=0}^{n-1} (-1)^{n-i} d_i \quad (8)$$

and

$$d_{n-1} = 1 + 2 \sum_{i=0}^{n-2} (-1)^{n-1-i} d_i \quad (9)$$

This time, adding the recurrences $(8) + (9)$ turns out to be more helpful as it yields

$$d_n + d_{n-1} = 2 - 2d_{n-1}$$

and thus

$$d_n = 2 - 3d_{n-1}.$$

To simplify telescoping, we rearrange this to

$$d_n - \frac{1}{2} = -3 (d_{n-1} - \frac{1}{2})$$

and then use the substitution

$$f_n := d_n - \frac{1}{2}$$

from which

$$f_n = -3 f_{n-1}.$$

Telescoping now immediately yields

$$f_n = f_1 (-3)^{n-1},$$

thus

$$f_n = \frac{1}{2} (-3)^{n-1}$$

and so undoing the substitution we end up with

$$d_n = \frac{1}{2} (-3)^{n-1} + \frac{1}{2}.$$

In conclusion, $d_0 = 0$ and $d_n = \frac{1}{2}(1 + (-3)^{n-1})$ for $n \in \mathbb{N}$.
For \(n \geq 1 \), we have the recurrence

\[
e_n = 1 + ne_{n-1}.
\]

It is convenient to divide this recurrence by \(n! \) as then

\[
e_n/n! = \frac{1}{n!} + \frac{e_{n-1}}{(n-1)!}
\]

is a simple recurrence for the series \(e_n/n! \). Telescoping it yields

\[
e_n/n! = \frac{1}{n!} + \frac{1}{(n-1)!} + \ldots + \frac{1}{1!} + \frac{e_0}{0!} = \sum_{i=0}^{n} \frac{1}{i!}
\]

for all \(n \geq 1 \). Therefore,

\[
e_n = \left(\sum_{i=0}^{n} \frac{1}{i!} \right) n!
\]

for all \(n \in \mathbb{N} \) (note that by convention, \(0! = 1 \)).

The above expression may be explicit but it still involves a sum, so we should routinely ask whether there is way to simplify it. The expression in the sum of course makes us think of the function \(\exp(-) \). In fact, we know that

\[
\sum_{i=0}^{\infty} \frac{1}{i!} = e = 2.71..., \]

and thus in the case of our sequence, \(e_n < e_n! \). Due to the nature of the recursion, however, \(e_n \) is always an integer, thus we also have \(e_n \leq \lfloor e_n! \rfloor \). Let us compare how close this bound is to the truth.

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_n!)</td>
<td>2.71...</td>
<td>2.71...</td>
<td>5.44...</td>
<td>16.31...</td>
<td>65.24...</td>
</tr>
<tr>
<td>(\lfloor e_n! \rfloor)</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>(e_n)</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>65</td>
</tr>
</tbody>
</table>

So it seems the bound is tight starting \(n = 1 \). And indeed, if we check,

\[
e_n! - e_n = n! \sum_{i=n+1}^{\infty} \frac{1}{i!} = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \ldots
\]

is decreasing in \(n \). Since it is below 1 for \(n = 1 \), it stays below 1 for all \(n \).

We have established

\[
e_n = \begin{cases} 1, & \text{if } n = 0; \\ \lfloor e_n! \rfloor, & \text{otherwise}. \end{cases}
\]
Solution 5: Descendants of the Smallest Key

Variant 1: Computation via conditioning on the rank of the root. The usual way, we first obtain

\[\mathbb{E}[S_n] = \sum_{i=1}^{n} \mathbb{E}[S_n | \text{rk(root)} = i] \cdot \mathbb{P}[\text{rk(root)} = i] \]

where

\[(*) = \begin{cases}
 n, & \text{if } i = 1, \\
 \mathbb{E}[S_{i-1}], & \text{otherwise}
\end{cases} \]

Denote \(s_n := \mathbb{E}[S_n] \). Then this yields a recurrence of the form.

\[s_n = \frac{1}{n} \left(n + \sum_{i=1}^{n} s_{i-1} \right), \]

holding for all \(n \geq 1 \). As we are, by now, proficient in solving recurrences, let us multiply by \(n \) and then instantiate the recurrence for both \(n \) and \(n - 1 \) so that for \(n \geq 1 \) we have

\[ns_n = n + \sum_{i=1}^{n-1} s_i \quad (10) \]

and for \(n \geq 2 \), we get

\[(n - 1)s_{n-1} = n - 1 + \sum_{i=1}^{n-2} s_i \quad (11) \]

Then subtracting (11) from (10), we obtain

\[ns_n - (n - 1)s_{n-1} = 1 + s_{n-1}. \]

Rearranging and dividing by \(n \), this yields

\[s_n = \frac{1}{n} + s_{n-1}. \]

We are familiar with this recursion and know that telescoping it out will produce \(s_n = H_n \).

Variant 2: Computation via indicator variables. Alternatively, we can use the well-known indicator variables

\[A_i^j := \text{[node } j \text{ is an ancestor of node } i]\]

In that case we obviously have

\[S_n = \sum_{i=1}^{n} A_i^j \]

\[\Rightarrow s_n = \mathbb{E}[S_n] = \mathbb{E} \left[\sum_{i=1}^{n} A_i^j \right] = \sum_{i=1}^{n} \mathbb{E}[A_i^j]. \]
Those expectations have been computed in the lecture notes where we have obtained that

$$E[A_i] = \frac{1}{|i-j|+1}$$

and thus

$$\Rightarrow E[A_i] = \frac{1}{i-1+1} = \frac{1}{i}.$$

Therefore, this variant, too, yields

$$s_n = \sum_{i=1}^{n} E[A_i] = \sum_{i=1}^{n} \frac{1}{i} = H_n.$$