

Institut für Theoretische Informatik Dr. Tibor Szabó and Philipp Zumstein

Extremal Combinatorics

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

23.03.07

SS 07 Exercise Set 1

Exercise 1

Suppose $n \ge 4$ and let H be an *n*-uniform hypergraph, i.e. H = (V, E) with $E \subseteq \binom{H}{n}$. Prove that if $|E| \le \frac{4^{n-1}}{3^n}$, then there exists a coloring of the vertices of H by 4 colors so that in every edge all 4 colors are represented.

Exercise 2

Let $\{(A_i, B_i) \mid 1 \le i \le h\}$ be a family of pairs of subset of the set of integers of such that $|A_i| = k$ and $|B_i| = \ell$ for all i and $A_i \cap B_i = \emptyset$ and $A_i \cap B_j \ne \emptyset$ for all $i \ne j$. Prove that $h \le \binom{k+\ell}{k}$.

Hint: Look at a random order π of $\bigcup_i (A_i \cup B_i)$ and consider the probabilities that all the elements of A_i preceded all those of B_i in this order.

Exercise 3

Study the construction of the projective plane PG(q, 2) for q a prime tower (given on the extra sheet) and verify the axioms of a projective plane by showing that

- (i) every pair of distinct lines is incident to a unique point,
- (ii) every pair of distinct points is incident to a unique line,
- (iii) there are four points such that no three of them are incident to a single line.