Extremal Combinatorics

SS 07
 Exercise Set 1

Exercise 1

Suppose $n \geq 4$ and let H be an n-uniform hypergraph, i.e. $H=(V, E)$ with $E \subseteq\binom{H}{n}$. Prove that if $|E| \leq \frac{4^{n-1}}{3^{n}}$, then there exists a coloring of the vertices of H by 4 colors so that in every edge all 4 colors are represented.

Exercise 2

Let $\left\{\left(A_{i}, B_{i}\right) \mid 1 \leq i \leq h\right\}$ be a family of pairs of subset of the set of integers of such that $\left|A_{i}\right|=k$ and $\left|B_{i}\right|=\ell$ for all i and $A_{i} \cap B_{i}=\emptyset$ and $A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j$. Prove that $h \leq\binom{ k+\ell}{k}$.

Hint: Look at a random order π of $\bigcup_{i}\left(A_{i} \cup B_{i}\right)$ and consider the probabilities that all the elements of A_{i} preceed all those of B_{i} in this order.

Exercise 3

Study the construction of the projective plane $P G(q, 2)$ for q a prime tower (given on the extra sheet) and verify the axioms of a projective plane by showing that
(i) every pair of distinct lines is incident to a unique point,
(ii) every pair of distinct points is incident to a unique line,
(iii) there are four points such that no three of them are incident to a single line.

